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Abstract: In this paper, a new model of capacitated lot sizing and scheduling in a permutation flow shop is developed. In this model 
demand can be totally backlogged. Setups can be carryover and are sequence-dependent. It is well-known from literatures that 
capacitated lot sizing problem in permutation flow shop systems are NP-hard. This means the model is solved in polynomial time and 
metaheuristics algorithms are capable of solving these problems within reasonable computing load. Metaheuristic algorithms find more 
applications in recent researches. On this concern this paper proposes two evolutionary algorithms, one of the most popular namely, 
Genetic Algorithm (GA) and one of the most powerful population base algorithms namely, Imperialist Competitive Algorithm (ICA). 
The proposed algorithms are calibrate by Taguchi method and be compared against a presented lower bound. Some numerical 
examples are solved by both the algorithms and the lower bound. The quality of solution obtained by the proposed algorithm showed 
superiority of ICA to GA. 
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1. INTRODUCTION 
The multilevel lot sizing problem concerns how to determine 
the lot size for producing or procuring an item at each and 
sequencing is to determine job ordering on each level. The 
objective of lot sizing and sequencing generally is to 
minimize the sum of the total setup cost and inventory holding 
cost. Lot sizing and sequencing problem plays an important 
role in the efficient operation of modern manufacturing and 
assembly processes. 

The flow shoplot sizing has been a very extensively 
researched area since the seminal paper of Johnson [1]. In the 
flowshop problem (FSP) a set ofunrelated jobs are to be 
processed on a set of machines. These machines are disposed 
in series and each job has to visit all of them in the same 
order. A special case of flow shop that assumes the same order 
of products in all machines is called permutation flow shop. In 
this paper we consider a permutation flow shop problem with 
setup carryover, setup sequence-dependent and backlogging. 

In highly capacitated environments as well as in many real-
life situations, the inclusion of back orders is crucial because 
otherwise, no feasible plan would exist and the respective 
result that no feasible solution can be found is of minor 
importance in practical settings. On the other hand, in many 
real-life manufacturing environment the capacity of the 
machines are limited, or for cost saving reasons, it might be 
useful to produce a product volume in a period other than its 
demand period to save setup time and costs. In traditional lot 
sizing models producing of a product in a period before its 
delivery to the customer is permitted. In this case, inventory 
cost occurs. In our case, it is also possible that the product 
cannot be delivered on time. It is then backlogging occurs and 
backlogging costs are incurred for every unit at period of the 

delay. While only few lot sizing approaches consider the 
possibility of back ordering, it is of great importance in 
practical settings: If capacity is limited, some productsmay 
have to be backlogged [2]. 

Quadt and Kuhn [3] investigated a capacitated lot sizing and 
scheduling problem with setup times, setup carryover, 
backorders, and parallel machines. They formulated a mixed 
integer formulation of the problem and a new solution 
procedure. The solution procedure was based on a novel 
“aggregate model” which uses integer instead of binary 
variables. Song and Chan [4] considered a single item lot 
sizing problem with backlogging on a single machine at a 
finite production rate. The objective function was to minimize 
the total cost of setup, stockholding and backlogging to satisfy 
a sequence of discrete demands.Other researchers have 
considered backlogging including Wolsey and Pochet [5], 
Cheng et al. [6]and Karimi et al.[7]. 

