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Abstract: The main purpose of this research is to study the optimal process parameters for thermal friction drilling process on AISI 304 

stainless steel. The experiments were conducted based on Taguchi experimental design method, and the multiple performance 

characteristics correlated with the resultant axial force, radial force, hole diameter dimensional error, roundness error, and bushing length, 

were investigated by fuzzy logic technique. The significant process parameters that most intensively affected the multiple performance 

characteristics and the optimal combination levels of process parameters were determined through the analysis of variance and the response 

graph. A test rig was manufactured at Shoman Company ‒ Egypt to perform the experimental work, and the tools were offered by Flowdrill 

Company ‒ Germany. Experimental results confirm that this approach is simple, effective and efficient for simultaneous optimization of 

multiple quality characteristics in thermal friction drilling process, as the bushing length produced is more than five times the workpiece 

thickness. 
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1. INTRODUCTION 
Taguchi method is one of the simplest and effective solution for 

parameter design and experimental planning [1, 2]. It analyzes the 

influence of parameter variation to performance characteristics. 

Thereby, an optimal result can be obtained so that the sensitivity 

of performance characteristics in respect to parameter variation. 

Several research works have successfully applied this method to 

investigate the performance characteristics of processes. 

However, Taguchi method has shown some drawbacks in dealing 

with the problems of multiple performance characteristics [3, 4].  

The theory of fuzzy logics, initiated by Zadeh in 1965 [5], has 

proven to be useful for dealing with uncertain and vague 

information. Since the definition of performance characteristics 

used for this research such as lower-the-better, higher-the-better, 

and nominal-the-better contains a certain degree of uncertainty 

and vagueness. Therefore, in the present work fuzzy logics can be 

a proper basis to perform the optimization procedure with 

complicated multiple performance characteristics.  

Thermal friction drilling is a nontraditional drilling method that 

utilizes the heat generated from the friction interface between a 

rotating conical tool and the workpiece, and the heat will soften 

the workpiece and facilitate the tool to penetrate into the 

workpiece plate. Since it is no-chip process, the surface of the 

drilled hole would not be damaged by the burr extrusion during 

the drilling process. Therefore, tool service life could be 

increased, and the processing elapsed time and drilling cost would 

be intensively reduced. Another important feature of thermal 

friction drilling is that it could form a bushing that can provide a 

longer contact area, which can bear a shaft firmly as well as taped 

to create an internal screw without welding a nut. This is a unique 

feature which cannot be achieved by common drilling processes 

[6]. 

Following recent technological developments, stainless steel 

materials with anti-oxidizing, anticorrosive, and shiny surface 

features and outstanding characteristics like high toughness, high 

work-hardening coefficient, and low temperature conductivity 

have been applied in electronic, biochemical, and medical 

instrumentation equipment. Although these outstanding features 

reveal the distinguished advantages to extend its applications in  

 
 

modern industries, stainless steel is hard to process and results in 

a serious tool wear and a rough surface of a part in machining 

process. The novel thermal friction drilling process needs a 

further and comprehensive study to understand the effects of 

drilling performance on stainless steels [7]. 

Referred to thermal friction drilling, there are recently few related 

research works. In this respect, Miller et al. [8] applied friction 

drilling to characterize the microstructures and indentation 

hardness changes in the friction drilling of carbon steel, alloy 

steel, aluminum, and titanium. Miller et al. [9] suggested that pre-

heating the brittle material (cast metal) workpiece and using high 

speed drilling condition could generate a cylindrical shaped 

bushing without significant radial fracture. Lee et al. [10] had 

successfully applied friction drilling for machining cast superalloy 

IN-713LC to assess the roundness, the surface roughness, and the 

hardness of machined-hole-wall. Lee et al. [11] utilized tungsten 

carbide drills to investigate the benefits of coating on machining 

AISI 304 stainless steel, and the experimental results showed that 

the coated drills revealed less tool wear than uncoated ones. Chow 

et al. [12] conducted the experiments to explore the optimal tool 

friction angle and friction contact area ratio on AISI304 stainless 

steel correlated with surface roughness and bushing length. From 

those works, the optimal machining parameters combination for 

friction drilling process neither explored nor discussed the 

important issues such as the geometric shape of the drills and 

cutting parameters that will have effects on the resultant axial 

force, radial force, hole diameter dimensional error, roundness 

error, or bushing length.  

The main purpose of this paper is to present the optimization of 

the thermal friction drilling process parameters; namely, tool 

cylindrical region diameter (d), friction angle (β), friction contact 

area ratio (FCAR), workpiece thickness (t), feed rate (FR), and 

rotational speed (RS), on austenite stainless steel (AISI 304). 

