
International Journal of Science and Engineering Applications
Volume 2 Issue 6, 2013, ISSN-2319-7560 (Online)

www.ijsea.com 130

Solving Multi-level, Multi-product and Multi-period Lot
Sizing and Scheduling Problem in Permutation Flow

Shop

M. Babaei
Department of

Industrial
Engineering

Kharazmi University
Karaj, Iran

M. Mohammadi
Department of

Industrial
Engineering,

Kharazmi University
Karaj, Iran

S. M. T. Fatemi
Ghomi

Department of
Industrial

Engineering,
Amirkabir

University, Iran

M. A. Sobhanallahi
Department of

Industrial
Engineering,

Kharazmi University
Karaj, Iran

Abstract: In this paper, a new model of capacitated lot sizing and scheduling in a permutation flow shop is developed. In this model
demand can be totally backlogged. Setups can be carryover and are sequence-dependent. It is well-known from literatures that
capacitated lot sizing problem in permutation flow shop systems are NP-hard. This means the model is solved in polynomial time and
metaheuristics algorithms are capable of solving these problems within reasonable computing load. Metaheuristic algorithms find more
applications in recent researches. On this concern this paper proposes two evolutionary algorithms, one of the most popular namely,
Genetic Algorithm (GA) and one of the most powerful population base algorithms namely, Imperialist Competitive Algorithm (ICA).
The proposed algorithms are calibrate by Taguchi method and be compared against a presented lower bound. Some numerical
examples are solved by both the algorithms and the lower bound. The quality of solution obtained by the proposed algorithm showed
superiority of ICA to GA.

Keywords: permutation flow shop; evolutionary algorithms; lot sizing and scheduling

1. INTRODUCTION
The multilevel lot sizing problem concerns how to determine
the lot size for producing or procuring an item at each and
sequencing is to determine job ordering on each level. The
objective of lot sizing and sequencing generally is to
minimize the sum of the total setup cost and inventory holding
cost. Lot sizing and sequencing problem plays an important
role in the efficient operation of modern manufacturing and
assembly processes.

The flow shoplot sizing has been a very extensively
researched area since the seminal paper of Johnson [1]. In the
flowshop problem (FSP) a set ofunrelated jobs are to be
processed on a set of machines. These machines are disposed
in series and each job has to visit all of them in the same
order. A special case of flow shop that assumes the same order
of products in all machines is called permutation flow shop. In
this paper we consider a permutation flow shop problem with
setup carryover, setup sequence-dependent and backlogging.

In highly capacitated environments as well as in many real-
life situations, the inclusion of back orders is crucial because
otherwise, no feasible plan would exist and the respective
result that no feasible solution can be found is of minor
importance in practical settings. On the other hand, in many
real-life manufacturing environment the capacity of the
machines are limited, or for cost saving reasons, it might be
useful to produce a product volume in a period other than its
demand period to save setup time and costs. In traditional lot
sizing models producing of a product in a period before its
delivery to the customer is permitted. In this case, inventory
cost occurs. In our case, it is also possible that the product
cannot be delivered on time. It is then backlogging occurs and
backlogging costs are incurred for every unit at period of the

delay. While only few lot sizing approaches consider the
possibility of back ordering, it is of great importance in
practical settings: If capacity is limited, some productsmay
have to be backlogged [2].

Quadt and Kuhn [3] investigated a capacitated lot sizing and
scheduling problem with setup times, setup carryover,
backorders, and parallel machines. They formulated a mixed
integer formulation of the problem and a new solution
procedure. The solution procedure was based on a novel
“aggregate model” which uses integer instead of binary
variables. Song and Chan [4] considered a single item lot
sizing problem with backlogging on a single machine at a
finite production rate. The objective function was to minimize
the total cost of setup, stockholding and backlogging to satisfy
a sequence of discrete demands.Other researchers have
considered backlogging including Wolsey and Pochet [5],
Cheng et al. [6]and Karimi et al.[7].

Graham et al. [8] showed that the permutation flow shop
scheduling problem is strongly NP-complete. Since then many
researches have been attracted to develop heuristic and
metaheuristic algorithms for these problems. Among
researchers that employed metaheuristic we can cite to
Mohammadi et al. [9]. They employed a GA as a solution
approach. Their proposed algorithm was used for a
simultaneous lot sizing and sequencing problem in
permutation flow shops involving sequence-dependent setups
and capacity constraints. Ruiz et al. [10]proposed new genetic
algorithms for solving the permutation flow shop scheduling.
The minimization of the total completion time or
makespanwas considered as theoptimization criterion. They
used new genetic operators, advanced techniques like
hybridization with local search and an efficient population
initialization as well as a new generational scheme. The

International Journal of Science and Engineering Applications
Volume 2 Issue 6, 2013, ISSN-2319-7560 (Online)

www.ijsea.com 131

following is brief review of studies that have considered GA
as a solution approach for a permutation flow shop problem.
The authors employed their proposed GA for different
optimization criteria. A GA was used inAllada and Ruiz
[11]study with total tardiness minimization criterion. Tseng
and Lin [12]have minimized makespan in a permutation flow
shop problem.TavakkoliMoghaddam et al. [13]employed a
GA to minimize the makespan. Goren [14]provided an
overview of recent advances in the field in order to highlight
the many ways GAs can be applied to various lot sizing
models.