Graham et al. [8] showed that the permutation flow shop 
scheduling problem is strongly NP-complete. Since then many 
researches have been attracted to develop heuristic and 
metaheuristic algorithms for these problems. Among 
researchers that employed metaheuristic we can cite to 
Mohammadi et al. [9]. They employed a GA as a solution 
approach. Their proposed algorithm was used for a 
simultaneous lot sizing and sequencing problem in 
permutation flow shops involving sequence-dependent setups 
and capacity constraints. Ruiz et al. [10]proposed new genetic 
algorithms for solving the permutation flow shop scheduling. 
The minimization of the total completion time or 
makespanwas considered as theoptimization criterion. They 
used new genetic operators, advanced techniques like 
hybridization with local search and an efficient population 
initialization as well as a new generational scheme. The 
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following is brief review of studies that have considered GA 
as a solution approach for a permutation flow shop problem. 
The authors employed their proposed GA for different 
optimization criteria. A GA was used inAllada and Ruiz 
[11]study with total tardiness minimization criterion. Tseng 
and Lin [12]have minimized makespan in a permutation flow 
shop problem.TavakkoliMoghaddam et al. [13]employed a 
GA to minimize the makespan. Goren [14]provided an 
overview of recent advances in the field in order to highlight 
the many ways GAs can be applied to various lot sizing 
models. 

Despite the fact that GA is one of the most popular 
algorithm,other metaheuristic algorithms have been used 
broadly by authors. Among metaheuristics, ICA is a novel 
population-based evolutionary algorithm proposed by 
Atashpaz-Gargari and Lucas [15].ICA is a novel socio-
politically motivated metaheuristic algorithm inspired by 
imperialist competition. The results show that the algorithm 
performs significantly better than existing algorithms like 
genetic algorithm (GA), simulated annealing (SA), tabu 
search (TS), and particle swarm optimization (PSO) [16].So 
we propose a novel imperialist algorithm (ICA) that employed 
some genetic operators during local search.Many researchers 
have employed ICA as a solution approach for flow shops. As 
instances, Attar et al. [17]proposed a novel imperialist 
competitive algorithm to solve flexible flow shop scheduling 
problem the optimization criterion was minimization 
maximum completion time.Shokrollahpour et al. [18] used 
ICA for a two-stage assembly flow shop scheduling problem 
with minimization of weighted sum of makespan and mean 
completion time as the objective function. Rajabioun et al. 
[19],Khabbazi et al. [20],Kaveh and Talatahari [21] Lucaset 
al. [22],Nazari-Shirkouhi et al. [23] andSarayloo and 
Tavakkoli-Moghaddam[24] are other related study that 
employed ICA.  

In literature, other metaheuristics have been employed by 
researchers. The following shows recent studies about using 
different kind of metaheuristics in permutation flow shop. 
Quan et al. [25]used PSO in permutation flow shop with 
makespan criterion. Ant Colony Optimization is employed 
byUdomsakdigool and Khachitvichyanukul [26]. 

As mentioned above, despite backlogging importance in 
practical settings, only few researchers have addressed 
capacitated lot sizing problems with back ordering especially 
in case of permutation flow shop. To the best of our 
knowledge, this is the first paper that deals with setup 
sequence-dependent, setup carryover and backlogging in a 
multi-level, multi-machine and multi-period permutation flow 
shop environment and proposes two metaheuristics to solve 
the model and develops a lower bound to compare algorithms. 

This paper is organized as follows:in next section, notations 
used in the formulation are described and a lower bound is 
presented. In section 3 the genetic algorithm and in section 4 
imperialist algorithm are proposed. In subsequence section, 
the algorithms are calibrated by Taguchi method and 
theperformance of proposed algorithms is evaluated. Finally, 
Section 6 is devoted to conclusions and recommendation for 
future studies. 

 

 

 

2. PROBLEM FORMULATION 
The following notations are used in the model: 

2.1. Notations and assumptions 
2.1.1 Indices 
 ݅, ݆,݇  Index of production type 

 ݊Index of product type 

݊ᇱ Designation for a specific setup number 

 ݉ Index of level of production 

 Index of period ݐ 

2.1.2 Parameters 
ܶ Planning horizon 

ܰ Number of different products 

 Number of production levels/number of machines ܯ

 A large real number ܯܾ݃݅

 ,௧ Available capacity of machine min period t (in timeܥ
units) 

݀,௧ External demand for product j at the end of period t 
(in units of quantity) 

ℎ,
ା  Storage costs unit rate for product j in level m. 