Thus, the axial force (AF), radial force (RF), hole diameter 

dimensional error (DE), roundness error (RE), and bushing length 

(BL) together were measured, and the optimal combination levels 

of process parameters were also explored and proved by a 

confirmation test. Thus, the performance of thermal friction 
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drilling process on difficult-to-machine materials such as stainless 

steel would be ascertained to fit requirements of modern industrial 

applications. 

2.  EXPERIMENTAL APPARATUS AND 

DESIGN 
Figure 1 shows the test rig that is designed to carry out the 

experimental work. The test rig is manufactured at Shoman 

Company ‒ Egypt. It has two induction motors, one for 

performing high rotational speed up to 4500 rpm, and the other to 

get feed rate up to 200 mm/min. The tool is held by standard 

collets. Total of 18 thermal friction tools are used to perform all 

experiments. The tools are offered by Flowdrill Company ‒ 

Germany. They are made of uncoated tungsten carbide. 

 
 Figure. 1 The test rig 

Three values for each of the six parameters are selected, as shown 

in Table 1. In this respect, no research work had combined six 

parameters together. In this study, an orthogonal array L18 [13] is 

applied to design the experiments. Each process parameter is 

assigned to a column and 18 process parameter combinations are 

required, as shown in Table 2. 

Table 1. Process parameters and their levels 

Process 

Parameter 

Unit Level 1 Level 2 Level 3 

d mm 5.4 7.3 9.2 

β degree 30° 45° 60° 

FCAR — 50 % 75 % 100 % 

t mm 1 2 3 

RS rpm 1500 2500 3500 

FR mm/min 60 100 140 

The AF and RF were measured by a multi-component 

dynamometer (type 9257B). The DE and RE were measured by a 

coordination measuring machine (Status CMM). The BL was 

measured by a micro Vernier. 

3. ANALYSIS AND DISCUSSION 
Figure 2 illustrates the optimal process parameters determination 

steps according to Taguchi method and fuzzy logic technique.  

3.1. Taguchi Method 
To obtain the optimal machining performance, the minimum 

values of AF, RF, DE, and RE is desired. Hence, the smaller-the-

better signal-to-noise (S/N) ratio is adopted, which is expressed in 

Equation 1. Also, to get the maximum BL, the larger-the-better 

S/N ratio is used and can be expressed in Equation 2 [1]. 

Table 2. Experimental layout of L18 orthogonal array 

Exp. 

No. 

d 

(mm) 

β 

(degree) 

FCAR 

(%) 

t 

(mm) 

FR 

(mm/min) 

RS 

(rpm) 

1 5.4 30 50 1 60 2500 

2 5.4 30 75 3 140 1500 

3 5.4 45 50 2 100 1500 

4 5.4 45 100 1 140 3500 

5 5.4 60 75 2 60 3500 

6 5.4 60 100 3 100 2500 

7 7.3 30 100 1 100 1500 

8 7.3 30 100 2 60 3500 

9 7.3 45 50 3 140 3500 

10 7.3 45 75 2 100 2500 

11 7.3 60 50 3 60 1500 

12 7.3 60 75 1 140 2500 

13 9.2 30 50 2 140 2500 

14 9.2 30 75 3 100 3500 

15 9.2 45 75 1 60 1500 

16 9.2 45 100 3 60 2500 

17 9.2 60 50 1 100 3500 

18 9.2 60 100 2 140 1500 

 Figure 2. The optimal process parameters determination 

steps flow chart 
 

 

 

where yi is the measured quality value, and n is the number of 

trails for each experiment (n = 3 trails). Since the S/N ratios for 

the AF, RF, DE, RE, or BL are in different ranges, the S/N ratios 

are normalized to the range of 0–1. The normalized equation is 

expressed as [3]: 
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where Nηp is the normalized S/N ratio, (S/N)p is the value of S/N 

for each experiment number p, (S/N)max and (S/N)min are the 

maximum and minimum values of S/N for all experiments. Table 

3 shows the resultant S/N and Nηp for the AF, RF, and DE. 

Noteworthy, the experiments 2, 11, and 18 didn’t complete as 

shown in Figure 3, because these experiments performed under 

the lowest rotational speed with higher workpiece thickness, so 

the heat produced due to friction is insufficient to completely 

perform the experiment. 

Table 3. S/N ratios and Nηp 

Exp. 

No. 

