
International Journal of Science and Engineering Applications

Volume 6 Issue 01, 2017, ISSN-2319-7560 (Online)

www.ijsea.com 27

Performance Enhancement of Test Case Prioritization

Using Hybrid Approach

Rajanroop Walia

D.A.V. Institute of Engineering and Technology

Jalandhar, India

Harpreet K. Bajaj

D.A.V. Institute of Engineering and Technology

Jalandhar, India

Abstract: Regression Testing is an indispensable part of software testing process. It validates all the modifications that have been

introduced into the system throughout the development period. Although it is an expensive process in terms of time and cost, yet it

cannot be avoided. Therefore, various techniques have been introduced in the past for reducing the expenses involved in this process.

Test Case Prioritization is one such technique that schedules the execution order of test cases with an aim to improve the rate of fault

detection. In this paper, a hybrid approach has been presented which is a combination of two approaches, Adaptive approach and

Genetic algorithm. The approach works by firstly employing an adaptive approach to prioritize the test cases according to their

statement coverage. Further, the leftover test cases are prioritized using Genetic Algorithm. Finally, the results of the proposed

approach are compared with those of Genetic Algorithm based on two parameters: execution time and average percentage of statement

coverage (APSC) values. The results confirm that the proposed approach performs better in terms of both parameters.

Keywords: regression testing, test case prioritization, genetic algorithms, adaptive approach.

1. INTRODUCTION
Regression testing aims to verify that the software still

performs in the same manner as it did before it was changed

[1]. However, regression testing can be expensive and time-

consuming, especially when the test suite involved in testing

the software is large. This limitation triggered the efforts to

truncate these expenses and thus, led to the development of

three main techniques namely, test case prioritization, test

case selection and test suite minimization. Test case

prioritization attempts to reorder the test cases so as to

improve the rate of fault detection. Test case selection selects

a subset of the original test suite for execution. Finally, test

suite minimization shrinks the original test suite such that it

still maintains the coverage. Among these techniques, test

case prioritization is considered to be most efficient since it

takes into account all the test cases contained in the test suite

and identifies the best execution sequence that meets a certain

testing criteria. This is not so in case of other two techniques

as they do not cover all the test cases of a test suite and thus

increase the risk of software containing undetected errors [2].

Various prioritization techniques have been proposed in the

past including genetic algorithms, ant colony optimization,

particle swarm optimization, history-based approach and

adaptive approach. Among these techniques, Genetic

algorithms are widely used in solving test case prioritization

problems, by generating results using the techniques inspired

by natural selection. But they consume too much time in

doing so. This is so because they carry out test suite

prioritization and execution as separate phases. On the other

hand, an adaptive approach which is gaining popularity

nowadays, saves time by carrying out prioritization and

execution of test cases simultaneously. But it only schedules

the order of those test cases which have achieved some

amount of statement coverage on the previous program. This

means all of the test cases are not prioritized by an adaptive

approach, which further implies that full statement coverage

has not yet been achieved. Therefore, a hybrid approach has

been proposed in this paper, which is a combination of the

above two approaches. It overcomes the limitations of both

the approaches by achieving almost 100% statement coverage

in minimum time.

This paper is organized as follows. Section 2 describes related

work. Section 3 explains some existing test case prioritization

approaches. Section 4 describes the proposed work. Section 5

explains how the experiment is carried out and presents the

results. Section 6 concludes the paper.