ℎ,௧
ି  Shortage costs unit rate for product j at the end of 

period t. 

ܾ, Capacity of machine m required to produce a unit of 
product (or shadow product) j (in time units per 
quantity units). 

ܲ,,௧  Production costs to produce one unit of product j on 
machine m at period t (in money unit per quantity 
unit). 

ܵ,, Sequence-dependent setup time for the setup of the 
machine m from production of product i to 
production of product j (in time units); for݅ ≠
݆, ܵ , , ≥ 0and݅ = ݆, ܵ.. = 0. 

ܹ,, Sequence-dependent setup cost for the setup of the 
machine m from production of product i to 
production of product j (in money units); for 
݅ ≠ ݆, ܹ,, ≥ 0 and ݅ = ݆, ܹ. . = 0. 

݆ The starting setup configuration on machine m. 

 

2.1.3 Decision variables 

,,௧ܫ
ା  Stock of product j at level m at the end of period t. 

,௧ܫ
ି  Shortage of product j at the end of period t. 

,,௧ݕ
  Binary variable, which indicates whether the nth 

setup on machines at period t isfrom product i to 
product j (ݕ,,௧

 = 1) or not (ݕ , ,௧
 = 0). 

,,ݔ
  Quantity of product j produced after nth setup on 

machine m at period t. 
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ݍ , ,
  Shadow product: the gap (in quantity units) between 

nth setup (to product j) on machine m at period t and 
its related production in order to ensure that direct 
predecessor of this product (production of product j 
on machine m at period t) has been completed.  

To formulate this model the following assumptions are 
considered: 

 Several products are produced in a flow shop environment 
and each product can be produced only on one machine at the 
same time, 

 Inventory cost incurred when a product unit is hold between 
a particular period, 

 If the product cannot be delivered on time shortage cost is 
incurred, 

 Setup times reducing machine capacity and each machine is 
constrained in capacity 

 Setups are sequence-dependent and must be complete in a 
period. 

 There must be precisely N (number of products) setups in 
each period on each machine, even if a setup is just from a 
product to itself, with respect to this issue that setup time (and 
cost) from a product to itself is zero 

The mathematical model in this paper is described on the 
basis of the above assumptions and notations 

2.1. Mathematical formulation 

Capacitated lot sizing focuses on how to make lot sizing 
planning and sequencing focuses on the order of each product 
should be produced to minimize total cost. The objective 
function is to find an optimal lot sizing and sequencing that 
minimize setup, inventory, production and backlogging costs. 

 

݉݅݊  ܹ,,.ݕ.,௧


்

௧ୀଵ

ெ

ୀଵ

ே

ୀଵ

ே
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,,௧ݔ
 ≤ ቆ

,௧ܥ

ܾ,
ቇ .  ,,௧ݕ


ே

ୀ,ஷ((வଵ)
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,   ݊ = 1, . . . ,ܰ,   ݆ = 1, . . . ,ܰ,   ݉ = 1, . . . ,ܯ, ݐ = 1, . . . ,ܶ (7) 

,,ଵݕ
ଵ = 0  ݆ ≠ ݆, ݅ = 1, . . . ,ܰ (8) 

ݕబ,,ଵ
ଵ

ே

ୀଵ

= 1, (9) 

 ,,௧ݕ


ே

ୀ

= ݕ,,௧
ାଵ

ே

ୀଵ

   ݅ = 1, . . . ,ܰ,   ݊ = 1, . . . ,ܰ − 1,   ݉ = 1, . . . ,ܯ, ݐ = 1, . . . ,ܶ (10) 

,,௧ݕ
 =  (11) 1 ݎ 0
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,,௧ܫ
ା , ,௧ܫ

ି ,,௧ݔ,
 ݍ, ,,௧

 ≥ 0 (12) 