AF RF DE RE BL 

S/N Nηp S/N Nηp S/N Nηp S/N Nηp S/N Nηp 

1 -50.07 1.00 -37.44 1.00 37.84 1.00 34.92 0.43 14.12 0.22 

2 ‒ ‒ ‒ ‒ ‒ ‒ ‒ ‒ ‒ ‒ 

3 -59.72 0.37 -43.74 0.47 24.35 0.39 33.32 0.37 16.08 0.47 

4 -51.68 0.89 -40.64 0.73 29.08 0.60 50.06 1.00 12.45 0.00 

5 -56.66 0.57 -43.85 0.46 22.09 0.28 30.06 0.24 16.17 0.48 

6 -64.65 0.05 -48.91 0.03 19.99 0.19 34.30 0.40 17.10 0.6 

7 -51.13 0.93 -39.93 0.79 26.58 0.49 38.76 0.57 14.13 0.22 

8 -55.62 0.64 -41.12 0.69 20.13 0.19 24.92 0.05 17.25 0.62 

9 -61.69 0.24 -44.74 0.38 23.42 0.34 29.88 0.24 18.79 0.81 

10 -58.09 0.48 -42.74 0.55 27.81 0.54 29.14 0.21 17.16 0.60 

11 ‒ ‒ ‒ ‒ ‒ ‒ ‒ ‒ ‒ ‒ 

12 -51.94 0.88 -40.62 0.73 25.53 0.44 43.8 0.76 13.69 0.16 

13 -57.62 0.51 -45.42 0.33 23.38 0.34 25.55 0.07 18.57 0.78 

14 -59.43 0.39 -49.27 0.00 15.88 0.00 23.66 0.00 20.25 1.00 

15 -51.44 0.91 -40.57 0.73 21.18 0.24 32.08 0.32 15.00 0.33 

16 -65.36 0.00 -46.6 0.23 16.59 0.03 25.95 0.09 20.15 0.99 

17 -50.22 0.99 -42.67 0.56 23.98 0.37 30.51 0.26 15.95 0.45 

18 ‒ ‒ ‒ ‒ ‒ ‒ ‒ ‒ ‒ ‒ 

 

 
Figure 3. Uncompleted experiments 

3.2. Fuzzy Logic Technique 
The fuzzy inference system has four parts, the fuzzifier, fuzzy rule 

base, fuzzy inference engine, and defuzzifier as shown in Figure 

4. The fuzzifier transforms crisp input into suitable semantic 

fuzzy information. The fuzzy rule base stores the rules and 

knowledge required for solving related problems, and describes 

the relationship between system input and output. The fuzzy 

inference engine is the core of the fuzzy system, and simulates 

thinking and decision-making models of humans via approximate 

reasoning or fuzzy inference, and finds solutions to existing 

problems. The defuzzifier transforms fuzzy information inferred 

by the fuzzy inference engine into crisp output. The defuzzifier 

uses the center of gravity to transform fuzzy information into 

crisp output.  

 
 Figure 4. Schematic of the fuzzy prediction system 

 

This study used MATLAB software to construct the inference 

model of the multiple performance characteristic index (MPCI), 

where Nηp of the AF, RF, DE, RE, and BL are taken as the input  
 

variables for the fuzzy logic system, and the MPCI is the output 

variable. Table 4 shows the MPCI results and the total mean of 

the MPCI (ηm) for all the 18 experiments.  

Table 4. Result for the MPCI 

Exp. No. MPCI 

1 0.76100 

2 ‒ 

3 0.48600 

4 0.63400 

5 0.49900 

6 0.24400 

7 0.66400 

8 0.43000 

9 0.46900 

10 0.50000 

11 ‒ 

12 0.61800 

13 0.50000 

14 0.35000 

15 0.60300 

16 0.32900 

17 0.62500 

18 ‒ 

ηm 0.42844 

Since the experimental design is orthogonal, it is then possible to 

separate out the effect of each process parameter at different 

levels. For example, the mean of MPCI for the cylindrical region 
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diameter parameter at levels 1, 2 and 3 can be calculated by 

averaging the MPCI for experiments 1-6, 7-12, and 13-18, 

respectively (Table 2), so the mean of MPCI for each level of the 

other process parameters can be computed in a similar manner. 

Then the results are summarized in a table called the response 

table (Table 5). Figure 5 shows the response graph for the MPCI 

mean. Basically, the larger the MPCI mean, the better the 

performance characteristic. However, the relative importance 

amongst the process parameters for the performance characteristic 

still needs to be known so that the optimal combinations of the 

process parameter levels can be determined more accurately. 

