Authors can submit their research articles to editor@ijsea.com  

Processing Charges

IJSEA is index with

 

 

 

 

 

 

 

IJSEA Archive (Volume 5, Issue 1)

International Journal of Science and Engineering Applications (IJSEA)  (Volume 5, Issue 1 January-February 2016)

Isolation and Screening of Hydrogen Producing Bacterial Strain from Sugarcane Bagasse Yard Soil

Jonesh Swaminathan,Meera Asokan,Dhanasekar Ramasamy





 PDF 



Keywords: Hydrogen producer, cellulose degrader, biochemical and molecular characterization, phylogenetic analysis

Abstract References BibText


        The aim of this study is to isolate a highly competent bacterium with potent cellulose degrading capability and a better hydrogen producer. Soil sample from sugarcane bagasse yard was isolated, serially diluted and plated on cellulose specific nutrient agar plate. Four colonies have been isolated in which a single colony has potent cellulose degrading ability and the highest hydrogen productivity of 275.13 mL H2 L-1. The newly isolated bacterium was morphologically and biochemically characterized. The molecular characterization of the bacterium was carried out using 16S rDNA sequencing and the organism was identified as Bacilllus subtilis AuChE413. Proteomic analysis such as MALDI-TOF was carried out to differentiate the isolated Bacillus subtilis from Bacillus thuringiensis and Bacillus amyloliquefaciens. Phylogenetic tree was constructed to analyze the evolutionary relationship among different genus and species with the newly isolated strain.


