
International Journal of Science and Engineering Applications

Volume 2 Issue 6, 2013, ISSN-2319-7560 (Online)

www.ijsea.com 145

Preventing SQL-Based Attacks Using Intrusion Detection

System

Manju Khari

Ambedkar Institute of Advanced Communication

Technologies and Research

New Delhi, India

Anjali Karar

Ambedkar Institute of Advanced Communication

Technologies and Research

New Delhi, India

Abstract: With the advancement of technology everyone is using computer and web applications. These web applications can be easily made by

using rapid application development environments by developers. But they do not consider security aspect necessary in the process of providing

attractive functionalities & also they are not experts in that field. This make web applications vulnerable to several attacks. Among these attacks SQL

injection is considered most dangerous vulnerability. This paper describes various approaches used by authors to prevent SQL injection attack using

various methods like intrusion detection, black box testing etc.

Keywords: SQL injection, Intrusion detection, anomaly detection, misuse detection

1. INTRODUCTION

Web applications are very popular today. The developers of

the web applications are focused more towards adding the

best possible functionalities. In this due course they often

neglect security issues. Many tools have been developed to

detect Web application vulnerabilities but hackers are still

successfully exploiting Web applications. A possible

reason is that most tools just scan Web application

vulnerabilities, but few tools can automatically revise these

vulnerabilities [5].

 The user send request via a web browser in the form of

URL, that is converted into an IP address, to the web

server. Web server converts these requests to SQL

commands. The result of these commands generate the

response for user for the final presentation. Some rapid

application development environments lead to good

functionalities with vulnerabilities. These developers are

not the security experts so they cannot provide security

measures [1].

Nowadays, web applications are vulnerable to many attacks

and injecting commands is in the top of this list [2].

Traditional network-based firewall systems offer no

protection against these attacks, as the malicious (fractions

of) SQL or tampered requests are located at the application

layer and thus are not visible to most of these systems

[3].Web-based applications are implemented using a

number of server-side executable components, such as CGI

programs and HTML-embedded scripting code, that access

back-end systems, such as databases [4].Existing

prevention systems are often insufficient to protect this

class of applications, because the security mechanisms

provided are either not well understood or simply disabled

by the web developers “to get the job done [4].” In SQL,

character constants are surrounded by apostrophes („),

semicolons (;) usually separate statements, and (--) start of

comment, so the mischievous inputs will usually include at

least one of those characters [6]. Typical Intrusion

detection systems can prevent the use of some common

malicious strings like “union”, “or 1=1” [1]. Moreover they

are considered as authorized users commands in databases

security measures. Some SQL based attacks define earlier

in [4] are as follows:

 SQL injection: Typing SQL keywords and control signs an

intruder is able to change the structure of SQL query

developed by a Web designer. Here the structure of SQL

query is changed by the attacker. A query looks like:

uname = getAuthenticatedUser()

cctype = getUserInput()

result = sql("SELECT nb FROM creditcards

WHERE user=‟"

+ uname + "‟ AND type=‟" + cctype +"‟;")

print(result)

http://www.ijsea.com/

International Journal of Science and Engineering Applications

Volume 2 Issue 6, 2013, ISSN-2319-7560 (Online)

www.ijsea.com 146

The changed query structure will be executed and

database will be affected as the attacker requires.

 Cross site scripting (XSS): The attacker injects a script

and tries to destroy relationship between web browser and

web server. This script is not controlled by attacker once

injected. They focus on stealing information that is

 sensitive for user like credit card details. Malicious

JavaScript programs can take advantage of the fact that

they are executed in a foreign environment that contains

sensitive information [4].

 Other data centric attacks: This class focuses on

particular actions taken by attacker on other query

constants. If we see xxx usertype then it is considered as

attack. Two-step SQL injection attack also comes under

this class of attack. Here attacker inserts or deletes a string

from the database. The web site periodically deletes

inactive users with the following script [4]:

old = now() - 3 months

users = sql("SELECT uname FROM users

WHERE last_login < "+old+";")

for u in users:

sql("DELETE FROM users WHERE uname=‟" +

u

These are some attacks which are SQL based. In this paper

we are going to discuss work carried by authors for

preventing malicious SQL injection attacks in different

years and best possible to our knowledge we have

mentioned some drawbacks. Several intrusion detection

techniques are introduced along with them we will also

discuss other techniques used to prevent these attacks.

2. LITERATURE SURVEY

Fonseca et al. [1] proposed an intrusion detection system

(IDS) at database level. This IDS is based on anomaly

detection technique and detects the database operations that

are malicious. According to them it is best to place a layer

at database level which will be an additional layer for

intrusion detection. The purpose served here will be the

detection of insider attacks and malicious SQL attacks.