Despite the fact that GA is one of the most popular
algorithm,other metaheuristic algorithms have been used
broadly by authors. Among metaheuristics, ICA is a novel
population-based evolutionary algorithm proposed by
Atashpaz-Gargari and Lucas [15].ICA is a novel socio-
politically motivated metaheuristic algorithm inspired by
imperialist competition. The results show that the algorithm
performs significantly better than existing algorithms like
genetic algorithm (GA), simulated annealing (SA), tabu
search (TS), and particle swarm optimization (PSO) [16].So
we propose a novel imperialist algorithm (ICA) that employed
some genetic operators during local search.Many researchers
have employed ICA as a solution approach for flow shops. As
instances, Attar et al. [17]proposed a novel imperialist
competitive algorithm to solve flexible flow shop scheduling
problem the optimization criterion was minimization
maximum completion time.Shokrollahpour et al. [18] used
ICA for a two-stage assembly flow shop scheduling problem
with minimization of weighted sum of makespan and mean
completion time as the objective function. Rajabioun et al.
[19],Khabbazi et al. [20],Kaveh and Talatahari [21] Lucaset
al. [22],Nazari-Shirkouhi et al. [23] andSarayloo and
Tavakkoli-Moghaddam[24] are other related study that
employed ICA.

In literature, other metaheuristics have been employed by
researchers. The following shows recent studies about using
different kind of metaheuristics in permutation flow shop.
Quan et al. [25]used PSO in permutation flow shop with
makespan criterion. Ant Colony Optimization is employed
byUdomsakdigool and Khachitvichyanukul [26].

As mentioned above, despite backlogging importance in
practical settings, only few researchers have addressed
capacitated lot sizing problems with back ordering especially
in case of permutation flow shop. To the best of our
knowledge, this is the first paper that deals with setup
sequence-dependent, setup carryover and backlogging in a
multi-level, multi-machine and multi-period permutation flow
shop environment and proposes two metaheuristics to solve
the model and develops a lower bound to compare algorithms.

This paper is organized as follows:in next section, notations
used in the formulation are described and a lower bound is
presented. In section 3 the genetic algorithm and in section 4
imperialist algorithm are proposed. In subsequence section,
the algorithms are calibrated by Taguchi method and
theperformance of proposed algorithms is evaluated. Finally,
Section 6 is devoted to conclusions and recommendation for
future studies.

2. PROBLEM FORMULATION
The following notations are used in the model:

2.1. Notations and assumptions
2.1.1 Indices
 ݅, ݆,݇ Index of production type

 ݊Index of product type

݊ᇱ Designation for a specific setup number

 ݉ Index of level of production

 Index of period ݐ

2.1.2 Parameters
ܶ Planning horizon

ܰ Number of different products

 Number of production levels/number of machines ܯ

 A large real number ܯܾ݃݅

 ,௧ Available capacity of machine min period t (in timeܥ
units)

݀,௧ External demand for product j at the end of period t
(in units of quantity)

ℎ,
ା Storage costs unit rate for product j in level m.

ℎ,௧
ି Shortage costs unit rate for product j at the end of

period t.

ܾ, Capacity of machine m required to produce a unit of
product (or shadow product) j (in time units per
quantity units).

ܲ,,௧ Production costs to produce one unit of product j on
machine m at period t (in money unit per quantity
unit).

ܵ,, Sequence-dependent setup time for the setup of the
machine m from production of product i to
production of product j (in time units); for݅ ≠
݆, ܵ , , ≥ 0and݅ = ݆, ܵ.. = 0.

ܹ,, Sequence-dependent setup cost for the setup of the
machine m from production of product i to
production of product j (in money units); for
݅ ≠ ݆, ܹ,, ≥ 0 and ݅ = ݆, ܹ. . = 0.

݆ The starting setup configuration on machine m.

2.1.3 Decision variables

,,௧ܫ
ା Stock of product j at level m at the end of period t.

,௧ܫ
ି Shortage of product j at the end of period t.

,,௧ݕ
 Binary variable, which indicates whether the nth

setup on machines at period t isfrom product i to
product j (ݕ,,௧

 = 1) or not (ݕ , ,௧
 = 0).

,,ݔ
 Quantity of product j produced after nth setup on

machine m at period t.

International Journal of Science and Engineering Applications
Volume 2 Issue 6, 2013, ISSN-2319-7560 (Online)

www.ijsea.com 132

ݍ , ,
 Shadow product: the gap (in quantity units) between

nth setup (to product j) on machine m at period t and
its related production in order to ensure that direct
predecessor of this product (production of product j
on machine m at period t) has been completed.

To formulate this model the following assumptions are
considered:

 Several products are produced in a flow shop environment
and each product can be produced only on one machine at the
same time,

 Inventory cost incurred when a product unit is hold between
a particular period,

 If the product cannot be delivered on time shortage cost is
incurred,

 Setup times reducing machine capacity and each machine is
constrained in capacity

 Setups are sequence-dependent and must be complete in a
period.