[1]. Ni, M., Leung, D. Y. C., Leung, M. K. H., and Sumathy, K. 2006. An overview of hydrogen production from biomass. Fuel Process Technol. 87(5):461-72.
[2]. Angelidaki, I., and Kongjan, P. 2007. Biorefinery for sustainable biofuel production from energy crops; conversion of lignocellulose to bioethanol, biohydrogen and biomethane. In: 11th IWA world congress on anaerobic digestion, Brisbane, Australia.
[3]. Zajic, J. E., Margaritis, A., and Brosseau, J. D. 1979. Microbial hydrogen production from replenishable resources. Int J Hydrogen Energy 4:385–402.
[4]. Bicelli, P. L. 1986. Hydrogen: a clean energy source. Int. J. Hydrogen Energy 11:555–562.
[5]. Bockris, J. O. M. 2002. The origin of ideas on a hydrogen economy and its solution to the decay of the environment. Int. J. Hydrogen Energy 27:731–740.
[6]. Piera, M. 2006. Safety issues of nuclear production of hydrogen. Energy Convers. Manag. 47(17):2732-9.
[7]. Nath. K., and Das, D. 2003. Hydrogen from biomass. Curr. Sci. 85(3): 265-71.
[8]. Nandi, R., and Sengupta, S. 1998. Microbial production of hydrogen: an overview. Crit. Rev. Microbiol. 24:61–84.
[9]. Momirlan, M., and Veziroglu, T. 1999. Recent directions of world hydrogen production. Renew. Sust. Energy Rev. 3:219–231.
[10]. Das, D., and Veziroglu, T. N. 2000. Hydrogen production by biological processes: a survey of literature. Int. J. Hydrogen Energy 26:13–28.
[11]. Lopes Pinto, F. A., Troshina, O., and Lindblad, P. 2002. A brief look at three decades of research on cyanobacterial hydrogen evolution. Int. J. Hydrogen Energy 27:1209–1215.
[12]. Hallenbeck, P. C., and Benemann, J. R. 2002. Biological hydrogen production; fundamentals and limiting processes. Int. J. Hydrogen Energy 27:1185–1193.
[13]. Cherry, R. S. 2003. A hydrogen utopia? Int. J. Hydrogen Energy 29:125–129.
[14]. Levin, D. B., Pitt, L., Love, M. 2003. Biohydrogen production: prospects and limitations to practical application. Int. J. Hydrogen Energy 29:173–185.
[15]. Das, D., Khanna, N., and Veziroglu, T. N. 2008. Recent developments in biological hydrogen production processes. Chem. Ind. Chem. Engg. 14:57–67.
[16]. Boddien, A., Mellmann, D., Gaertner, F., Jackstell, R., Junge, H., Dyson, P. J., Laurenczy, G., Ludwig, R., and Beller, M. 2011. Efficient Dehydrogenation of Formic Acid Using an Iron Catalyst. Science 333:1733–1736.
[17]. Wasserstoff Daten - Hydrogen Data. http://www.h2data.de/.
[18]. Benemann, J. R. 2000. Hydrogen production by microalgae. J. Appl. Phycol. 12:291–300.
[19]. Madamwar, D., Garg, N., and Shah, V. 2001. Cyanobacterial hydrogen production. World J. Microbiol. Biotechnol. 16:757–767.
[20]. Melis, A., and Melnicki, M. R. 2006. Integrated biological hydrogen production. Int. J. Hydrogen Energy 31:1563–1573.
[21]. Melis, A. 2002. Green alga hydrogen production: progress, challenges and prospects. Int. J. Hydrogen Energy 27:1217–1228.
[22]. Schuetz, K., Happe, T., Troshina, O., Lindblad, P., Leitao, E., Oliveira, P., and Tamagnini, P. 2004. Cyanobacterial H2 production - a comparative analysis. Planta 218:350–359.
[23]. Lee, D. J., Show, K. Y., and Su, A. 2011. Dark fermentation on biohydrogen production: Pure culture. Bioresource Technol. 102:8393–8402.
[24]. Hallenbeck, P. C. 2005. Fundamentals of the fermentative production of hydrogen. Water Sci. Technol. 52:21–29.
[25]. Thauer, R. K., Jungermann, K., and Decker, K. 1977. Energy conservation in chemotrophic anaerobic bacteria. Bacteriol. Rev. 41:100–180.
[26]. Adsul, M. G., Ghule, J. E., Singh, R., Shaikh, H., Bastawde, K. B., Gokhale, D. V., and Varma, A. J. 2004. Polysaccharides from bagasse: Applications in cellulose and xylanase production. Carbohydrate Polymers 57:67–72.
[27]. Zykwinska, A. W., Ralet, M. C. J., Garnier, C. D., and Thibault, J. F. J. 2005. Evidence for in vitro binding of pectin side chains to cellulose. Plant Physiology 139:397–407.
[28]. Zykwinska, A. W., Ralet, M. C. J., Garnier, C. D., and Thibault, J. F. J. 2005. Evidence for in vitro binding of pectin side chains to cellulose. Plant Physiology 139:397–407.
[29]. Atalla, R. H., and Van der Hart, D. L. 1984. Native cellulose-a composite of 2 distinct crystalline forms. Science 223:283–285.
[30]. Imai, T., and Sugiyama, J. 1998. Nanodomains of I-alpha and I-beta cellulose in algal microfibrils. Macromolecules 31:6275–6279.
[31]. Mansfield, S. D., and Meder, R. 2003. Cellulose hydrolysis: The role of monocomponent cellulases in crystalline cellulose degradation. Cellulose 10:159–169.
[32]. Singhania, R. R., Sukumaran, R. K., Patel, A. K., Larroche, C., and Pandey, A. 2010. Advancement and comparative profiles in the production technologies using solid-state and submerged fermentation for microbial cellulases. Enzyme Microbiol. Technol. 46:541-549.
[33]. Chandra, M., Kalra, A., Sangwan, N. S., Gaurav, S. S., and Darokar, M. P. 2009. Development of a mutant of Trichoderma citrinoviride for enhanced production of cellulases. Bioresour. Technol. 100:1659-1662.
[34]. Weisburg, W. G., Barns, S. M., Peltier, D. A., and Lane, D. J. 1991. 16S ribosomal DNA amplification for phylogenetic study. J. Bacteriol. 173(2):697-703.
[35]. Bergey, D. H. 1985. Bergey’s Manual of Systematic Bacteriology. Int. J. Syst. Bacteriol. First edition, 408.
[36]. Sambrook, J., Fritsch, E. F., and Maniatis, T. 1989. Molecular Cloning: A Laboratory Manual, Ed 2. Cold Spring Harbor Laboratory Press Cold Spring Harbor, NY.
[37]. Tompson, J. D., Gibson, T. J., Plewniak, F., Jeanmougin, F., and Higgins, D. G. 1997. The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res. 25:4876–4882.
[38]. Kumar, S., Tamura, K., and Nei, M. 2004. MEGA3: integrated software for Molecular Evolutionary Genetics Analysis and sequence alignment. Briefings Bioinf. 5:150–163.
[39]. MEGA program tool: http://www.megasoftware.net/
[40]. Prescott, L. M., Harley, J. P., and Klein, D. A. 2002. Microbiology, 5th edition, Chapter 7: Microbial growth, The McGraw- Hill publishers, ISBN: 0-07-282905-2.
[41]. Burdett, D. J., Kirkwood, T. B. L., and Whalley, J. B. 1986. Growth Kinetics of Individual Bacillus subtilis Cells and Correlation with Nucleoid Extension. Journal of Bacteriology 167(1):219-230.
[42]. Leitch, J., and Collier, P. J. 1996. A new chemically-defined medium for Bacillus subtilis (168) NCIMB 12900. Letters in applied microbiology 22(1):18-20.
[43]. Warriner, K., Waites, W. M. 1999. Enhanced sporulation in Bacillus subtilis grown on medium containing glucose: ribose. Letters in applied microbiology 29: 97-102.
[44]. Korsten, L., and Cook, N. 1996. Optimizing Culturing Conditions for Bacillus subtilis, South African Avocado Growers’ Association Yearbook 19: 54-58.


@article{Swaminathan05011003,
title = " Isolation and Screening of Hydrogen Producing Bacterial Strain from Sugarcane Bagasse Yard Soil ",
journal = "International Journal of Science and Engineering Applications (IJSEA)",
volume = "5",
number = "1",
pages = "012 - 019 ",
year = "2016",
author = " Jonesh Swaminathan,Meera Asokan,Dhanasekar Ramasamy ",
}