2. RELATED WORK
An in-depth analysis of regression testing was presented in

order to remove the constraints associated with it. In [1] Y. Li

gave a detailed description of regression testing including its

definition and types. Apart from this, they also compared the

retest all and selective regression testing strategies and

concluded that there is tradeoff between the both. However, it

was explained in [2] that as the size of test suite increases,

retest all strategy becomes infeasible because of time and cost

constraints. Thus, it revealed an increasing trend towards the

different techniques to remove these constraints namely, test

case prioritization, test suite minimization and test case

selection. However, test case prioritization gained much

popularity which is evident from the vast amount of work that

has been done in this field. Y.C. Huang in [3] proposed a cost-

cognizant prioritization technique that ordered test cases

according to their history information by using genetic

algorithm. The technique prioritized test cases on the basis of

their test costs and fault severities, without analyzing the

source code. Its efficiency was evaluated using a UNIX utility

program and the results confirmed the usefulness of the

proposed technique. In [4], a technique for identifying the test

path that must be tested first in case of static testing was

proposed. Test paths or scenarios were derived from source

code. In order to find the path to be tested first, the approach

made use of Information Flow model and Genetic

Algorithm.Y. Huang in [5], proposed a method of cost-

cognizant test case prioritization which was based on the use

of historical records. The historical records were gathered

from the latest regression testing and then a genetic algorithm

was proposed to determine the most effective order.

Evaluation results proved that the proposed method improved

the fault detection effectiveness. In [6], the necessity of

Component-Based Software testing prioritization framework

was developed and proved, which uncovered more extreme

bugs at an early stage and enhanced software product

http://www.ijsea.com/

International Journal of Science and Engineering Applications

Volume 6 Issue 01, 2017, ISSN-2319-7560 (Online)

www.ijsea.com 28

deliverable quality utilizing Genetic Algorithm with java

decoding technique. For this, they proposed a set of

prioritization keys. An algorithm to prioritize test cases based

on total coverage using a modified genetic algorithm was

proposed in [7]. The performance of the proposed algorithm

was compared with five other approaches and the results

indicated that the proposed algorithm was better than other

approaches. However, the same could not be guaranteed for

bigger test suites. In [8], Y. Singh presented a regression test

prioritization technique based on Ant Colony Optimization to

reorder test suites in time constrained environment. On the

other hand, a modified version of Ant Colony Optimization

for test case prioritization was also presented in [9]. The

performance in both the cases was evaluated using the

Average Percentage of Faults detected (APFD) metric and the

results proved the effectiveness of these techniques. Tyagi in

[10] proposed a 3-step approach to perform regression testing

using Multi Objective Particle Swarm Optimization. The

proposed MOPSO outperformed other approaches like No

Ordering, Reverse Ordering and Random Ordering as it

achieved maximum fault coverage and maximum value of

APFD in minimum execution time. In [11], history-based

approach for prioritizing the test cases was extended to

modified lines. The modified lines were prioritized first and

then subsequently followed by the test cases. The results

showed that the proposed approach was able to detect faults

faster and with less effort as compared to previous approach.

Dan Hao in [12] presented an adaptive TCP approach, which

worked by determining the test case execution order

simultaneously during the execution of test cases on the

modified program. The results showed the proposed adaptive

approach to be significantly better than the total test case

prioritization approach and comparable to additional

statement-coverage based test case prioritization approach. In

[13], L. Mei proposed Preemptive Regression Testing (PRT),

a novel strategy that rescheduled test cases based on the

changes of the service under test detected in the course of

each actual regression test session. Three particular PRT

strategies, integrated with existing test case prioritization

techniques were proposed to generate new techniques. The

experimental result confirmed that one of the PRT-enriched

techniques was able to test workflow-based web service. A

novel family of input-based local-beam-search adaptive-

randomized techniques was proposed in [14]. The results

showed that these techniques achieved either higher or same

mean APFD values as the existing code-coverage-based

greedy or search-based prioritization techniques. A.

Schwartza in [15] empirically studied the existing strategies

and developed two additional Adaptive Test Prioritization

(ATP) strategies using fuzzy analytical hierarchy process

(AHP) and the weighted sum model (WSM). The empirical

studies provided in this research showed that utilizing these

strategies can improve the cost-effectiveness of regression

testing.