 There must be precisely N (number of products) setups in
each period on each machine, even if a setup is just from a
product to itself, with respect to this issue that setup time (and
cost) from a product to itself is zero

The mathematical model in this paper is described on the
basis of the above assumptions and notations

2.1. Mathematical formulation

Capacitated lot sizing focuses on how to make lot sizing
planning and sequencing focuses on the order of each product
should be produced to minimize total cost. The objective
function is to find an optimal lot sizing and sequencing that
minimize setup, inventory, production and backlogging costs.

݉݅݊ ܹ,,.ݕ.,௧

்

௧ୀଵ

ெ

ୀଵ

ே

ୀଵ

ே

ୀଵ

ே

ୀଵ

+ ܲ,,௧ ,,௧ݔ.

்

௧ୀଵ

ெ

ୀଵ

ே

ୀଵ

ே

ୀଵ

+ℎ,
ା . ,,௧ܫ

ା
்

௧ୀଵ

ெ

ୀଵ

ே

ୀଵ

+ℎ ,௧
ି . ,௧ܫ

ି
்

௧ୀଵ

ெ

ୀଵ

 (1)

Subject to

݀,௧ = ,ெ,௧ିଵܫ
ା +ݔ,ெ,௧

 −
ே

ୀଵ

,ெ,௧ܫ
ା − ,௧ିଵܫ

ି + ,௧ܫ
ି ; ݆ = 1, … ݐ ,ܰ, = 1, … ,ܶ (2)

,,௧ିଵܫ
ା + ݔ,,௧

ே

ୀଵ

= ,,௧ܫ
ା + ݔ,ାଵ,௧

ே

ୀଵ

; ݆ = 1, … ,ܰ, ݉ = 1, … −ܯ, 1, ݐ = 1, … ,ܶ (3)

 ݕ,,௧

ே

ୀଵ

ே

ୀ

ᇲ

ୀଵ

. ܵ,, + ܾ,

ே

ୀଵ

ᇲ

ୀଵ

,,௧ݍ.
 + ܾ,

ே

ୀଵ

ᇲ

ୀଵ

. ,,௧ݔ
 ≤

 ݕ,,௧

ே

ୀଵ

ே

ୀ

ᇲ

ୀଵ

. ܵ,,ାଵ + ܾ,ାଵ

ே

ୀଵ

ᇲ

ୀଵ

,ାଵ,௧ݍ.
 + ܾ,ାଵ

ே

ୀଵ

ᇲିଵ

ୀଵ

. ,ାଵ,௧ݔ
 ; ݊ᇱ = 1, . . . ,ܰ, ݉ = 1, . . . ܯ, − 1,

ݐ = 1, . . . ,ܶ

(4)

 ݕ,,௧

ே

ୀଵ

ே

ୀ

ே

ୀଵ

. ܵ,, + ܾ,

ே

ୀଵ

ே

ୀଵ

. ,,௧ݔ
 + ܾ,

ே

ୀଵ

ே

ୀଵ

. ݍ ,,௧
 ≤ ,௧ܥ ; ݉ = 1, . . . ,ܯ, ݐ = 1, . . . ,ܶ

(5)

,,௧ݔ
 ≤ ቆ

,௧ܥ

ܾ,
ቇ . ,,௧ݕ

ே

ୀ,ஷ((வଵ)

, ݊ = 1, . . . ,ܰ, ݆ = 1, . . . ,ܰ,݉ = 1, . . . ݐ ,ܯ, = 1, . . . ,ܶ

(6)

ݍ ,,௧
 ≤ ቆ

,௧ܥ

ܾ,
ቇ . ݕ,,௧

ே

ୀ

, ݊ = 1, . . . ,ܰ, ݆ = 1, . . . ,ܰ, ݉ = 1, . . . ,ܯ, ݐ = 1, . . . ,ܶ (7)

,,ଵݕ
ଵ = 0 ݆ ≠ ݆, ݅ = 1, . . . ,ܰ (8)

ݕబ,,ଵ
ଵ

ே

ୀଵ

= 1, (9)

 ,,௧ݕ

ே

ୀ

= ݕ,,௧
ାଵ

ே

ୀଵ

 ݅ = 1, . . . ,ܰ, ݊ = 1, . . . ,ܰ − 1, ݉ = 1, . . . ,ܯ, ݐ = 1, . . . ,ܶ (10)

,,௧ݕ
 = (11) 1 ݎ 0

International Journal of Science and Engineering Applications
Volume 2 Issue 6, 2013, ISSN-2319-7560 (Online)

www.ijsea.com 133

,,௧ܫ
ା , ,௧ܫ

ି ,,௧ݔ,
 ݍ, ,,௧

 ≥ 0 (12)

,,ܫ
ା = 0, ݆ = 1, . . . ,ܰ, ݉ = 1, . . . (13) ܯ,

In this model, the objective function is Equation (1). The
backlogging or storage at the end of each period is considered
by Equation (2). Constrain (3) ensures total of in-flows to
each node is equal to of out-flows from that node. Equation
(4) ensures within one period each typical product j one
machine m is produced before its direct successor. The
capacity constraints of machines are considered by Equation
(5). Equation (6) respects setups in production process.
Equation (7) indicates the relationship between shadow
products and setups. Constraints (8) and (9) ensure that for
each machine, the first setup at the beginning of the planning
horizon is from a defined product. Equation (10) represents
the relationship between successive setups. The type of
variables is defined by Equations (11) and (12) and finally
Equation (13) indicates that at the end of planning horizon
there is no on-hand inventory.