,,ܫ
ା = 0,    ݆ = 1, . . . ,ܰ,   ݉ = 1, . . .  (13) ܯ,

 
In this model, the objective function is Equation (1). The 
backlogging or storage at the end of each period is considered 
by Equation (2). Constrain (3) ensures total of in-flows to 
each node is equal to of out-flows from that node. Equation 
(4) ensures within one period each typical product j one 
machine m is produced before its direct successor. The 
capacity constraints of machines are considered by Equation 
(5). Equation (6) respects setups in production process. 
Equation (7) indicates the relationship between shadow 
products and setups. Constraints (8) and (9) ensure that for 
each machine, the first setup at the beginning of the planning 
horizon is from a defined product. Equation (10) represents 
the relationship between successive setups. The type of 
variables is defined by Equations (11) and (12) and finally 
Equation (13) indicates that at the end of planning horizon 
there is no on-hand inventory. 

2.3. Lower bound 

In this section we present a lower bound that developed by 
Mohammadi et al. [27]. We first relax binary variables to 
continuous variables that fall in [0, 1].  

Then we add following equation to relaxed model: 

 ,,௧ݕ
ଵ

ே

ୀ

+  ݕ,,௧


ே

ୀଶ

ே

ୀଵ,ஷ

= ܽ,௧ (14) 

In this equation ܽ,௧  is binary variable.  

Equation (14) was proved that is valid to model. We refer the 
proof of this equation to Mohammadi et al [27]. 

3. GENETIC ALGORITHM 

GAs are probabilistic search optimization algorithms that 
were inspired by the process of natural evolution and the 
principles of survival of the fittest [28].Genetic Algorithms 
(GAs) can be employed to find a near-optimal solution for 
NP-hard problems. GAs evolves a population of individuals 
according to the progress of algorithm to reach a good 
solution. Genetic operators (such as natural selection, 
mutation, and cross over) manipulate individuals in a 
population of solution over several iterations to improve their 
fitness.The algorithm generates a new candidate pool of 
solutions iteratively from the presently available solutions and 
replaces some or all of the existing members of the current 
solution tool with the newly created feasible solutions. 

We first present a simple and effective heuristic to generate 
initial solution and then discuss the issue of encoding in our 
case aninteger array representation. We then turn to the 
evolutionary stages of the algorithm and the specific genetic 
operators that have been designed to increase search 
efficiency. 

Initial Population 

A genetic algorithm starts with popularly an initial population 
of feasible solutions. Initial population can affectsthe 
performance of GAs. So that a simple and effect heuristic is 
used for ݐ = 1to ܶand is described as follows: 

(1) The products are sorted in the decreasing order of ܹ, =
∑ ܹ,,; ݆ = 1, . . . ,ܰ.ே
ୀଵ  

(2) Let [݅] indicate the ݅th product in an ordered sequence in 
this heuristic.  

For [݅] = 1 to ܰ: 

(a) Consider inserting product [݅] into every position. 

(b) Calculate the sum of setup costs for all products scheduled 
so far using the actual setup costs.  

(c) Place product i in the position with the lowest resultant 
sum of setup costs. 

With using this method, ܯ different initial populations is 
produced (for ݉ =  1, . . .  the remaining initial ,(ܯ,
populations have been generated randomly.In this way, binary 
variables are coded in the form of matrices with ܰ × ܶ 
dimensions.  

In Figure1 a sample chromosome with T =3, N =3 is depicted. 