3. EXISTING TEST CASE

PRIORITIZATION APPROACHES

3.1 Genetic Algorithm
Genetic algorithm is an evolutionary method that generates

solutions to optimization problems using the techniques which

are based on the principles of natural selection. It works by

repeatedly evolving a population of individuals represented as

chromosomes, towards a better solution. During each step, it

chooses individuals from the current population based on their

fitness values, which are calculated in accordance to some

objective function in the problem being solved. Once the best

fit chromosomes are selected, they are then modified by

applying the following genetic operators in order to produce

the next generation:

a) Crossover: Crossover operator is used to vary the

chromosomes from one generation to next in such a

manner that the new chromosome formed after applying

crossover is better than original chromosomes. In other

words, it mimics the process of biological evolution by

taking more than one chromosomes as parents and then

producing a child chromosome from them. In case of

one-point crossover, a random crossover point is selected

in both the parent chromosomes and then their tails are

swapped to get new off-springs as shown below:

Fig 1: Crossover operation

b) Mutation: Mutation operator is applied to inject

diversity in the population of chromosomes by altering

one or more gene values in a chromosome. It can lead to

a solution which is entirely different from the previous

solution. In case of bit-flip mutation, one or more

random bits are selected and flipped as shown below:

Fig. 2: Mutation operation

3.2 Adaptive Approach
An adaptive approach for solving prioritization problems has

gained much popularity in the recent years. Unlike existing

test case prioritization approaches that prioritize the test cases

before running them on the modified program, an adaptive

approach works by prioritizing the test cases simultaneously

during their execution. It does so by calculating the initial

fault detection capability (denoted by Priority (t)) of each test

case according to its statement coverage on the previous

program and selects a test case ts with the largest Priority.

This Priority (t) is given by the following equation:

 (1)

http://www.ijsea.com/

International Journal of Science and Engineering Applications

Volume 6 Issue 01, 2017, ISSN-2319-7560 (Online)

www.ijsea.com 29

where Potential (s) denotes how likely a statement s contains

faults that have not been discovered by the existing test suite

where Potential (s) of any statement lies in the interval [0,1].

Initially, all statements have Potential 1. The adaptive

approach then runs the test case with the largest priority and

then modifies the Potential of each statement s according to

whether its output is passed or failed. In other words, it

modifies the Potential on the basis of the following equation:

 (2)

where Potential’(s) represents the probability of any statement

comprising new faults before running any test case t’. p and q

are two non-negative constants, whose value lies between 0

and1. This process is repeated until all the test cases are

prioritized and executed.

4. PROPOSED WORK
Genetic Algorithms provide excellent solutions to

prioritization problems but take significant amount of time to

do so. This is so because firstly they schedule the order of test

cases and then execute them. On the other hand, adaptive

approach prioritizes the test cases on the basis of their output

information. In other words, test case prioritization and

execution take place simultaneously in case of adaptive

approach. Since both processes occur concurrently, time

expenses are reduced to a great extent. But adaptive approach

prioritizes only those test cases that achieve some amount of

statement coverage. The test cases which are unable to cover

any statements are left non-prioritized which implies that

statement coverage has not been done perfectly. Therefore, in

order to prioritize all the test cases, a hybrid approach has

been designed. In this approach, the test cases that cover the

code statements are prioritized first using an adaptive

approach. The leftover test cases that do not cover any

statement are prioritized using Genetic Algorithm by applying

four operations: parent selection, crossover, mutation and

duplicate elimination. The benefit of this approach is that

besides saving time, it achieves almost 100% statement

coverage.

The step-by-step working of hybrid approach is shown below

in the flowchart given in Figure 3:

Fig. 3: Flowchart of the proposed technique

Finally, the efficiency of the proposed approach is evaluated

by comparing its results with those of Genetic Algorithm on

the basis of two parameters: APSC and Execution time.

5. EXPERIMENTAL EVALUATION
In order to prove the effectiveness of the proposed technique,

100 test cases along with their statement coverage have been

collected from Apache Open Source by interfacing it in

Eclipse and then testing it with Junit test toolkit. This dataset

has been used for implementation of the proposed approach.