2.3. Lower bound

In this section we present a lower bound that developed by
Mohammadi et al. [27]. We first relax binary variables to
continuous variables that fall in [0, 1].

Then we add following equation to relaxed model:

 ,,௧ݕ
ଵ

ே

ୀ

+ ݕ,,௧

ே

ୀଶ

ே

ୀଵ,ஷ

= ܽ,௧ (14)

In this equation ܽ,௧ is binary variable.

Equation (14) was proved that is valid to model. We refer the
proof of this equation to Mohammadi et al [27].

3. GENETIC ALGORITHM

GAs are probabilistic search optimization algorithms that
were inspired by the process of natural evolution and the
principles of survival of the fittest [28].Genetic Algorithms
(GAs) can be employed to find a near-optimal solution for
NP-hard problems. GAs evolves a population of individuals
according to the progress of algorithm to reach a good
solution. Genetic operators (such as natural selection,
mutation, and cross over) manipulate individuals in a
population of solution over several iterations to improve their
fitness.The algorithm generates a new candidate pool of
solutions iteratively from the presently available solutions and
replaces some or all of the existing members of the current
solution tool with the newly created feasible solutions.

We first present a simple and effective heuristic to generate
initial solution and then discuss the issue of encoding in our
case aninteger array representation. We then turn to the
evolutionary stages of the algorithm and the specific genetic
operators that have been designed to increase search
efficiency.

Initial Population

A genetic algorithm starts with popularly an initial population
of feasible solutions. Initial population can affectsthe
performance of GAs. So that a simple and effect heuristic is
used for ݐ = 1to ܶand is described as follows:

(1) The products are sorted in the decreasing order of ܹ, =
∑ ܹ,,; ݆ = 1, . . . ,ܰ.ே
ୀଵ

(2) Let [݅] indicate the ݅th product in an ordered sequence in
this heuristic.

For [݅] = 1 to ܰ:

(a) Consider inserting product [݅] into every position.

(b) Calculate the sum of setup costs for all products scheduled
so far using the actual setup costs.

(c) Place product i in the position with the lowest resultant
sum of setup costs.

With using this method, ܯ different initial populations is
produced (for ݉ = 1, . . . the remaining initial ,(ܯ,
populations have been generated randomly.In this way, binary
variables are coded in the form of matrices with ܰ × ܶ
dimensions.

In Figure1 a sample chromosome with T =3, N =3 is depicted.

Figure 1. A chromosome representation

In Figure 1 an encoded binary variables have been shown.
The corresponding decoded binary variablesin this
chromosomeduring period T=1 are, ݕ,ଶ,ଵ

ଵ = ଶ,ଵ,ଵݕ
ଶ = ଶ,ଷ,ଵݕ

ଷ =
1 and the corresponding decoded binary variables to this
chromosome during period T=2 are, ݕ,ଷ,ଶ

ଵ = ଷ,ଵ,ଶݕ
ଶ = ଵ,ଶ,ଶݕ

ଷ =
1and finally for period T=3, ݕ,ଶ,ଷ

ଵ = ଶ,ଷ,ଷݕ
ଶ = ଷ,ଵ,ଷݕ

ଷ = 1and
other binary variables would get value 0.With encoding of the
binary variables, we are able to employ crossover and
mutation operators more efficientlyand more effectively than
noncoding chromosomes.

Fitness function

The fitness value of each chromosome has been calculated by
solving the corresponding problem.

International Journal of Science and Engineering Applications
Volume 2 Issue 6, 2013, ISSN-2319-7560 (Online)

www.ijsea.com 134

Selection operator

The requirement parents for using of crossover have been
obtained by one of the five selection method, Deterministic
Sampling (A), Random Sampling (B), Roulette Wheel (C),
Ranking (D) andTournament(E).

Crossover operation and mutation operator

Several crossover operators have been proposed in reference
[29]. Similar job two point crossover has been used in this
research. In order to produce small perturbations on
chromosomes to promote diversity of the population, a shift
mutation operator has been used in this article.Crossover and
mutation probability must be determined during parameters
calibration.

Population replacement

Chromosomes for the next generation are selectedfrom the
enlarged population. The best pop_sizechromosomes of the
enlarged population have beenselected for the next generation.

Termination criterion

The algorithm must terminate according to a criterion. This
criterion is specified by reaching to maximum number of
iteration it_max.

