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Abstract: In the present analysis, an infinite Euler–Bernoulli beam of constant cross-section resting on an elastic foundation is 

considered. The beam and foundation are assumed to be homogeneous and isotropic. The foundation is modeled using two parameters 

with damping. The beam is subjected to a constant point load moving with a constant speed along the beam. An effort has been made 

to find the solution of the governing differential equation analytically. It gives beam deflection under moving load in closed form for 

damped case. At subcritical speed the absolute value of the deflection of the beam increases with increase of the load velocity. Peak 

maximum deflection appears when the load travels at the critical speed. 
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1. INTRODUCTION 
Recent findings indicate one of major causes of damages, 

which are attributed to the resonant behaviors, in a railway 

track. Basically, when a railway track is excited to generalize 

dynamic loading, the railway track deforms and then vibrates 

for certain duration. Dynamic responses of the railway track 

and its components are the key to evaluate the structural 

capacity of railway track and its components. The track 

vibrations can cause the crack damage in railway sleepers or 

fasteners, or even the breakage of ballast support. When the 

foundation is modeled as an elastic foundation, a critical 

velocity is found for the existing for moving load. Waves 

excited by a moving load with supercritical velocity propagate 

in a different way as they do when the load velocity is 

subcritical. Because high speed vehicles (e.g., trains and 

automobiles) are getting extensively adopted as the surface 

transportation carriers, hence considerable attention should be 

paid to the response of the transportation structure. The main 

objective of this study is to discuss the vibration and stability 

of a Bernoulli–Euler beam resting on a Winkler-type elastic 

foundation subjected to a static axial force under a moving 

load. A distributed load with a constant advance velocity was 

considered instead of a point load because moving loads in 

practice have normally a finite area over which they are 

distributed and the point load represents only an extreme case. 

Damping of linear hysteretic nature was considered in this 

study, it is assumed that the foundation displacement at a 

point is dependent only on the force acting on the point by 

conducting parametric studies. 

  

2.  LITERATURE REVIEW  
The approach of beams on elastic foundation is used by many 

researchers for the analysis of pavement. The problem 

concerned with the dynamic behavior of an Euler-Bernoulli 

beam. Excited by a moving load has received considerable 

attention in civil engineering in the recent years. A detailed 

literature review based on the assumption of pavement as a 

beam is outlined here. 

Kenny (1954) investigated the effect of viscous damping 

based on the analytical solution for steady state response of an 

infinite Euler–Bernoulli beam resting on Winkler foundation. 

Harr et al. (1969) developed computer program for analyzing 

beams on elastic foundations, represented by a single layer 

model whose properties were characterized by two 

generalized elastic parameters, based on Vlasov’s general 

variational method. Fryba (1972) analyzed the response of an 

unbounded elastic body subjected to a moving load by using 

triple Fourier integral transformation. A detailed solution for 

the problem of a constant moving load along an infinite beam 

resting on an elastic foundation was presented by considering 

all possible speeds and values of viscous damping based on 

the concept of equivalent stiffness of the supporting 

structures. Two kinds of finite elements were formulated by 

Zhaohua and Cook (1983) to analyze beams on one or two-

parameter foundations based on exact displacement function. 

Numerical results showed that the element based on the exact 

displacement function gives exact response even for smaller 

number of elements. Cifuentes (1989) presented a combined 

finite element-finite difference technique based on Lagrange 

Multiplier formulation to study the dynamic response of an 

Euler-Bernoulli beam excited by a moving mass. Mallik et al. 

(2006) investigated the steady-state response of Euler–

Bernoulli beam placed on an elastic foundation and subjected 

to a concentrated load moving with a constant speed. The 

governing equations in the form of deflection, bending 

moment and shear force were obtained in closed form for the 

undamped case. Kien (2008) adopted the FEM to investigate 

the dynamic response of prestressed Timoshenko beam 

resting on two-parameter elastic foundation subjected to a 

moving concentrated harmonic load. It was reported that the 

critical velocity at which the dynamic deflection of the beam 

reaches a peak value, is governed by the foundation stiffness. 