They had done an offline analysis. The proposed

architecture in [1] is:

Bockermann et al. [3] proposed technique that used

machine learning algorithm „internal self organizing maps‟

to detect the malicious behavior. The approach incorporates

the parse tree structure of SQL queries as characteristic e.g.

for correlating SQL queries with applications and

distinguishing benign and malicious queries [3]. This paper

followed the approach used in [7]:

http://www.ijsea.com/

International Journal of Science and Engineering Applications

Volume 2 Issue 6, 2013, ISSN-2319-7560 (Online)

www.ijsea.com 147

Figure.2

If the query matches the above diagrammatic representation

then it is normal behavior else it will be considered

malicious behavior. They used Apache Derby database &

generated off a grammar file using tools javacc giving

description of grammar. They collected data of the popular

Typo3 content management system, create a set of different

queries & added attacks that closely relate to SQL

injections.

The detection rate was considered as TPR and false

positives as FPR. Tree-Kernels were used for SQL

grammars & query analysis. Typo3 were represented by

dots and malicious modifications as squares. This resulted

into highly structured query language, high detection rates

and speed.

The author mentioned the drawback here as computational-

overhead as computation of kernel matrix took a few more

time than necessary. This was due to use of tree-kernel

approach.

Pinzon et al. [8] used case based reasoning (CBR) engine

which is collaboration of advanced algorithms that can

easily allow classification of malicious codes. The agent

used here is named as CBRid4SQL. Here combination of

CBR system, artificial neural network (ANN) & support

vector machine (SVM) gave advantage of learning and

adaption and query detection ion best possible way.

CBR related SQL query has three steps namely ; problem

description, solution for performing some action & final

state after solution. The steps retrieval, reuse, revise, retain

were steps followed where main learning phase was

completed and machine learning algorithm were used.

 Method Method Method

 BayesNet 638 Naive Bayes 666 AdaBoostM1 665

 Bagging 684 DecisionStump 598 J48 689

 JRIP 692 LMT 693 Logistic 688

 LogitBoost 680 MultiBoostAB 666 OneR 622

 SMO 685 Stacking 437 CBRid4SQL 698

Table 1. Performance of different classifiers

This table 1 shows that the highest-performance system is

CBRid4SQL, which has a success rate of 698/705 [8]. The

proposed agent is capable of low error rates compared to

other existing systems of that time, robustness, decision

mechanism and flexibility in queries review.

Valeur et al. [4] focused on mimicry based SQL attacks by

developing anomaly based system. The tool can be

deployed on a host that contains custom-developed server-

side programs and are able to automatically derive models

of the manner in which these programs access a back-end

database [4]. Here profiles for normal databases access are

developed and models are obtained during training phase.

The anomalies are detected by the help of profiles made

earlier in detection phase.

They used several models in order to characterize the

normal behavior of web applications for mimicry attacks.

Training phase is divided into data feeding of models for

profile building process and anomaly score calculation. If

an anomaly score exceeds the maximum anomaly score

seen during training by a certain tunable percentage, the

query is considered anomalous and an alert is generated.

This anomaly based detector had less false positives and

little overhead.

Skaruz et al. [9] used recurrent neural network (RNN)

which was trained by back propagation time algorithm

(BPTT). They divided SQL queries statements into tokens.

In training phase, activations of all neurons are computed.

Next, an error of each neuron is calculated. These steps are

repeated until last token has been presented to the network

[9].

They took different tokens and defined their indexes in

table 2 [9] as follows:

They used datasets as DATASET I AND DATASET II.

The second dataset showed the scope of use of re-

http://www.ijsea.com/

International Journal of Science and Engineering Applications

Volume 2 Issue 6, 2013, ISSN-2319-7560 (Online)

www.ijsea.com 148

evaluated data. This division of statements into tokens led

to clear line of distinction between an attack and a

authorized statement.

Skaruz et al. [10] in 2010, used neural networks to detect

SQL attacks and gene expression programming (GEP).jut

like they did earlier this time also they divided SQL

problem to time series prediction and classification

problem. The statement of SQl were again divided into

tokens and RNN was used and trained by BPTT.

Each data subset had a corresponding network. The trained

network was examined for both attacks and normal SQL

queries. They evaluated 2 coefficients that were used as

threshold for RNN output. They used two approaches that

is RNN and GEP for detection of SQL based attacks. RNN

with classification rules is able to predict sequences of 10

tokens with false alarms rate below 1%. We also showed

how the number of SQL queries used for setting the

coefficients affects the number of false alarms.

