
International Journal of Science and Engineering Applications

Volume 4 Issue 2, 2015, ISSN-2319-7560 (Online)

www.ijsea.com 40

Issues and Concerns In Software Component

Selection

Nitish Madaan

Department of CSE and IT

ITM University

Gurgaon, India

Jagdeep Kaur

Department of CSE and IT

ITM University

Gurgaon, India

Abstract: The increasing availability of COTS (commercial-off-the-shelf) components in the market of software

development has concretized the opportunity of building whole systems based on previously built components. Component-

Based Software Engineering (CBSE) is an approach which is used to improve efficiency and productivity of software system

with the help of reusability. CBSE approach improves software development productivity and software quality by selecting

pre-existing software components. Reusability in Component-Based Software Development (CBSD) not only reduces the

time to market in development but also brings the cost down of development heavily. This paper represents the challenges

which are faced by software developer during component selection like reliability, time, components size, fault tolerance,

performance, components functionality and components compatibility. This paper also summarizes algorithms used for

component retrieval according to availability of component subset.

Keywords: Component Based Software Development (CBSD), Software Component Selection, Case Based Reasoning,

Component Based Software Engineering (CBSE), Software selection process.

1. INTRODUCTION
As compared with traditional approach, Component-based

software engineering (CBSE) helps in developing a quality

software system with less time and less resources. It is

necessary to identify the software component and must be

evaluated in order to check if they able to provide the

requisite functionality or not for the system under the

development. Most of the problems in the component

based software development are considered to be solved as

the efficient component selection.

In the early 1990’s,researchers and practitioners choose to

shift towards the component technology because it became

visible to both researchers and practitioners that object-

oriented technologies were not enough to manage with the

rapidly changing requirements of real-world software

systems. If we had a collection of reusable software

components, we could build applications by simply

plugging existing components together In Component

Based Software Component, a complex system is build with

the help of assembling the simpler and small pieces

obtained in various manner. By using different approaches

research efforts have been made to make the process of

reusability of component based software more effective,

predictable and less expensive as compare with simple

software reusability. CBSD and Component-Based

Software Reusability (CBSR) approaches of software

engineering is not similar to traditional engineering domain.

CBSD and CBSR at last provide solution to all complex

problems and help not only to reduce the time to market but

also help in bring down the development cost significantly

[1]. During reuse of pre-existing software components,

components selection factors play an important role. CBSE

is an approach which is used to enhance the reusability from

the pre-existing software components. Already built

software component selection process identifies methods to

extract software requirements in the general sense, but they

do not explicitly address how to specify security

requirements [4].

Another challenge is Security requirements specification

because requirements cover both functional and non-

functional aspects and many software developers may not

be familiar with the scope of security issues needing to be

addressed. This paper presents analysis of challenges faced

throughout the software component selection.

2. SOFTWARE COMPONENT

SELECTION ISSUES
In components selection, a number of software components

selected from a subset of components or from components

repository in a manner so that their composition satisfies the

specifications. In CBSE component selection factors plays

an important role. Client may get very good quality

software, if researcher and Practitioners keeps all the

challenges in mind at the time of selection of components.

2.1. Software Quality Evaluation

There are a number of quality attributes are concerned for

the development of a software system. We may define the

overall system quality measure (Q), based on a set of

quality attributes (A) as proposed by Vows and Arrest [2].

The set attributes (A) includes reliability, performance,

fault tolerance, safety, security, availability, testability, and

maintainability. In a straightforward manner some other

measurable quality attributes considered as important may

also be included.

Overall software quality may be understood as weighted

linear combination of the values for each of these

attributes:

Q= wRR + wPP+ wFF+ wSaSa+ wSeSe+ wAvAv+wTT+ wMM

(1)

http://www.ijsea.com/

International Journal of Science and Engineering Applications

Volume 4 Issue 2, 2015, ISSN-2319-7560 (Online)

www.ijsea.com 41

Where,

R = Reliability

P = Performance

F = Fault tolerance

Sa = Safety

Se = Security

Av = Availability

T = Testability

M = Maintainability

The values wR, wP, wF, wSa, wSe, wAv, wT, wM denote the

weights assigned to the corresponding quality attribute.

