
International Journal of Science and Engineering Applications

Volume 6 Issue 06, 2017, ISSN-2319-7560 (Online)

www.ijsea.com 154

Automation of Version Management and Change

Propagation

V. Koti Reddy

Department of CSE,

JNTUA College of Engineering,

Anantapur, India;

Prof. A. Ananda Rao

Department of CSE

JNTUA College of Engineering,

Anantapur, India;

ABSTRACT

Software systems generally involve a number of phases and tend to evolve over a period of time.

Several revisions of individual artifacts which make up the system take place during the

evolution process. The revisions and refinements are captured and maintained as different

versions using configuration/version management tools. A key issue in the version management

of object oriented software system is classification of attributes of an artifact into two categories

namely versioning and non-versioning which determines the major and minor functionalities,

respectively, of the artifact. In this paper we propose an algorithm for automating the process of

above classification. The results of classification are used to predict the type of change as version

change or equivalent change required to be made in the related artifacts at the time of evolution

due to change propagation. A semantic entity called Unified Representation of an Artifact (URA)

is used for representing the artifacts in the software system. The object oriented issues like

inheritance, aggregation and association, are also considered for propagating a change in the

software system. The role of accessibility of attributes such as private, public and protected in

version management is also considered.

Keywords: Change Propagation, Equivalent Change, Unified Representation of an Artifact,

Version Change, and Version Management.

1 Introduction

Software systems are developed

generally based on an iterative paradigm,

where each iteration provides a successive

refinement over previous iteration.

Refinements in software systems are

managed by maintaining different

configurations of various artifacts of the

systems. User requirements of software

systems keep changing. This change leads to

evolution of software system. As the

requirements of users changes, software has

to support the evolution easily. The changes

in an artifact normally require corresponding

changes in other dependent artifacts.

Therefore there is a need to capture the

evolution of related artifacts to keep the

system in consistent manner. Capturing the

evolution of software system is major issue

in software maintenance phase. The concept

http://www.ijsea.com/

International Journal of Science and Engineering Applications

Volume 6 Issue 06, 2017, ISSN-2319-7560 (Online)

www.ijsea.com 155

of version management is used for managing

the evolution of the software system.

A key issue in the version

management [1][2] of object oriented

software system is classification of attributes

of artifacts into two categories namely

versioning and non-versioning attributes.

Here an attribute is used to mean an instance

variable or method of a class. If a change of

an artifact leads to change of other related

artifacts, then it is versioning attribute,

otherwise it is a non-versioning attribute.

Versioning attributes determine major

functionality of software system and non-

versioning attributes determine minor

functionality. Version of an artifact is

represented in the form: “<major><minor>”.

If there is a major change in the

functionality of an artifact then it is said to

be version changed. This is caused when

there is a change in one or more of its

versioning attributes. On the other hand if

there is a minor change in the functionality

of the artifact then it is said to be equivalent

change. This is caused when there is a

change in one or more of its non versioning

attributes.

1.1 Introduction to URA

The Unified Representation of an

Artifacts (URA) [2] is a meta model entity

that represents an artifact of any type or

granularity. An artifact is nothing but any

logical entity of interest. Artifacts map to

physical entities in different ways like

classes, sets of classes, sub systems,

documents, etc. Fig. 1.1 shows the structure

of URA. An URA mainly comprises of three

components. The first one extracts the

artifact from the information system. The

second component contains the information

about the artifact. The third component

enforces authentication mechanisms. A set

of features are associated with the URA,

which allows it to be classified and queried.

These features can be either attributes or

functionalities of artifacts. The semantic

based version information set keeps track of

evolution of artifacts. In addition to these,

there are labeled links pointing to other

URAs, which reflect the relation between

the artifacts that the URAs present. A

software project is represented as directed

graph of URAs. The graph will evolve as

changes occur in the project. An artifact in

the project is represented as an URA, which

is a node in the URA graph. Directed edges

in the graph are labeled. The labels are the

relationships between the artifacts. Changes

occurring in a node are classified into two

types. Changes, which create a new version

and changes, which create new equivalent.

In the URA graph a node is said to change in

to new version, if the change affects the

semantics of the node. The semantics of a

node is said to have changed if there is a

change in the functionality or interface of

the node. If the change does not affect the

node semantics, the node is said to have

changed in to new equivalent. The attributes

are categorized into versioning attributes

and non versioning attributes. Here the

attribute is used to mean a feature of an

artifact. The labeled links indicate the

dependencies between the nodes of the

graph and need to propagate the changes. A

pivot node in the graph represents the whole

project. URA nodes are linked to pivot node

by dependency links. Changes are

http://www.ijsea.com/

International Journal of Science and Engineering Applications

Volume 6 Issue 06, 2017, ISSN-2319-7560 (Online)

www.ijsea.com 156

propagated to this node also. The version of

this node is nothing but the version of the

Software system.

2 Change Propagation Mechanism

In configuration management,

generally whenever a change occurs in an

artifact that has to be propagated to the all

related artifacts. This propagation preserves

the consistency of software system under

consideration.

2.1 Varieties of change propagation

 In object oriented technology

classes are considered as basic building

blocks of software system. These classes are

related using various types of relationships

among them such as inheritance,

aggregation and association. The classes are

represented as artifact in URA graph and

relationship among the classes are

represented as links. These links are labeled

as cohesive or non-cohesive in the URA

graph. In URA graph change is propagated

to the related artifacts based on two values

which are called as focus of change and

property of a link between the artifacts i.e.

cohesive or non-cohesive.