4. IMPERIALIST COMPETITIVE
ALGORITHM

ICA is a novel population-based evolutionary algorithm
proposed by Atashpaz-Gargari and Lucas [15]. The ICA
initiates with an initial population, like most evolutionary
algorithms. Each individual of the population is called a
‘country’ equivalent ‘chromosome’ in GA. Some of the most
powerful countries are chosen to be the imperialiststates and
the other countries constitute the colonies of theseimperialists.
All the colonies of initial countries are partitioned among the
mentioned imperialists based on theirpower. Equivalent of
fitness value in the GA, the power ofeach country, is
conversely proportional to its cost. Anempire is constituted
from the imperialist states with theircolonies [30].

After all empires were formed, the competition between
countries starts. First, the colonies in each of empires start
moving toward their imperialist. During this movement, if the
colony gets better cost function than its imperialist does, they
will exchange their positions and the algorithm will continue
with the new imperialist. The power of each empire is
calculated by imperialist cost function and colonies. The
empire which is weaker than the others loses its colonies.
Each imperialist attempts to gain the colonies of other
empires. The most powerful empires have a more chance to
gain the colonies from the weakest empires. The more
powerful an empire is, the more likely it will possess the
weakest colony of the weakest empire (Imperialistic
competition)

During the competition weak imperialists will lose their
weakest colony gradually. When an empire loses all of its
colonies, it will be eliminated from the population. In fact the
empire collapses. The final level of imperialist rivalry is when
there is only one empire in the world. The main steps of ICA
are described as follows:

Step 1 Generating of Initial countries

Each individual of the population is called a ‘country’
equivalent ‘chromosome’ in GA. Each country denotes a
socio-political characteristic in that country such as culture,
language, business, economic policy and etc. The socio-
political characteristic in countries is the same different type
of variables. There are two different types of variables,
continuous variables (ݍ,ݔ, ାܫ , .(ݕ) and binary variables (ିܫ
Each country consists of five variables, ݍ,ݔ, ,ାܫ ݕ andିܫ
where all of these variables must be optimized.

Initial values of continuous variables are generated randomly
by uniform distribution function. To generate initial value for
binary variable, we use a simple and effective heuristic which
has been presented by Mohammadi et al. [27].

Step 2 Generating of Initial imperials

A set of the most powerful countries form imperialists and the
rest weaker countries are colonies of imperialists. The power
of each country is calculated based on the objective function.

Step 3 Assimilation of colonies

Assimilation has been modeled by moving all the colonies
toward the imperialist. Each country (colony) has different
socio-political characteristics (variables), so every socio-
political characteristic (variables) could moves toward the
related socio-political of imperialist in different ways.
Continuous variables of colonies move toward related
continuous variables of its imperialist and binary variables
move toward binary variables of its imperialist.

The assimilation of continuous variables is modeled by
moving the colony toward the imperialist by xunits
ߚ,0)ܷ~ݔ × ݀). Where ߚ > 1andߛ−)ܷ~ߠ, is distance݀ .(ߛ
between colony and the its imperialist.

The movement of binary variables is accomplished by
crossover operation, like crossover operator in genetic
algorithms. Crossover allows exchanging information
between different solutions (chromosomes) so it is useful to
assimilate binary variables.

Step 4 Revolution

The revolution increases the exploration of the algorithm and
prevents the early convergence of countries to local
minimums. A very high value of revolution decreases the
exploitation power of algorithm and can reduce its
convergence rate [31].In each iteration, some of the colonies
are chosen and their positions are exchanged. This mechanism
is similar to mutation process in genetic algorithm for

International Journal of Science and Engineering Applications
Volume 2 Issue 6, 2013, ISSN-2319-7560 (Online)

www.ijsea.com 135

creatingdiversification in solutions. Mutation increases the
variety in the population, so this operator is used for creating a
revolution in binary variables.

Step 5 Exchange the colony with imperialist

During assimilation and revolution, a colony may get to a
situation with lower cost than the imperialist. In this case, the
imperialist and the colony change their positions.

Step 6 Imperialistic competition

To start the competition, after selecting the weakest colony,
the possession probability of each empire must be found. The
normalized total cost of an empire is simply obtained by

ܥܶܰ = ܥܶ −max {ܶܥ}

Where, ܰܶܥand ܶܥ are the total cost and the normalized
total cost of ݊th empire, respectively.

The total power of an empire is mainly contributed by the
power of imperialist country. It is clear that the power of an
empire includes the imperialist power and their colonies.

ܥܶ = ܥ{ݐݏ݈݅ܽ݅ݎ݁݉݅}ݐݏܿ + ߩ
 {(݁ݎ݅݉݁ ݂ ݏ݈݁݅݊ܿ)ݐݏܿ}݊ܽ݁݉∗

Where ߩ is a positive small number.The possession
probability of each empire is given by

 = อ
ܥܶܰ

∑ ܥܶܰ
ே
ୀଵ

อ

Roulette wheel method was used for assigning the mentioned
colony to empires.

Step 7 Elimination of powerless empires.

During the competition weak imperialists will lose their
weakest colony gradually. When an empire loses all of its
colonies, it collapses. At the end just one imperialist will
remain. This is the optimum point.