The summation of all the weights assigned to all the

quality attributes is equal to 1. This approach facilitates a

simple, flexible, and consistent way to evaluate and

compare the total software quality of proposed designs

based on the needs of the stakeholders. The type of

software describes the weighting for each attribute. The

weight for security would probably be higher for a

financial system than that for safety while the weight may

be less for testability. The weighted key attributes for a

safety critical system, would maybe be reliability,

performance, safety, fault tolerance, and availability. The

key weighted attributes for an ecommerce system would be

reliability, performance, availability, security, and

maintainability. If we understand each candidate

component to contribute a certain amount of value toward

each individual quality attribute then this approach may be

extended for use within a component-oriented context.

However, each quality attribute has its own unit of

measurement.

Comparison of different types of measurement of units is

not able to be compared in a significant manner. In order

for the weighting scheme described above to make

meaningful comparisons it is necessary for all quality

metrics must be able to be of equal scale. For example,

Maintainability complete of 4.5 and a Reliability score of

4.5 should both contribute equally toward the overall

software quality if their weights are equal. To measure all

quality attributes for the component to compare

appropriately, it is necessary to standardize all quality

attributes.

2.2. Components selection factors

Selection of a components are dependent on some factors

that are identified as performance, time, size of component,

fault tolerance, functionality of components , reliability,

compatibility of components and also considered the

availability of component subset.

a) Performance

At the time of selection of component performance is the

main challenge. Performance of a system cannot be

expressed in terms of the performance of its individual

component. Performance is the extent to which a system or

component accomplish its designed function within given

constrains such as accuracy, availability, efficiency,

response time, recovery time, resource usage, speed etc.

Performance cannot be calculated for the individual

component, rather than it is calculated for the completed

system after integration of the system. To increase the

performance of the system select those software

components containing high modules cohesion , less

module coupling, and less number of interfaces of

components.

b) Time

Development time and testing time saves when we use

COTS components and it also improves the quality of our

software.

c) Size of Component

Size of the components completely depends upon the

programming language and the code of components that

may be written in low level or high level languages. User

of the system always wants that the size of the system

should be less. So to achieve this it is important point to be

noticed that on high level language written components

must be used because the requires lesser size.

d) Fault Tolerance

Increase in Mean Time to Failure (MTTF) helps in

increasing the fault tolerance. Capability of a component or

module to run continuously without having any fault in any

type of software or hardware[3]. Fault-tolerance or

graceful degradation is the property that enables a system

to continue operating properly in the event of the failure of

some of its components.

e) Reliability

The capability of component or system to execute its

required functions under stated conditions for a specified

period of time [3]. Reliability metrics helps in the

measurement of the reliability like MTTF, MTTR, MTBF,

ROCOF and availability. Reliability and availability are

directly proportion to each other, where performance and

availability of the components are improved by reliability.

f) Reusability

The degree to which a software component can be used in

more than one computer program or software system [3] is

a main challenge to select a good quality software

component. CBSE is an approach which is used to enhance

the reusability with the development of CBS from the

preexisting software components and reusability save the

development time, effort and cost.

g) Components Functionality and Architecture

The most serious challenges of an already built component

is that functionality of the component and the architecture

of component cannot be reused anywhere without change.