Classification accuracy received from GEP depicts great

efficiency for SQL queries constituted from 10 to 15

tokens. For longer statements the averaged FP and FN

equals to about 23%. [10]

Lee et al. [11] provided a framework and named it as

DIDAFIT (detecting intrusions through fingerprinting

transactions). This system consists of known fingerprints

that are compared to every database access and hence fate it

as intrusive or normal activity. DIDAFIT is a database

intrusion detection system that identifies anomalous

database accesses by matching database transactions with a

set of legitimate transaction fingerprints. This is database

IDS at application level. It can also be be classified as

misuse –signature based IDS. This technique deals best

with incomplete training datasets and has lower false

negatives rate.

This framework deduces the missed SQL fingerprints, the

statements were easily converted into fingerprints, high risk

SQL statements were detected in training sets.

The framework of proposed system is as follows:

But not to forget that every misuse anomaly detection has

drawback that it cannot detect new attacks as no existing

fingerprint will match the attack and system will be left

vulnerable.

Kiani et al. [12], used an anomaly detection approach. They

called the model as same character comparison (SCC)

model where HTTP request‟s section were divided on the

basis of character. It follows the approach of FCD

(frequency character distribution) model and tried to

overcome its limitation. For example, given the extracted

query section „id=444‟, the frequency count for the

characters would be 3 for the character „4‟, and the

frequency count would be 1 for the characters „i‟, „d‟, „=‟,

and zero for all other characters. Here query section is

taken from HTTP requests directly [12].

In training phase frequency is evaluated. The cumulative

characteristic count is calculated after all requests are

processed. Expected values are evaluated then. In testing

phase, anomaly score is calculated using Chi-square test

and threshold is determined. This threshold decides

whether SQl query is a intrusive one or not. If anomaly

score is above the threshold defined alert is triggered.

The approach operates by parsing the query section of

HTTP requests and creates profiles for each file. It requires

no access to the source code, or modification of existing

software modules [12]. Moreover large training datasets

were used. Here we got reduced false alerts, no user

interaction and UNION attacks and tautology attacks were

detected.

Aswami et al [13] proposed the architecture given below:

http://www.ijsea.com/

International Journal of Science and Engineering Applications

Volume 2 Issue 6, 2013, ISSN-2319-7560 (Online)

www.ijsea.com 149

Figure.4

This paper proposes a system that will detect both insider

attack and SQL injection attack. It is names as SIIDMS

(SQL injection and insider misuse detection system)

architecture. This paper has presented a description on the

threats in database security and the intrusions from both

external and internal attacks against database systems [13].

This is because in many instances, the insiders do have

authorized access to their database system but often misuse

their rights.

Razzaq et al. [14] introduced the defense mechanism for

application level. They provided multi layered defense

mechanism capable of detecting both classes of known and

unknown attacks. They showed results for high detection

rate and low false positives using graphical representation.

They focused on XSS attacks and SQL injections. System

is evaluated against the existing data mining techniques,

attribute length, character distribution, or inference

structure used by different models in anomaly detection

[14]. First layer, filter out the special tags from malicious

input through Filter. Second layer, Detection module

detects malicious input through positive, negative and

anomaly components and lastly syntactical and

semantically validation through Analyzer & Validation

module [14].

Ciampa et al. [15] proposed a tool named V1p3R.Unlike

other exsisting tools it didn‟t generate SQL queries rather

it performed penetration testing. The proposed approach

worked on following steps for a web application:

 It determined hyperlinks structure & its input

forms

 It was seeded with already known SQL attacks

for reporting error(Standard attacks consist in a

set of query strings that are not dependent on the

Web application.[15])

 Then every access to web application is

compared to regular expressions in the database

related to error messages.

 It continues the attack using text mined from the

error messages with the objective of identifying

likely table of field names, until it is able to

retrieve (part of) the database structure[15].

This approach worked out for 12 real web applications in

different fields.

Boyd et al. [16] used one of the Instruction-Set

Randomization application. To create complications for

attacker, the SQL standard keywords are appended with a

random integer. Therefore, any malicious user

attempting an SQL injection attack would be thwarted, for

the user input inserted into the “randomized” query would

always be classified as a set of non-keywords, resulting in

an invalid expression.

They called it SQLrand system and its architecture is given

as:

Figure.5

3. CONCLUSIONS AND FUTURE

WORK

This work is carried out for details in intrusion detection

and SQL based attacks. This result will help for database

and IDS work together. This contains work since 2002 to

2011 with some drawbacks and advantages suggested.

Including SQL injection we have discussed about some

XSS attacks and mimicry attacks. This paper will help

http://www.ijsea.com/

International Journal of Science and Engineering Applications

Volume 2 Issue 6, 2013, ISSN-2319-7560 (Online)

www.ijsea.com 150

people looking forward to perform research work in IDS

and SQl based attacks field.

