
International Journal of Science and Engineering Applications

Volume 4 Issue 3, 2015, ISSN-2319-7560 (Online)

www.ijsea.com 153

Implementation methodology of Biogeography Based

Optimization algorithm for dependent task scheduling

S.Selvi,

Associate Professor

Department of Electronics and

Communication Engineering,

Dr.Sivanthi Aditanar College of

Engineering, Tiruchendur -

628215,Tamilnadu, India.

Abstract: Biogeography Based Optimization (BBO) is a new evolutionary algorithm for global optimization that was introduced in

2008. BBO is an application of biogeography to evolutionary algorithms. Biogeography is the study of the distribution of biodiversity

over space and time. It aims to analyze where organisms live, and in what abundance. BBO has certain features in common with other

population-based optimization methods. Like GA and PSO, BBO can share information between solutions. This makes BBO

applicable to many of the same types of problems that GA and PSO are used for, including unimodal, multimodal and deceptive

functions. This paper explains the methodology of application of BBO algorithm for the constrained task scheduling problems.

Keywords: Biogeography Based Optimization, Constrained Task Scheduling, DAG, Makespan, Ranking,

1. INTRODUCTION
A task scheduling is the mapping of tasks to a selected

group of resources which may be distributed in multiple

administrative domains. A scheduling problem is specified

by a set of machines, a set of jobs/operations, optimality

criteria, environmental specifications, and by other

constraints[1]. Given an application modeled by the Directed

Acyclic Graph (DAG), the scheduling problem deals with

mapping each task of the application onto the available

heterogeneous systems in order to minimize makespan [2].

DAG includes the characteristics of an application program

such as the execution time of tasks, the data size to

communicate between tasks and task dependencies. The task

scheduling problem has been solved several years ago and is

known to be NP-complete [3,4]. In general, task scheduling

algorithm for heterogeneous systems is classified into two

classes: static and dynamic [5]. In static scheduling

algorithms, all information needed for scheduling must be

known in advance [6]. Static task scheduling takes place

during compile time before running the parallel application. In

contrast, scheduling decisions in dynamic scheduling

algorithms are made at run time.

2. PROBLEM DEFINITION
The task scheduling problem is the process of assigning a set

of v tasks in a DAG to a set of q computing nodes, which have

diverse characteristics, without violating the precedence

constraints. Before scheduling, the priority of execution of

tasks is calculated based on the upward ranking methodology

[4].The tasks are sorted in the decreasing order of the upward

rank value. The highest priority task (with high rank value),

has the highest scheduling priority. If more than one task has

equal upward rank value, the scheduling priority of the task is

decided randomly.

In this paper, the schedule length of the given DAG

application, namely makespan, is the largest finish time

among all tasks, which is the actual finish time of the exit

task, .The objective of the task scheduling problem is to

minimise the makespan (fitness), without violating the

precedence constraints of the tasks. The objective function is

defined in Equation (1) [4].

 ()

{
 ()

 * ()+
 (1)

where EFT is the Earliest Finish Time of the task on the

computing node , defined in the Equation (2) [4].

 () () (2)

where () is the Earliest Start Time of the task on

the computing node , defined in the Equation (3) ([4].

 ()

{
 { () ()+

 (3)

where () is the earliest time at which the

computing node is ready for the task execution and

 () is the time when all data needed by has

arrived at the computing node , defined in the Equation (4)

[4]. () (() ()
) (4)

where () is the set of predecessor tasks of the task .

3. BIOGEOGRAPHY BASED

OPTIMIZATION ALGORITHM
Biogeography describes how species migrate from one

island to another, how new species arise and how

species become extinct. An island is any habitat that is

geographically isolated from other habitats. Geographical

areas that are well suited as residences for biological

species are said to have a high Habitat Suitability Index

(HSI). The variables that characterize habitability are

http://www.ijsea.com/

International Journal of Science and Engineering Applications

Volume 4 Issue 3, 2015, ISSN-2319-7560 (Online)

www.ijsea.com 154

called Suitability Index Variables (SIVs). SIVs can be

considered as the independent variables of the habitat,

and HSI can be calculated using these variables. Habitats

with a high HSI tend to have large number of species,

while those with a low HSI have a small number of

species. Habitats with a high HSI have many species that

migrate to nearby habitats, simply by virtue of the large

number of species that they host. Migration of some species

from one habitat to other habitat is known as emigration

process. When some species enter into one habitat from any

other outside habitat, it is known as immigration process[

7]. The pseudo code for BBO algorithm is illustrated in

Algorithm 1.

Algorithm 1. Biogeography Based Optimization

Algorithm

Initialize the BBO parameters

Create a random set of habitats (population)

H1,H2,……..,Hn.

Compute HSI values;

While the halting criterion is not satisfied do

 Compute immigration rate λ and emigration rate μ

for each habitat based on HSI;

 For each habitat (solution)

 For each SIV (solution feature)

 Select habitat Hi with probability
i



 If Hi is selected then

 Select Hj with probability
j



 If Hj is selected then

 Hi(SIV) Hj(SIV)

 End if

 End if

 Select Hi(SIV) based on mutation

probability mi;

 If Hi(SIV) is selected then

 Replace Hi(SIV) with a randomly

generated SIV;

 End if

 Next for

 Recompute HSI values;

 Next for

 End while

4. IMPLEMENTATION OF BBO

ALGORITHM FOR SCHEDULING

DEPENDENT TASKS
The following subsections deal with the representation of

solution, and the generation of initial solution.