Winkler foundation subject to a platoon of moving loads with 

uniform line distributions was presented by Sun and Luo 

(2008). Numerical methods based on the fast Fourier 

transform were presented for efficient computation of 

dynamic response of the beam. 
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3. MODELING OF BEAMS ON 

ELASTIC FOUNDATION SUBJECTED 

TO MOVING LOADS 
The differential equation of motion for an Euler–Bernoulli 

beam, resting on a two-parameter foundation and subjected to 

a moving load is given by   
4 2 2

14 2 2
, .1

w w w dw
EI k kw c P x t Eq

dtx dx t  
Where w(x,t) is the transverse deflection of the beam(m), E is 

the Young’s modulus of the beam material(N/m2), I is the 

second moment area of the beam cross section about its 

neutral axis(m4), k is the spring constant (first parameter)per 

unit beam length(N/m2), k1 is the shear parameter (second 

parameter) of the soil (N), ρ is the mass per unit length of the 

beam (kg/m), c is the coefficient of viscous damping per unit 

length of the beam (Ns/m2), P(x, t)  is the applied moving 

load per unit length (N/m), x is the space coordinate measured 

along the length of the beam (m), t isthe time (s). 

If loads are moving in the positive x direction with a constant 

advance velocity v, a moving coordinate ξ can be defined by 

(x-vt). Then, the governing differential equation in a moving 

Cartesian coordinate system can be expressed as 
4 2 2

14 2 2
.2

w w w dw
EI k kw c P x vt Eq

dtx dx t  
Where P is the concentrated load moves with a constant 

velocity V, P(x, t) = Pδ(x-vt) where δ is the Dirac’s delta 

function and x is measured from the location of the load at x = 

0. 

Using the two parameter model, the values of k and k1 are 

based on the constrained deformation of an elastic layer given 

by Vlazov and Leotiev [9]. For a single layer of thickness H 

with a linear variation of normal stresses, k and k1 per unit 

width are given by 

1;
1 1 2 6 1

s s

s s s

E E H
k k

H
 

Divide both sides of Eq. (1) by EI to get 
4 2 2

1

4 2 2
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kw w k w c w P
w x vt Eq

EI EI EI EI t EIdx x t
 

Now define 

2 1
1; ; ;

2 2

kk c
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EI EI EI EI  
For an infinite beam in the steady state, it is found that the 

response w becomes a function of (x-vt), rather than of (x, t). 

The issue of the stability of the moving mass on beam 

becomes easier to solve if the reference frame is related to the 

moving mass. Thus, the Dirac delta function that locates the 

position of the contact point between the moving mass and the 

beam becomes a space-dependent function only. 

Hence writing x vt  

The boundary conditions are as follows: 

1 2 1 2

1 2 1 2

0 0 ; 0 0

0 0 ; 0 0 .4

w w w w

P
w w w w Eq

EI  
Infinite beam on a two parameter foundation model 

 

For two parameter model foundation model considering 

damping the Eq. (3) can be written as follows. 
4 2 2

2
14 2 2

2 2 .5
w w w w P

c b w a d x vt Eq
t EIdx x t  

Reducing the above Eq. as  

4 2 2
2 2

14 2 2
2 2 0 .6

w w w w
c b w av dv Eq

d
 

solution of the above Eq. is 
mw e  and substituting in Eq. 

(6) 
4 2 2 2 2

12 2 0 .7m c m av m b dvm Eq
 

Defining critical damping as 

2 2 ;cr crd b a d d
constitutes the under damped case 

and critical velocity of the moving load 1( )crv b c a
, 

the roots of the Eq. (7) are in the form 

1 2;m p iq m p iq
, 

3 4;m p ir m p ir
, 

where p, q and r are real positive numbers. 

Hence solution of the Eq. (7) can be written as  

1

2

cos sin 0

cos sin 0 .8

p

p

w e A q B q for

w e C r D r for Eq
 

Using Eq. (4) and (8)  

0A C  
2 0pA Bq Dr

 
2 2 2 2 0r q A pqB prD

 

2 2 2 2 2 2 2(3 2 3 ) 3 ( 3 )
P

p q p r A q p q B r r p D
EI  

The values of A, B, C and D have been solved analytically.  