Table 5. MPCI mean response table 

Process 

Parameter 

MPCI Mean Max- 

Min 

Rank 

Level 1 Level 2 Level 3 

d 0.4373 0.4468 0.4012 0.0457 6 

β 0.4508 0.5035 0.331 0.1725 3 

FCAR 0.4735 0.4283 0.3835 0.09 5 

t 0.6508 0.4025 0.232 0.4188 1 

FR 0.437 0.4782 0.3702 0.108 4 

RS 0.2922 0.492 0.5012 0.209 2 

3.3. Analysis of Variance 
The statistical analysis of variance (ANOVA) is to investigate 

which process parameters significantly affect the performance 

characteristics. This is accomplished by separating the total 

variability of the multi performance characteristics indexes, which 

is measured by the sum of the squared deviations from the total 

mean of the MPCI, into contributions by each of the process 

parameter and the error. The total sum of the squared deviations 

(SST) can be calculated as [13]: 
 

 

 
where p is the number of experiments in the orthogonal array. 

SST is decomposed into two sources: the sum of the squared 

deviations due to each process parameter and the sum of the 

squared error. The percentage contribution by each of the process 

parameter in the total sum of the squared deviations can be used 

to evaluate the importance of the process parameter change on the 

performance characteristics. The results of ANOVA (Table 6) 

indicate that t and RS are the most significant process parameters 

in affecting the AF, RF, DE, RE, and BL together. 

Based on the above discussion, the optimal process parameters 

combination is: d = 7.3 mm, β = 45o, FCAR = 50%, t = 1 mm, 

feed rate FR = 100 mm/min, and rotational speed RS = 3500 rpm, 

for the proposed experimental levels. 

 
Figure 5. MPCI mean response graph 

 

Table 6. Result of ANOVA 

Process 

Parameters 

Sum of 

Square 

Contribution 

(%) 

d 0.00697 0.7460 

β 0.09378 10.037 

FCAR 0.0243 2.6009 

t 0.53232 56.975 

FR 0.03565 3.8157 

RS 0.1674 17.917 

Error 0.07389 7.9086 

Total 0.9343 100 
 

 

 

 

3.4. Confirmation Test 
Once the optimal level of the process parameters has been 

selected, the final step is to predict and verify the improvement of 

the performance characteristic using the optimal level of the 

process parameters. The predicted S/N ratio ή using the optimal 

level of the process parameters can be calculated as: 
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where ηj is the mean of the MPCI at the optimal level, and q is the 

number of the process parameters that significantly affect the 

multiple performance characteristics. Table 7 displays the results 

of the confirmation experiment. This table indicates that the 

experimental observed values obtained from the optimal 

combination levels of process parameters were improved 

compared to the minimum trails mean results for each experiment 

of the performed 18 experiments at t = 1 mm. Experiment number 

17 achieved BL more than that of the optimal experiment, as it 

performed at d = 9.2 mm, so more material is pushed leading to 

more BL, but still the BL produced in the optimal experiment 

more than five times the workpiece thickness. Also the DE 

produced in experiment number 1 is less than that of the optimal 

experiment, as it performed at smaller tool diameter d = 5.4 mm 

so less error is produced, but still the increase in the DE at the 

optimal experiment is very small.  

Table 7. Results of the confirmation experiment 

 Best Suitable Process Parameter Confirmation 

Predicted Experimental 

Setting levels d2 – β2 – FCAR1 – t1 – FR2 – RS3 

MPCI 0.72356 0.783 

 Performed Experiments Results 

 Minimum of 1 mm 

experiments 

Optimal experiment 

AF 318.667 N 292 N 

RF 74 N 50 N 

DE 0.0092 mm 0.013 mm 

RE 0.0031 mm 0.002 mm 

BL 6.2733 mm 5.78 mm 
 

4. CONCLUSIONS 
This paper has presented the use of Taguchi method and fuzzy 

logic technique for the optimization of the thermal friction drilling 

process of AISI 304 stainless steel. Experimental data and 

statistical results have supported the following conclusions:  

 The workpiece thickness and the rotational speed are the 

most significant process parameters, which obviously 

affected the AF, RF, DE, RE, and BL together in thermal 

friction drilling for the proposed experimental levels. 

 The optimal process parameters combination is: d = 7.3 mm, 

β = 45o, FCAR = 50%, t = 1 mm, FR = 100 mm/min, and RS 

= 3500 rpm, for the proposed experimental levels. 

 The performance characteristics such as AF, RF, DE, RE, 

and BL are improved through this approach. The BL 

produced is more than five times the workpiece thickness.  

 This study can be applied on the friction drilling of various 

malleable metals including mild steel, stainless steel, copper, 

brass, and aluminum to generate precision holes. Also 

different machining conditions can be considered, so as to 

build a Computer Aided Process Planning expert system of 

thermal friction drilling process with the goal of automation. 
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