Figure 1. A chromosome representation 

In Figure 1 an encoded binary variables have been shown. 
The corresponding decoded binary variablesin this 
chromosomeduring period T=1 are, ݕ,ଶ,ଵ

ଵ = ଶ,ଵ,ଵݕ
ଶ = ଶ,ଷ,ଵݕ

ଷ =
1 and the corresponding decoded binary variables to this 
chromosome during period T=2 are, ݕ,ଷ,ଶ

ଵ = ଷ,ଵ,ଶݕ
ଶ = ଵ,ଶ,ଶݕ

ଷ =
1and finally for period T=3, ݕ,ଶ,ଷ

ଵ = ଶ,ଷ,ଷݕ
ଶ = ଷ,ଵ,ଷݕ

ଷ = 1and 
other binary variables would get value 0.With encoding of the 
binary variables, we are able to employ crossover and 
mutation operators more efficientlyand more effectively than 
noncoding chromosomes. 

Fitness function 

The fitness value of each chromosome has been calculated by 
solving the corresponding problem. 
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Selection operator 

The requirement parents for using of crossover have been 
obtained by one of the five selection method, Deterministic 
Sampling (A), Random Sampling (B), Roulette Wheel (C), 
Ranking (D) andTournament(E). 

Crossover operation and mutation operator 

Several crossover operators have been proposed in reference 
[29]. Similar job two point crossover has been used in this 
research. In order to produce small perturbations on 
chromosomes to promote diversity of the population, a shift 
mutation operator has been used in this article.Crossover and 
mutation probability must be determined during parameters 
calibration. 

Population replacement 

Chromosomes for the next generation are selectedfrom the 
enlarged population. The best pop_sizechromosomes of the 
enlarged population have beenselected for the next generation. 

Termination criterion 

The algorithm must terminate according to a criterion. This 
criterion is specified by reaching to maximum number of 
iteration it_max. 

4. IMPERIALIST COMPETITIVE 
ALGORITHM 

ICA is a novel population-based evolutionary algorithm 
proposed by Atashpaz-Gargari and Lucas [15]. The ICA 
initiates with an initial population, like most evolutionary 
algorithms. Each individual of the population is called a 
‘country’ equivalent ‘chromosome’ in GA. Some of the most 
powerful countries are chosen to be the imperialiststates and 
the other countries constitute the colonies of theseimperialists. 
All the colonies of initial countries are partitioned among the 
mentioned imperialists based on theirpower. Equivalent of 
fitness value in the GA, the power ofeach country, is 
conversely proportional to its cost. Anempire is constituted 
from the imperialist states with theircolonies [30]. 

After all empires were formed, the competition between 
countries starts. First, the colonies in each of empires start 
moving toward their imperialist. During this movement, if the 
colony gets better cost function than its imperialist does, they 
will exchange their positions and the algorithm will continue 
with the new imperialist. The power of each empire is 
calculated by imperialist cost function and colonies. The 
empire which is weaker than the others loses its colonies. 
Each imperialist attempts to gain the colonies of other 
empires. The most powerful empires have a more chance to 
gain the colonies from the weakest empires. The more 
powerful an empire is, the more likely it will possess the 
weakest colony of the weakest empire (Imperialistic 
competition) 

During the competition weak imperialists will lose their 
weakest colony gradually. When an empire loses all of its 
colonies, it will be eliminated from the population. In fact the 
empire collapses. The final level of imperialist rivalry is when 
there is only one empire in the world. The main steps of ICA 
are described as follows:  

Step 1 Generating of Initial countries 

Each individual of the population is called a ‘country’ 
equivalent ‘chromosome’ in GA. Each country denotes a 
socio-political characteristic in that country such as culture, 
language, business, economic policy and etc. The socio-
political characteristic in countries is the same different type 
of variables. There are two different types of variables, 
continuous variables (ݍ,ݔ, ାܫ ,  .(ݕ) and binary variables (ିܫ
Each country consists of five variables, ݍ,ݔ, ,ାܫ  ݕ andିܫ
where all of these variables must be optimized. 

Initial values of continuous variables are generated randomly 
by uniform distribution function. To generate initial value for 
binary variable, we use a simple and effective heuristic which 
has been presented by Mohammadi et al. [27]. 