4.1 Solution representation

The solution is represented as an array of length equal to the

number of jobs [8]. The value corresponding to each position i

in the array represent the node to which task i was allocated.

The representation of the solution for the problem of

scheduling 13 tasks to 3 computing nodes is illustrated in

Figure 1. The first element of the array denotes the first task

(n1) in a batch which is allocated to the computing node 2; the

second element of the array denotes the second job (n2) which

is assigned to the computing node 1, and so on.

J1 J2 J3 J4 J5 … Ji …

G2 G5 G9 G1 G7 … Gj …

(a)

2 1 2 3 1 2 3 1 2 3 2 1 1

(b)

Grid Node 1 J2 J5 J8 J12 J13

Grid Node 2 J1 J3 J6 J9 J11

Grid Node 3 J4 J7 J10

(c)

Fig. 1. (a) Solution Representation (b) Solution for the

problem of 13 tasks and 3 computing nodes (c) Mapping of

tasks with computing nodes for the solution given in (b)

4.2 Initial solution generation
Numerous methods have been proposed to generate the initial

solution when applying meta heuristics to the scheduling

problem in the heterogeneous environment[9,10]. Random

solution may also be generated to initiate the process.

4.3 Computational experiments

To illustrate, a small scale DAG scheduling problem

involving 3 nodes and 10 tasks is considered (Fig 2) with the

computation cost matrix given in Table 1.The upward rank

and the order of the tasks for execution are given in Table 2

and 3 respectively. BBO algorithm was executed with the

following parameters. Habitat size-15, Habitat Modification

Probability-1,Immigration probability bounds per gene-[0-

1],Step size for numerical Integration-0.2,Maximum

immigration and emigration rate for each island-1,Mutation

probability-0.005, Number of iterations- 50. The makespan

value obtained for the example problem is found to be 73.

 Figure 2. An example DAG

Table 1

Computation cost matrix for random DAG

http://www.ijsea.com/

International Journal of Science and Engineering Applications

Volume 4 Issue 3, 2015, ISSN-2319-7560 (Online)

www.ijsea.com 155

Table 2

Upward rank of

the tasks

Table 3

Execution Order of tasks

Figure 3. A schedule produced by the BBO algorithm for the

example DAG

5. CONCLUSION

The methodology of implementation of BBO algorithm for

the constrained dependent task scheduling problem had been

discussed. The methodology adopted for this algorithm gives

rise to the development of scheduling algorithms using other

meta heuristic methods.

6. REFERENCES
[1] Selvi, S,Manimegalai, D.Research Journal of Applied

Sciences, Engineering and Technology 8(8): 964-975, 2014

[2] P. Chitra, R. Rajaram, P. Venkatesh, Application and

comparison of hybrid evolutionary multiobjective

optimization algorithms for solving task scheduling problem

on heterogeneous systems, Applied Soft Computing 11 (2011)

2725–2734

[3] E. Ilavarasan, P. Thambidurai, R. Mahilmannan,

Performance effective task scheduling algorithm for

heterogeneous computing system, in: Proc. 4th International

Symposium on Parallel and Distributed Computing, France,

2005, pp. 28–38.

[4] Topcuoglu, H., Hariri, S., Wu, M.Y.: Performance-

Effective and Low-Complexity Task Scheduling for

Heterogeneous Computing. IEEE Trans. Parallel and

Distributed Systems 13(3), 260–274 (2002)

[5] B.Hamidzadeh, L.Y.Kit, D.J.Lija, Dynamic task

scheduling using online optimization, IEEE Trans. Parallel

Distributed systems 11(11)(2000) 1151-1163.

[6] Mohammad I. Daouda, Nawwaf Kharma ,A hybrid

heuristic–genetic algorithm for task scheduling in

heterogeneous processor networks, J. Parallel Distrib.

Comput. 71 (2011) 1518–1531

[7] Simon, D., (2008). Biogeography-based optimization.

IEEE Transactions on Evolutionary Computation.12(6): 702–

713.

[8] Selvi, S,Manimegalai, D. Task Scheduling using Two

Phase Variable Neighborhood Search Algorithm on

heterogeneous computing and grid environments, Arabian

journal for science and engineering, March 2015, 40(3):817-

844.

[9]Abraham A, Liu H, Zhao M. Particle swarm scheduling for

work-flow applications in distributed computing

environments. Studies in Computational Intelligence 2008;

128: 327–342.

[10] Xhafa F, Duran B, Parallel memetic algorithms for

independent job scheduling in computational grids, in: Recent

Advances in Evolutionary Computation for Combinatorial

Optimization, vol. 153 of Studies in Computational

Intelligence, Springer, 2008, pp. 219–239.

Task

id

P1 P2 P3

1 14 16 9

2 13 19 18

3 11 13 19

4 13 8 17

5 12 13 10

6 13 16 9

7 7 15 11

8 5 11 14

9 18 12 20

10 21 7 16

Task id
Upward

Rank

1 108.00000

2 77.00000

3 80.00000

4 80.00000

5 69.00000

6 63.33333

7 42.66667

8 35.66667

9 44.33333

10 14.66667

Order of

Task id

1

4

3

2

5

6

9

7

8

10

http://www.ijsea.com/
http://www.springer.com/-/5/8ac0f096a2254233bfc2fb5e1256d58a
http://www.springer.com/-/5/8ac0f096a2254233bfc2fb5e1256d58a
http://www.springer.com/-/5/8ac0f096a2254233bfc2fb5e1256d58a