According to the functionality and architecture of the

component needs to be matched of newly develop

component with the existing components that are already

built. Some of the changes may require in the existing

component functions and component architecture along

with some extra features to develop the new component.

h) Compatibility of Components

Checking compatibility between various versions of the

components is most important challenge in the successful

reusability of component. Already built component can be

easily replaced or can be added in a new part easily if it is

compatible with the previous version. For many years, the

compatibility requirements are essential for running

software system. Compatibility issues are relative simple

when changes introduced in the software systems are of

maintenance and improvement nature only. In a reasonable

extent it is necessary to test plans, including regression

tests, functional compatibility.

http://www.ijsea.com/

International Journal of Science and Engineering Applications

Volume 4 Issue 2, 2015, ISSN-2319-7560 (Online)

www.ijsea.com 42

i) Available Component Subset

Available component subset inside the repository is also a

main challenge during component selection according to

the component requirements for a specific application

domain. Available component subset may be small,

moderate and large which create a problem for selection of

algorithm for component retrieval.

2.3.Common Steps of Component

Selection Methods

Although there is no commonly accepted method for

component selection, all methods share some key steps that

can be iterative and overlapping [4]. These steps are

described as follows:

Figure 1. The general COTS selection process [5]

Step1: Define the evaluation criteria

Step2: Search for components.

Step3: Filter the search results based on a set of must have

requirements. This results in defining a short list of most

promising component candidates which are to be evaluated

in more detail.

Step4: Evaluate components.

Step5: Analyze the evaluation data and select the

components that have the best fitness with the criteria.

3. CONCLUSION

This work emphasizes on how to address the issue of

component selection based on component costs and quality

dimensions. Selection of optimal set of components not

only improves selection process of component but also has

a positive impact on the searching a good quality software

component for software development. Addressing

Components selection factors in an effective way will not

only improve the optimal component selection and

productivity but also put a positive impact on the quality

and maintainability of software products. Initially, the

software engineers analyze these challenges to select

optimal components from pre-existing reusable component

repository. In addition, a repository should address the

problem of available component subset that are of different

in term quantity, therefore according to the analysis this

paper discusses, which algorithm is best for optimal

component retrieval according to the availability of

component subset.

4. FUTURE SCOPE

The field of quality attribute determination of component-

based system is extensive and more research should be

performed in this field. Future work in the development of

component-based technologies could include determination

of more quality metrics for components that are easy to

calculate and more feasible to use. It is important to devise

a formal methodology for determining the relative weights

to be assigned to the different quality metrics based on

stakeholder input. In this regard, a potential approach may

be to use the analytic hierarchy process. In real-world

COTS selection problem, the decision maker may generate

suitable possibility distributions based on subjective

judgments and/or historical data. Thus, it would be

interesting to apply trapezoidal, bell-shaped, triangular or

other possibility distribution patterns for representing

imprecise numbers in solving COTS selection model using

the fuzzy logic approach.

REFERENCES

[1]. Gill, N. S. and Tomar, “Software Component

Technology: An Easy Way to Enhance Software

Reusability”, proceedings of 94th Indian Science

Congress Conference, Annamalai University,

Tamilnadu, INDIA, pp. 18-19 in 2007.

[2]. Voas, J. and Agresti, W. W. 2004. Software quality

from a behavioral perspective. IT Professional, 6,4

(July 2004), 46–50.

[3]. IEEE Standards Board (1990). “IEEE Standard

Glossary of Software Engineering Terminology”,

Computer Society of the IEEE.

[4]. G. Ruhe, "Intelligent Support for Selection of COTS

Products,", LNCS, Springer, vol. 2593 2003. pp. 34-

45

[5]. Mohamed, Abdallah Sami Abbas Shehata. Decision

support for selecting COTS software products based

on comprehensive mismatch handling. Diss.

University of Calgary, 2007.

[6]. Pande, Jeetendra, Christopher J. Garcia, and Durgesh

Pant. "Optimal component selection for component

based software development using pliability metric."

ACM SIGSOFT Software Engineering Notes 38.1

(2013): 1-6.

[7]. Kaur, A. and Mann, K.S. 2010. Component selection

for component based software engineering.

International Journal of Computer Applications, 2,

1(2010),109–1sssssss14.

http://www.ijsea.com/