Step 2 Generating of Initial imperials 

A set of the most powerful countries form imperialists and the 
rest weaker countries are colonies of imperialists. The power 
of each country is calculated based on the objective function. 

Step 3 Assimilation of colonies 

Assimilation has been modeled by moving all the colonies 
toward the imperialist. Each country (colony) has different 
socio-political characteristics (variables), so every socio-
political characteristic (variables) could moves toward the 
related socio-political of imperialist in different ways. 
Continuous variables of colonies move toward related 
continuous variables of its imperialist and binary variables 
move toward binary variables of its imperialist. 

The assimilation of continuous variables is modeled by 
moving the colony toward the imperialist by xunits 
ߚ,0)ܷ~ݔ × ݀). Where ߚ > 1andߛ−)ܷ~ߠ,  is distance݀ .(ߛ
between colony and the its imperialist.  

The movement of binary variables is accomplished by 
crossover operation, like crossover operator in genetic 
algorithms. Crossover allows exchanging information 
between different solutions (chromosomes) so it is useful to 
assimilate binary variables. 

Step 4 Revolution 

The revolution increases the exploration of the algorithm and 
prevents the early convergence of countries to local 
minimums. A very high value of revolution decreases the 
exploitation power of algorithm and can reduce its 
convergence rate [31].In each iteration, some of the colonies 
are chosen and their positions are exchanged. This mechanism 
is similar to mutation process in genetic algorithm for 
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creatingdiversification in solutions. Mutation increases the 
variety in the population, so this operator is used for creating a 
revolution in binary variables. 

Step 5 Exchange the colony with imperialist  

During assimilation and revolution, a colony may get to a 
situation with lower cost than the imperialist. In this case, the 
imperialist and the colony change their positions.  

Step 6 Imperialistic competition 

To start the competition, after selecting the weakest colony, 
the possession probability of each empire must be found. The 
normalized total cost of an empire is simply obtained by 

ܥܶܰ = ܥܶ −max {ܶܥ} 

Where, ܰܶܥand ܶܥ are the total cost and the normalized 
total cost of ݊th empire, respectively. 

The total power of an empire is mainly contributed by the 
power of imperialist country. It is clear that the power of an 
empire includes the imperialist power and their colonies. 

ܥܶ = ܥ{ݐݏ݈݅ܽ݅ݎ݁݉݅}ݐݏܿ + ߩ
 {(݁ݎ݅݉݁ ݂ ݏ݈݁݅݊ܿ)ݐݏܿ}݊ܽ݁݉∗

Where ߩ is a positive small number.The possession 
probability of each empire is given by 

 = อ
ܥܶܰ

∑ ܥܶܰ
ே
ୀଵ

อ 

Roulette wheel method was used for assigning the mentioned 
colony to empires. 

Step 7 Elimination of powerless empires. 

During the competition weak imperialists will lose their 
weakest colony gradually. When an empire loses all of its 
colonies, it collapses. At the end just one imperialist will 
remain. This is the optimum point. 

Step 8 Stop criterion 

In such an ideal new world, all the colonies will have the 
same positions and same costs and they will be controlled by 
an imperialist with the same position and cost as themselves. 
In such a world, there is no difference not only among 
colonies, but also between colonies and imperialist [32]in this 
situation; the algorithm has reached the global solution. 

Stopping criterion in proposed algorithm is to get the 
maximum decades (maximum iteration). 

5.PARAMETER CALIBRATION AND 
COMPUTATIONAL TESTING 

Parametercalibration andcomputationalexperiments are key 
steps in the developmentof any algorithm.Conventionally, 
setting parameters relies on a trial and-error procedure. 
However, this procedure cannot determine optimal parameter 
settings and consumes considerable time [33]. In this paper, 
we employed the Taguchi Methodology to optimize the 
parameters of the algorithms via systematic experiments. 