Step 8 Stop criterion

In such an ideal new world, all the colonies will have the
same positions and same costs and they will be controlled by
an imperialist with the same position and cost as themselves.
In such a world, there is no difference not only among
colonies, but also between colonies and imperialist [32]in this
situation; the algorithm has reached the global solution.

Stopping criterion in proposed algorithm is to get the
maximum decades (maximum iteration).

5.PARAMETER CALIBRATION AND
COMPUTATIONAL TESTING

Parametercalibration andcomputationalexperiments are key
steps in the developmentof any algorithm.Conventionally,
setting parameters relies on a trial and-error procedure.
However, this procedure cannot determine optimal parameter
settings and consumes considerable time [33]. In this paper,
we employed the Taguchi Methodology to optimize the
parameters of the algorithms via systematic experiments.

5.1. Parameter calibration

Taguchi [34] developed a family of fractional factorial
experiment (FFE) matrices that ultimately lessens the number
of experiments, but still provides adequate information. Full
fractional experiment is not an effective approach when the
number of factors becomes large, so in our case because of the
large number of factors and few levels for each factor we use
Taguchi method to calibrate the parameters.

A transformation of the repetition data is created toanother
value by Taguchi which is the measure of variation. The
transformation is the signal-to-noise (S/N) ratio. The S/N ratio
is obtained by following equation:

ܵ
ܰ

݅ݐܽݎ = −10 log(݊݅ݐ݂ܿ݊ ݁ݒ݅ݐ݆ܾܿ݁)ଶ

Where “signal” describes the desirable value, in our study we
use the following performance measure as desirable value.

⎝

⎜
⎛
൮
∑ ௦ܿ݅ݐݏ݅ݎݑℎ݁ܽݐ݁ܯ − ଵହܤܮ
ୀଵ

ܤܮ
൘ ൲× 100

⎠

⎟
⎞

15

൚

Where ܽݐ݁ܯℎ݁ܿ݅ݐݏ݅ݎݑ௦ is the obtained solution by the
algorithm (GA or ICA) and ܤܮ is the solution obtained by the
lower bound. Note that each problem runs 15 times and the
average of this runs consider as corresponding desirable value
for the problem. It is obvious that the smaller value of the
performance measurement shows that the metaheuristic is
more efficient.

The term “noise” specifies the undesirable value (standard
deviation). The S/N ratioindicates the amount of variation
present in the response variable. Here, maximization of the
signal-to-noise ratio isdesirable (i.e., is the goal).

In order to calibrate the parameters of the algorithms we
determine the level of each parameter. Table 1 shows the level
of each parameter for two metaheuristics. Since increase in
number of products (N) leads to polynomial increase in
computational timeso that to make a fair calibration, we
divide number of population and maximum iteration
bynumber of products (N).

International Journal of Science and Engineering Applications
Volume 2 Issue 6, 2013, ISSN-2319-7560 (Online)

www.ijsea.com 136

Table 1. Factor levels

 Parameter Level Level 1 Level 2 Level 3 Level 4 Level 5

GA

Selection Type A B C D E

Crossover Probability 0.1 0.2 0.3 0.4 .5

Mutation Probability 0.05 .10 .15 .20 .25

Number of Population 500/N 600/N 750/N 900/N 1000/N

Maximum Iteration 500/N 600/N 750/N 900/N 1000/N

ICA

Number of Population 500/N 600/N 750/N 900/N 1000/N

Number of Imperialist 5 7 10 12 15

Maximum Iteration 0.5 0.7 1 1.2 1.5

Revolution Probability 500/N 600/N 750/N 900/N 1000/N

 0.5 0.4 0.3 0.2 0.1 ߩ

In this case, Taguchi method needs 25 experiments for each
algorithm.As mentioned above, for each 25 experiment 15
independent runs are carried. The termination criterion of
maximum elapsed CPU time ist=7200S [9]The required
parameters for these problems are extracted from the
following uniform distributions:ܿ ≈ ܷ(5, 10),݀ ≈
ܷ(0.5, 1),ℎା ≈ ܷ(0.05, 0.1),ℎି ≈ ܷ(1, 5),ܾ ≈
ܷ(0.02, ,(0.04 ≈ ܷ(0.02, 0.04), ݏ ≈ ܷ(100, 1100)

In order to conduct the experiments, we implemented GA and
ICA examples in MATLAB run on a PC with a 2.27 GHz
Intel Core i5 processor and 3 GB RAM memory and analyzed
the result by Minitab 16 software.Figure2 and 3 show the
average S/N ratio obtained at each level for ICA and GA.

According to Figure 2 and Figure 3 the optimal levels of
factors have been indicated in Table 2.

Figure 2. Main effect plot for S/N ratios for GA Figure 3. Main effect plot for S/N ratios for ICA

Table 2. The optimal levels of factors

International Journal of Science and Engineering Applications
Volume 2 Issue 6, 2013, ISSN-2319-7560 (Online)

www.ijsea.com 137

 Parameter Level Optimum

GA

Selection Type C

Crossover Probability 0.7

Mutation Probability 0.10

Number of Population 900/N

Maximum Iteration 900/N

ICA

Number of Population 750/N

Number of Imperialist 7

Maximum Iteration 750/N

Revolution Probability 0.25

 0.7 ߩ

5.2. Comparison of the algorithms

In this section, in order to evaluate and compare the
performance of two proposed, we consider different problem
sizes.