For the purpose of comparison, Genetic Algorithm has also

been implemented on the same dataset. Post implementation,

the performance of both the approaches have been calculated

according to two parameters: Execution Time and Average

Percentage of Statement Coverage (APSC) values. APSC is

defined as the degree to which a prioritized test suite covers

the statements. It is calculated as shown below:

 (3)

where

TSi denotes the id of first test case that first covers the

statement i in the execution sequence.

M denotes the number of statements.

N denotes the number of test cases.

http://www.ijsea.com/

International Journal of Science and Engineering Applications

Volume 6 Issue 01, 2017, ISSN-2319-7560 (Online)

www.ijsea.com 30

The first set of each of these values for both the techniques

has been acquired by altering the number of test cases in the

dataset, as given by Table 1. This is done by creating four

different subsets of the original dataset, containing 25, 50, 75

and 100 test cases respectively. Figures 4 and 5 show the bar

graphs for APSC and Execution Time respectively. It is

clearly visible that the proposed hybrid approach maximizes

the statement coverage up to 5 percent and minimizes the

execution time to a great extent.

Table 1: Comparison based on the number of Test Cases

No. of Test

Cases

APSC values (in %) Execution Time

Values (in ms)

APSC

(GA)

APSC

(HY)

Time

(GA)

Time

(HY)

25 98.7 99.9 51394 14950

50 97.35 99.79 114518 61974

75 97.23 99.61 187018 115882

100 95.91 99.57 331653 292261

Fig. 4: Graph showing APSC values of Genetic Algorithm

and Hybrid Approach corresponding to the number of test

cases.

Fig. 5: Graph showing Execution Time values of Genetic

Algorithm and Hybrid Approach corresponding to the number

of test cases.

The next set of APSC and execution time values of both

approaches has been obtained by taking into account, the

number of generations. Figures 6 and 7 show the bar graphs

for APSC and Execution Time respectively. Figures 8 and 9

show the line graphs for the same. From both the graphs, it

can be observed that the proposed hybrid approach

outperforms the genetic algorithm by 5 percent in terms of

APSC values. As far as execution time is concerned, a

significant difference can be observed in that also.

 Table 2: Comparison based on the number of

Generations

No. of

Generations

APSC values (in

%)

Execution Time

values (in ms)

APSC

(GA)

APSC

(HY)

Time

(GA)

Time

(HY)

[2] 97.53 99.74 462020 212564

[3] 97.4 99.6 533850 327632

[4] 96.67 99.59 538903 338389

[5] 94.55 99.5 660924 491002

Fig. 6: Graph showing APSC values of Genetic Algorithm

and Hybrid approach corresponding to number of

Generations.

Fig. 7: Graph showing Execution Time values of Genetic

Algorithm and Hybrid approach corresponding to number of

Generations.

http://www.ijsea.com/

International Journal of Science and Engineering Applications

Volume 6 Issue 01, 2017, ISSN-2319-7560 (Online)

www.ijsea.com 31

Fig. 8: Graph showing APSC values of Genetic Algorithm

and Hybrid approach corresponding to number of

Generations.

Fig. 9: Graph showing Execution Time values of Genetic

Algorithm and Hybrid approach corresponding to number of

Generations.

6. CONCLUSION
In this paper, two test case prioritization approaches, adaptive

approach and genetic algorithms, have been combined to form

a hybrid approach. Unlike other prioritization approaches,

adaptive approach carries out prioritization and execution of

test cases simultaneously. Firstly, it selects a test case

according to its initial fault detection capability (priority) in

the previous program. Then it executes that test case and

records its output. Based on the output of first test case and

the execution history of next unselected test case, it prioritizes

that test case. This process continues till all the test cases

which cover code statements are prioritized and executed.

Further, the test cases that are unable to cover any statements

are taken by Genetic algorithm and prioritized using four

operations, parent selection, crossover, mutation and duplicate

elimination. The performance of the hybrid approach is

further compared with that of Genetic Algorithm. The

experimental results show that the proposed approach

outperformed the latter in terms of execution time and APSC

values.