5.1. Parameter calibration 

Taguchi [34] developed a family of fractional factorial 
experiment (FFE) matrices that ultimately lessens the number 
of experiments, but still provides adequate information. Full 
fractional experiment is not an effective approach when the 
number of factors becomes large, so in our case because of the 
large number of factors and few levels for each factor we use 
Taguchi method to calibrate the parameters. 

A transformation of the repetition data is created toanother 
value by Taguchi which is the measure of variation. The 
transformation is the signal-to-noise (S/N) ratio. The S/N ratio 
is obtained by following equation: 

ܵ
ܰ

݅ݐܽݎ  = −10 log(݊݅ݐ݂ܿ݊ ݁ݒ݅ݐ݆ܾܿ݁)ଶ 

Where “signal” describes the desirable value, in our study we 
use the following performance measure as desirable value. 

⎝

⎜
⎛
൮
∑ ௦ܿ݅ݐݏ݅ݎݑℎ݁ܽݐ݁ܯ − ଵହܤܮ
ୀଵ

ܤܮ
൘ ൲× 100

⎠

⎟
⎞

15

൚
 

Where ܽݐ݁ܯℎ݁ܿ݅ݐݏ݅ݎݑ௦ is the obtained solution by the 
algorithm (GA or ICA) and ܤܮ is the solution obtained by the 
lower bound. Note that each problem runs 15 times and the 
average of this runs consider as corresponding desirable value 
for the problem. It is obvious that the smaller value of the 
performance measurement shows that the metaheuristic is 
more efficient. 

The term “noise” specifies the undesirable value (standard 
deviation). The S/N ratioindicates the amount of variation 
present in the response variable. Here, maximization of the 
signal-to-noise ratio isdesirable (i.e., is the goal). 

In order to calibrate the parameters of the algorithms we 
determine the level of each parameter. Table 1 shows the level 
of each parameter for two metaheuristics. Since increase in 
number of products (N) leads to polynomial increase in 
computational timeso that to make a fair calibration, we 
divide number of population and maximum iteration 
bynumber of products (N).  
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Table 1. Factor levels 

 Parameter Level Level 1 Level 2 Level 3 Level 4 Level 5 

GA 

Selection Type A B C D E 

Crossover Probability 0.1 0.2 0.3 0.4 .5 

Mutation Probability 0.05 .10 .15 .20 .25 

Number of Population 500/N 600/N 750/N 900/N 1000/N 

Maximum Iteration 500/N 600/N 750/N 900/N 1000/N 

ICA 

Number of Population 500/N 600/N 750/N 900/N 1000/N 

Number of Imperialist 5 7 10 12 15 

Maximum Iteration 0.5 0.7 1 1.2 1.5 

Revolution Probability 500/N 600/N 750/N 900/N 1000/N 

 0.5 0.4 0.3 0.2 0.1 ߩ

 

In this case, Taguchi method needs 25 experiments for each 
algorithm.As mentioned above, for each 25 experiment 15 
independent runs are carried. The termination criterion of 
maximum elapsed CPU time ist=7200S [9]The required 
parameters for these problems are extracted from the 
following uniform distributions:ܿ ≈ ܷ(5, 10),݀ ≈
ܷ(0.5, 1),ℎା ≈ ܷ(0.05, 0.1),ℎି ≈ ܷ(1, 5),ܾ ≈
ܷ(0.02, ,(0.04 ≈ ܷ(0.02, 0.04), ݏ ≈ ܷ(100, 1100)  

In order to conduct the experiments, we implemented GA and 
ICA examples in MATLAB run on a PC with a 2.27 GHz 
Intel Core i5 processor and 3 GB RAM memory and analyzed 
the result by Minitab 16 software.Figure2 and 3 show the 
average S/N ratio obtained at each level for ICA and GA. 

According to Figure 2 and Figure 3 the optimal levels of 
factors have been indicated in Table 2. 