 

4.  PARAMETRIC STUDIES 
 

In this section, parametric study is conducted in order to get 

the response of moving loads in underdamed case. Default 

values of parameters used for numerical computation. These 

parameters reflect typical structural and material properties of 

pavement. Using the parametric value deflection has been 

calculated under the both cases using the above formulation. 

The variation in deflection and bending moment with new co-

ordinate system ξ are compared for both the cases.  

Table 1 Soil and Beam Parameters 

 

Parameters 
Assumed 

values 

ρ(kg/m) 25 

EI(Nm2) 1.75×106 

k (N/m2) 40.78×105 

k1(N) 666875 

P(N/m) 93.36×103 

Es (N/m2) 3.73×106 

υs 0.4 

 

 

5. RESULTS AND DISCUSSION 

5.1 Deflection Moment with Damping 

Because of the damping effect, the maximum dynamic 

displacement appears after the load passes through the point at 

t=0. Similar procedure is followed to get the response of the 

beam considering 10% damping ratio. The response has been 

found by using the formulation meant for damping in Eq. (8) 
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considering four different critical velocity ratio i.e. 0.25, 0.5, 

0.75 and 0.99. From Fig.1, it is observed that the deflection is 

maximum at x=0 at time t=0.With increase of x the response 

of deflection gradually decreases. Thus due to damping effect 

the reaction of the moving load is delayed. From Figs. 1 to 4, 

it can be concluded that with increase of velocity ratio 

maximum dynamic deflection increases. From Fig 4 it can be 

observed that at x=50m the deflection is high as compared to 

the Fig.3. Here it may be inferred that load velocity has an 

impact such kind of response. All the steady state solutions 

are asymmetric with respect to the loading point. In particular, 

the maximum deformation into the foundation seems to lag 

behind the moving load. 

 

 

 

 
Fig.1 Deflection Vs Distance with velocity ratio = 0.25  

 

 
Fig.2 Deflection Vs Distance with velocity ratio = 0.5  

 

 
Fig.3 Deflection Vs Distance with velocity ratio= 0.75  

 

 
Fig.4 Deflection Vs Distance with velocity ratio = 0.99  

5.2  Bending Moment with Damping 

Due to inclusion of 10% damping there is a dissipation of 

energy along the railway track. From Figs.15 to 16, it is 

observed that the effect of negative bending moment has 

reduced as compared to the positive bending moment hence 

there is uplift behind the moving load. Hence there will be 

less settlement of the track due to presence of the damping. 

From comparison of Figs.15 to 18, it is observed that with 

increase of critical velocity ratio higher value of uplift is 

found from bending moment profile. However due to higher 

critical velocity in Fig. 18 there is considerable amount of 

deformation found due to negative bending moment. Also 

with increasing distance away from the loading point the 

bending profile get diminished.    
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Fig.5 B.M Vs Distance with velocity ratio= 0.25  

 

Fig.6 B.M Vs Distance with velocity ratio= 0.5  

 

Fig.7 B.M Vs Distance with velocity ratio = 0.75  

 

Fig.8 B.M Vs Distance with velocity ratio= 0.99  

6. CONCLUSION 
 
A Bernoulli–Euler beam resting on an elastic foundation 

subject to moving dynamic loads is studied in this paper. The 

steady-state deflection has been studied and compared under 

damping. The deflection response of the beam with elastic 

foundation is symmetric with respect to time t=0 or space 

x=0, while it is asymmetric when damping is considered. The 

maximum displacement occurs behind the moving load. The 

configurations of the steady state solutions may change as 

damping varies. At subcritical speed the absolute value of the 

deflection of the beam increases with increase of the load 

velocity. Peak maximum deflection appears when the load 

travels at the critical speed. 

 Similarly response of the bending moment due to damping is less than that of without dampin 
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