7. ACKNOWLEDGMENTS
I express my sincere gratitude and thanks to Ms. Harpreet K.

Bajaj, Head of Department, Computer Science and

Engineering at DAVIET Jalandhar. Under her valuable

guidance and continuous support, I have been able to

complete this paper.

8. REFERENCES
[1] Li Y, Wahl N J. (1999). An Overview of Regression

Testing. ACM SIGSOFT Software Engineering Notes,

25(1), 69-73.

[2] Yoo S, Harman M. (2012). Regression testing

minimization, selection and prioritization: a survey.

Software Testing, Verification and Reliability, 22(2), 67-

120.

[3] Huang Y C, Huang C Y, Chang J R. (2010). Design and

Analysis of Cost-Cognizant Test Case Prioritization

Using Genetic Algorithm with Test History. In:

Proceedings of 34th IEEE Annual Computer Software

and Applications Conference, 413-418.

[4] Sabharwal S, Sibal R, Sharma C. (2011). A Genetic

Algorithm based Approach for Prioritization of Test

Case Scenarios in static testing. In: Proceedings of

International Conference on Computers and

Communication Technology (ICCCT), 304-309.

[5] Huang CY, Peng KL, Huang YC. (2012). A history-

based cost-cognizant test case prioritization technique in

regression testing. Journal of Systems and Software,

85(3), 626-637.

[6] Mahajan S, Joshi S D, Khanaa V. (2015). Component-

Based Software System Test Case Prioritization with

Genetic Algorithm Decoding Technique Using Java

Platform. In: Proceedings of IEEE International

Conference on Computing Communication Control and

Automation, (ICCUBEA), 847-851.

[7] Ramingwong L, Konsaard P. (2015). Total Coverage

Based Regression Test Case Prioritization using Genetic

Algorithm. In: Proceedings of 12th IEEE International

Conference on Electrical Engineering/Electronics,

Computer, Telecommunications and Information

Technology (ECTI-CON), 1-6.

[8] Singh Y, Kaur A, Suri B. (2010). Test Case

Prioritization using Ant Colony Optimization. ACM

SIGSOFT Software Engineering Notes, 35(4), 1-7.

[9] Solanki K, Singh Y, Dalal S. (2015). Test Case

Prioritization: An Approach Based on Modified Ant

Colony Optimization (m-ACO). In: Proceedings of IEEE

International Conference on Computer, Communication

and Control (ICCCC), 1-6.

[10] Tyagi M, Malhotra S. (2014). Test Case Prioritization

using Multi Objective Particle Swarm Optimizer. In:

Proceedings of IEEE International Conference on Signal

Propagation and Computer Technology (ICSPCT), 390-

395.

[11] Gupta A, Mishra N, Tripathi A, Vardhan M, Kushwaha

DS. (2015). An Improved History- Based Test

Prioritization Technique Using Code Coverage.

Advanced Computer and Communication Engineering

Technology, 315, 437-448.

http://www.ijsea.com/
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=7180538
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=7180538
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=7180538
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=7180538
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=7180538
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=7180538

International Journal of Science and Engineering Applications

Volume 6 Issue 01, 2017, ISSN-2319-7560 (Online)

www.ijsea.com 32

[12] Hao D, Zhao X, Zhang L. (2013). Adaptive Test-Case

Prioritization Guided by Output Inspection. In:

Proceedings of 37th IEEE Annual Computer Software

and Applications Conference (COMPSAC), 169-179.

[13] Mei L, Chan W K, Tse T H, Jiang B. (2015) Preemptive

Regression Testing of Workflow-based Web Services.

IEEE Trans. On Services Computing, 8 (5): 740-754.

[14] Jiang B, Chan W K. (2015). Input based adaptive

randomized test case prioritization: A local beam search

approach. Journal of Systems and Software, 105, 91-106.

[15] Schwartza A, Do H. (2016). Cost-effective regression

testing through Adaptive Test Prioritization strategies.

Journal of Systems and Software, 115, 61-81.

http://www.ijsea.com/