  

Figure 2. Main effect plot for S/N ratios for GA Figure 3. Main effect plot for S/N ratios for ICA 

 

Table 2. The optimal levels of factors 
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 Parameter Level Optimum 

GA 

Selection Type C 

Crossover Probability 0.7 

Mutation Probability 0.10 

 
Number of Population 900/N 

Maximum Iteration 900/N 

ICA 

Number of Population 750/N 

Number of Imperialist 7 

Maximum Iteration 750/N 

Revolution Probability 0.25 

 0.7 ߩ

 

5.2. Comparison of the algorithms 

In this section, in order to evaluate and compare the 
performance of two proposed, we consider different problem 
sizes. 

For each problem set, 15 independent instances are randomly 
generated (225 problems) and the required parameters for 
these problems are extracted from the following uniform 
distributions: 

ܿ ≈ ܷ(5, 10),݀ ≈ ܷ(0.5, 1),ℎା ≈ ܷ(0.05, 0.1),ℎି
≈ ܷ(1, 5), ܾ ≈ ܷ(0.02, ,(0.04
≈ ܷ(0.02, 0.04), ݏ ≈ ܷ(100, 1100)  

For each of the 15 instances, 15 independent runs are carried 
out for each algorithm within a reasonable CPU time, 7200 
s.We obtain the mean of 15 instances as the response variable 

of each instance. This response is used to compare two 
algorithms. Problems have been solved in MATLAB run on a 
PC with a 2.27 GHz Intel Core i5 processor and 3 GB RAM 
memory.The computed results are reported in Table 3.

Table 3. Computational results 

Problem set 

Dimension of 
problems 

(ܰ × ܯ × ܶ) 

GA ICA 

1 2 × 2 × 2 16.72% 9.66% 

2 3 × 3 × 3 16.76% 9.42% 

3 4 × 4 × 4 9.38% 6.46% 

4 5 × 5 × 5 15.01% 11.69% 

5 6 × 6 × 6 15.02% 8.55% 

6 7 × 7 × 7 15.84% 7.48% 
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7 8 × 8 × 8 14.85% 10.07% 

8 9 × 9 × 9 13.71% 9.20% 

9 10 × 10 × 10 14.04% 10.12% 

10 11 × 11 × 11 10.95% 6.97% 

11 12 × 12 × 12 10.32% 6.60% 

12 13 × 13 × 13 12.17% 6.92% 

13 14 × 14 × 14 11.76% 8.99% 

14 15 × 15 × 15 13.41% 8.58% 

15 16 × 16 × 16 15.08% 8.07% 

 

We are now employing a 95% confidence level and we are 
using Tukey HSD confidence intervals to compare algorithms 
with Minitab 16 Software. The result has been showed in 

Figure 4. From the Figure 4 it is clear that the proposed ICA 
algorithm is statistically better than the proposed GA 
algorithm. 

 

Figure 4:Tukey HSD confidence intervals 

6. CONCLUSION 

This paper studies the permutation flow shop lo sizing and 
scheduling problem and developed a new model for the 
problem under sequence-dependent and carryover setups with 
considering backlogging. 

To solve the problem, two metaheuristics was proposed 
namely, GA and ICA. Since the parameters of any algorithm 
has significant effect onalgorithms performance, we use a 
fractional factorial experiment namely, Taguchi method. In 
order to evaluate the effectiveness and robustness of the 
proposed GA and ICA, we carried out a comparison between 
the algorithms. In this context, we presenteda lower bound 

and compared the algorithms against it. The distance 
betweenthe algorithms and the lower bound was calculated. 
Base on the results, Tukey HSD confidence intervals was 
employed to determine which algorithm is statistically 
superior to the other one. The results showed the ICA 
outperforms the GA. 

As a direction for future research, it would be interesting to 
develop other metaheuristic, like Particle Swarm 
Optimization, Harmony Search and Honey Bee Algorithm. As 
an additional contribution, developing of the single objective 
into multi objective models can be considered. 
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