For each problem set, 15 independent instances are randomly
generated (225 problems) and the required parameters for
these problems are extracted from the following uniform
distributions:

ܿ ≈ ܷ(5, 10),݀ ≈ ܷ(0.5, 1),ℎା ≈ ܷ(0.05, 0.1),ℎି
≈ ܷ(1, 5), ܾ ≈ ܷ(0.02, ,(0.04
≈ ܷ(0.02, 0.04), ݏ ≈ ܷ(100, 1100)

For each of the 15 instances, 15 independent runs are carried
out for each algorithm within a reasonable CPU time, 7200
s.We obtain the mean of 15 instances as the response variable

of each instance. This response is used to compare two
algorithms. Problems have been solved in MATLAB run on a
PC with a 2.27 GHz Intel Core i5 processor and 3 GB RAM
memory.The computed results are reported in Table 3.

Table 3. Computational results

Problem set

Dimension of
problems

(ܰ × ܯ × ܶ)

GA ICA

1 2 × 2 × 2 16.72% 9.66%

2 3 × 3 × 3 16.76% 9.42%

3 4 × 4 × 4 9.38% 6.46%

4 5 × 5 × 5 15.01% 11.69%

5 6 × 6 × 6 15.02% 8.55%

6 7 × 7 × 7 15.84% 7.48%

International Journal of Science and Engineering Applications
Volume 2 Issue 6, 2013, ISSN-2319-7560 (Online)

www.ijsea.com 138

7 8 × 8 × 8 14.85% 10.07%

8 9 × 9 × 9 13.71% 9.20%

9 10 × 10 × 10 14.04% 10.12%

10 11 × 11 × 11 10.95% 6.97%

11 12 × 12 × 12 10.32% 6.60%

12 13 × 13 × 13 12.17% 6.92%

13 14 × 14 × 14 11.76% 8.99%

14 15 × 15 × 15 13.41% 8.58%

15 16 × 16 × 16 15.08% 8.07%

We are now employing a 95% confidence level and we are
using Tukey HSD confidence intervals to compare algorithms
with Minitab 16 Software. The result has been showed in

Figure 4. From the Figure 4 it is clear that the proposed ICA
algorithm is statistically better than the proposed GA
algorithm.

Figure 4:Tukey HSD confidence intervals

6. CONCLUSION

This paper studies the permutation flow shop lo sizing and
scheduling problem and developed a new model for the
problem under sequence-dependent and carryover setups with
considering backlogging.

To solve the problem, two metaheuristics was proposed
namely, GA and ICA. Since the parameters of any algorithm
has significant effect onalgorithms performance, we use a
fractional factorial experiment namely, Taguchi method. In
order to evaluate the effectiveness and robustness of the
proposed GA and ICA, we carried out a comparison between
the algorithms. In this context, we presenteda lower bound

and compared the algorithms against it. The distance
betweenthe algorithms and the lower bound was calculated.
Base on the results, Tukey HSD confidence intervals was
employed to determine which algorithm is statistically
superior to the other one. The results showed the ICA
outperforms the GA.

As a direction for future research, it would be interesting to
develop other metaheuristic, like Particle Swarm
Optimization, Harmony Search and Honey Bee Algorithm. As
an additional contribution, developing of the single objective
into multi objective models can be considered.

REFERENCES [1] Johnson SM. Optimal two- and three-stage production

International Journal of Science and Engineering Applications
Volume 2 Issue 6, 2013, ISSN-2319-7560 (Online)

www.ijsea.com 139

schedules with setup times included. 1954;1(61-68).

[2] Quadt D, Kuhn H. Capacitated lot-sizing with
extensions: a review. 2008;6(61–83).

[3] Quadt D, Kuhn H. Capacitated Lot-Sizing and
Scheduling with Parallel Machines, Back-Orders, and
Setup Carry-Over. 2009;56.

[4] Song Y, Chan GH. Single item lot-sizing problems with
backlogging on a single machine at a finite production
rate. 2005;161 (191–202).

[5] Wolsey Y, Pochet L. Lot size models with back-logging:
Strong reformulations and cutting planes. 1988;40(317–
335).

[6] Cheng H, Madan MS, Gupta Y, So S. Solving the
capacitated lot-sizing problem with backorder
consideration. 2001;52(952–959).

[7] Karimi B, Fathemi Ghomi SMT, Wilson JM. A tabu
search heuristic for solving the CLSP with backlogging
and set-up carry-over. 2006;57(140–147).

[8] Graham RL, Lawler E L, Lenstra J K, Kan AHGR.
Optimisation and approximation in deterministic
sequencing and scheduling: a survey. A. 1979;5(287-
326).