4. REFERENCES

 [1] José Fonseca, Marco Vieira, and Henrique Madeira,

“Detecting malicious SQL,” ESTG-ISUC, 2007.

 [2] Open web application security project.The toplist of most

severe web application vulnerabilities, 2004.

 [3] Christian Bockermann, Martin Apel, and Michael Meier,

“Learning SQL for Database Intrusion Detection Using Context-

Sensitive Modelling(Extended Abstract),” Artificial Intelligence

Group, Information Systems and Security Group ,Department of

Computer Science Technische Universit¨at Dortmund,2009.

 [4] Fredrik Valeur, Darren Mutz, and Giovanni Vigna, “A

Learning-Based Approach to the Detection of SQL Attacks,”

Reliable Software Group, Department of Computer Science,

University of California, Santa Barbara , 2005.

 [5] Jin-Cherng Lin, Jan-Min Chen and Hsing-Kuo Wong, “An

Automatic Meta-revised Mechanism for Anti-malicious

Injection,” The Dept. of Computer Sci & Eng, Tatung

University, Taipei 10451, Taiwan, The Dept. of Information

Management, Yu Da College of Business Miaoli 36143,Taiwan,

Chung-shan Institute of Science and Technology, 2007.

 [6] Orlando Karam and Svetlana Peltsverger, “Teaching with

security in mind,” Department of Computer Science and

Software Engineering School of Computing and Software

Engineering Southern Polytechnic State University Marietta,

GA 30060, 2009

 [7] Lee, S.-Y., Low, W.L., Wong, P.Y.: “Learning fingerprints

for a database intrusion detection system.” In: Gollmann, D.,

Karjoth, G., Waidner, M. (eds.) ESORICS 2002. LNCS, vol.

2502, pp. 264–280. Springer, Heidelberg , 2002.

 [8] Cristian Pinzón, Álvaro Herrero, Juan F. De Paz, Emilio

Corchado, and Javier Bajo, CBRid4SQL: “A CBR Intrusion

Detector for SQL Injection Attacks,” HAIS 2010, Part II, LNAI

6077, pp. 510–519, 2010. © Springer-Verlag Berlin Heidelberg,

2010.

 [9] Jaroslaw Skaruz, Franciszek Seredynski, and Pascal Bouvry,

“Tracing SQL attacks via neural networks,” PPAM 2007, LNCS

4967, pp. 549–558, 2008._c Springer-Verlag Berlin Heidelberg,

2008.

 [10] Jaroslaw Skaruz, Jerzy Pawel Nowacki, Aldona Drabik,

Franciszek Seredynski, and Pascal Bouvry, “Soft computing

techniques for intrusion detection of SQL based attacks,”

ACIIDS 2010, Part I, LNAI 5990, pp. 33–42, 2010. c_ Springer-

Verlag Berlin Heidelberg 2010.

 [11] Sin Yeung Lee, Wai Lup Low, and Pei Yuen Wong,

“Learning fingerprints for database Intrusion detection system,”

ESORICS 2002, LNCS 2502, pp. 264–279, 2002. c_Springer-

Verlag Berlin Heidelberg, 2002.

 [12] Mehdi Kiani, Andrew Clark and George Mohay,

“Evaluation of Anomaly Based Character Distribution Models

in the Detection of SQL Injection Attacks,” 0-7695-3102-4,

2008 IEEE, 2008.

 [13] Aziah Asmawi, Zailani Mohamed Sidek and Shukor Abd

Razak, “System Architecture for SQL Injection and Insider

Misuse Detection System for DBMS,” Faculty of Computer

Science and Information System Universiti Teknologi Malaysia

978-1-4244-2328-6, IEEE, 2008.

 [14] Abdul Razzaq, Ali Hur, Nasir Haider, Farooq Ahmad,

“Multi-Layered Defense against Web Application Attacks,”

NUST School of Electrical Engineering and Computer Sciences,

Pakistan, 978-0-7695-3596-8, © 2009 IEEE DOI

10.1109/ITNG.2009.77, 2009.

 [15] Angelo Ciampa, Corrado Aaron Visaggio and Massimiliano

Di Penta, “A heuristic-based approach for detecting SQL-

injection vulnerabilities in Web applications,” ACM, 978-1-

60558-965-7, 2010.

 [16] StephenW. Boyd and Angelos D. Keromytis, SQLrand:

“Preventing SQL Injection Attacks,” Springer-Verlag Berlin

Heidelberg, 2004.

http://www.ijsea.com/