[9] Mohammadi M, Fatemi Ghomi SMT, Jafar N. A genetic
algorithm for simultaneous lotsizing and sequencing of
the permutation flow shops with sequence-dependent
setups. 2011;24(87-93).

[10] Ruiz R, Maroto C, Alcaraz J. Two new robust genetic
algorithms for the flowshop scheduling problem.
2006;34(461-476).

[11] Allada E, Ruiz R. Genetic algorithms with path relinking
for the minimum tardi-ness permutation flow shop
problem. 2010;38(57 - 67).

[12] Tseng LY, Lin YT. A hybrid genetic local search
algorithm for the permutation flowshop scheduling
problem. 2009;198(84 – 92).

[13] Tavakkoli-Moghaddam R, Gholipour-Kanani Y,
Cheraghalizadeh R. A genetic algorithm and memetic
algorithm to sequencing and scheduling of cellular
manufacturing systems. 2008;3(2).

[14] Goren HG, Tunali S, Jans R. A review of applications of
genetic algorithms in lot sizing. 2010;21(575–590).

[15] Atashpaz-Gargari E, Lucas C. Imperialist competitive
algorithm: an algorithm for optimization inspired by
imperialistic competition. 2007(4661–4667).

[16] Gao KL, Chaoyong Z, Xinyu S, Liang. Optimization of
process planning with various flexibilities using an
imperialist competitive algorithm. 2012; 59 (5-8)(815-
828).

[17] Attar SF, Mohammadi M, Tavakkoli-Moghaddam R. A
Novel Imperialist Competitive Algorithm to Solve
Flexible Flow Shop Scheduling Problem in Order to
Minimize Maximum Completion Time. 2011;28.

[18] Shokrollahpour E, Zandieh M, Dorri B. A novel
imperialist competitive algorithm for bi-criteria
scheduling of the assembly flowshop problem.
2010;49(11).

[19] Rajabioun R, Atashpaz-Gargari E, Lucas C. Colonial
competitive algorithm as a tool for Nash equilibrium
point achievement. 2008;49 (11)(680–695).

[20] Khabbazi A, Gargari E, Lucas C. Imperialist competitive
algorithm for minimum bit error rate beamforming.
2009;1(125–133).

[21] Kaveh A, Talatahari S. Optimum design of skeletal
structures using imperialist competitive algorithm.
2010;88(21–22).

[22] Lucas C, Nasiri-Gheidari Z, Tootoonchian F. Application
of an imperialist competitive algorithm to the design of a
linear induction motor. 2010;51(7)(1407–1411).

[23] Nazari-Shirkouhi S, H E, Ghodsi R, Rezaie K, Atashpaz-
Gargari E. Solving the integrated product mix-
outsourcing problem using the imperialist competitive
algorithm. 2010;37(12).

[24] Sarayloo F, Tavakkoli-Moghaddam R. Imperialistic
competitive algorithm for solving a dynamic cell
formation problem with production planning. 2010(266–
276).

[25] Quan-Ke P, Tasgetiren MF, Yun-Chia L. A Discrete
Particle Swarm Optimization Algorithm for the
Permutation Flowshop Sequencing Problem with
Makespan Criterion. 2006.

[26] Udomsakdigool A, Khachitvichyanukul V. Ant colony
algorithm for multi-criteria job shop scheduling to
minimize makespan, mean flow time and mean tardiness.
International Journal of Management Science and
Engineering Management. 2011; 6(2)(117-123):6(2):

International Journal of Science and Engineering Applications
Volume 2 Issue 6, 2013, ISSN-2319-7560 (Online)

www.ijsea.com 140

117-123.

[27] Mohammadi M, Fatemi Ghomi SMT. Genetic algorithm-
based heuristic for capacitated lotsizing problem in flow
shops with sequence-dependent setups. 2011;38(7201–
7207).

[28] Holland JH. Adaptation in natural and artificial systems.
1975.

[29] Nagano MS, Ruiz, R, Lorena LAN. A constructive
genetic algorithm for permutation flowshop scheduling.
2008;55(195–207).

[30] Kayvanfar V, Zandieh M. The economic lot scheduling
problem with deteriorating items and shortage: an
imperialist competitive algorithm.

[31] Abdi B, Mozafari H, Ayob A, Kohandel R. Imperialist
Competitive Algorithm and its Application in
Optimization of Laminated Composite Structures.
2011;55(2).

[32] Kayvanfar V, Zandieh M. The economic lot scheduling
problem with deteriorating items and shortage: an

imperialist competitive algorithm. 2012.

[33] Pasandideh SHR, Niaki STA, Yeganeh JA. A parameter-
tuned genetic algorithm for multi-product economic
production quantity model with space constraint, discrete
delivery orders and shortages. 2010;41(306–314).

[34] Taguchi G. Introduction to quality engineering. 1986.

[35] Taguchi G. Introduction to quality engineering. White
Plains: Asian Productivit; 1986.

[36] Grabowski J, Wodecki M. A very fast tabu search
algorithm for the permutation flowshop problem with
makespan criterion. 2004;31(11).

[37] Onwubolu GC, Davendra D. Scheduling flow shops
using differential evolution algorithm. 2006;171(2).