The propagations in URA graph are

categorized into two categories, one is

propagation of equivalent change and the

other is propagation of version change.

These two categories are tabulated in Tables

2.1 and 2.2 respectively. Whenever a change

is propagated in the URA graph. The

recommended changes are shown in the

following tables.

Table 2.1: Version Propagation table

 Version Focus

LOW HIGH

Cohesive link V-Change E-change

Non-Cohesive link E-change E-change/

N-change

Change propagation in case of version

change of an artifact is as follows.

 If the link is cohesive and version focus

is LOW then a version change (V-

Change) is recommended to related

URAs.

 If the link is cohesive and version focus

is HIGH then an equivalent change (E-

Change) is recommended to related

URAs.

 If the link is Non-cohesive and version

focus is LOW then an equivalent change

(E-Change) is recommended to related

URAs.

 If the link is Non-cohesive and version

focus is HIGH then an equivalent change

(E-Change) is recommended to related

URA

Artifact

Anchor

Classification

Features

Semantic–based

Version management

Attribute

Linked to

other URA

 Fig. 1.1 Structure of an URA

Artifact

Extraction

Mechanism

Meta Information

about Artifacts

Authentication

Mechanism

http://www.ijsea.com/

International Journal of Science and Engineering Applications

Volume 6 Issue 06, 2017, ISSN-2319-7560 (Online)

www.ijsea.com 157

URAs. If the version focus is too HIGH

and cohesion of link is too low then no

change is recommended.

 Table 2.2: version propagation table

Change propagation in case of

equivalent change of an artifact is as

follows.

 It the link is cohesive and focus is LOW,

then an equivalent change is

recommended to related URAs.

 If the link is cohesive and focus is

HIGH, then an equivalent change is

recommended to related URAs.

 If the link is non-cohesive and focus is

LOW then an equivalent change is

recommended to related URAs.

 If the link is non-cohesive and the focus

is high then no change (N-change) is

recommended to related URAs.

2.2 Reasons for Change Propagation

Change propagation can occur because of

two reasons:

 If an attribute of an artifact is changed,

then change is propagated to related

artifacts. Various cases of this reason

have been depicted in the table 2.3

 New dependency links will be created

when a new artifact is added to the

system. These link directions can be to

or from the new artifacts. The

recommended changes of an artifact

based on the direction as well as

cohesiveness of the link are shown in

table 2.3.

Table 2.3 New artifacts cause changes to

 existing artifacts.

 Direction of Link

To the

new
Artifact

From the

new
Artifact

Bi-

Directional

P
ro

p
er

ty
 o

f

th
e

li
n
k

Cohesive

E-change

V-Change

V-Change

Non-

Cohesive

N-Change

E-Change

E-Change

An artifact moves into a transient

state when ever there is a change in an

artifact. The artifact is in normal state before

the change. Changes in an artifact will lead

to chain of change propagatoin. It may also

form a cycle. This leads to infinite change

recomentdations. This situation is avoided

by marking the states of artifacts that is

already changed as transient state. In this

way the states of an artifact are used in

version management. The change

management of an artifact has various sets

of states. Only three states are considered for

the sake of simplicity. These are transient,

normal and replace states. There is no need

to propagate the changes when ever a

defective version of an artifact is replaced.

Change propagation can be avoided by

marking state of the replacing artifact as

replace state.

3. Change Management

A class is considered as a basic

entity in object oriented systems. Hence

each class is treated as an artifact and

Equivalent Focus

LOW HIGH

Cohesive link E-Change E-Change

Non-Cohesive link E-Change N-Change

http://www.ijsea.com/

International Journal of Science and Engineering Applications

Volume 6 Issue 06, 2017, ISSN-2319-7560 (Online)

www.ijsea.com 158

denoted as a URA. Links between the URAs

shows the relations between the classes such

as inheritance, aggregation and association.

It is easy to manage the versions through a

URA graph. There are two issues of change

management. These are version change and

version propagation. They are addressed

below. When ever a version change occur to

an artifact there is a need to propagate the

change to other dependent artifacts.

3.1 Version change:

 Version change of software systems

are of two types. One is change in version

and the other one is equivalent change. If the

changes in software are significant and

affect the software system functionality then

it is a version change. Otherwise if the

changes in software are due to minor

improvements and system functionality is

not affect much, then it is said to be an

equivalent change. Changes can also be

categorized as follows. One is internal

change of artifacts and other is change

propagated from related artifacts. Internal

change of an artifact can occur through

version or non-versioning attributes. The

type of change of an artifact is decided by

versioning attributes or non-versioning

attributes. Change can occur in two ways.

One is change in attributes and the other is

addition of new attributes to the artifact. If

the attribute is versioning attribute then the

type of the change occurring in the class is

called as version change (V-change). If the

attribute is non-versioning attribute then the

type of the change occurring in the class is

called as equivalent change (E-change).

3.2 Version Propagation

In every software system the changes

of the artifact will cause changes of other

related artifacts. Thus change propagation

mechanism is a major issue in version

management. Version change of an artifact

will occur if the related artifacts having

accessibility to the artifact attributes and

functionality. In a class there are three types

of access specifiers for an attribute namely

public, private and protected. The main

aspects of version propagation are focus and

cdegree (degree of cohesion). The focus is

with respect to change in URA. Each URA

in URA graph represents an artifact of the

software system. A change in URA has a

value called focus [1]. The focus of change

is a probability that the change does not

impose similar change in other related

URAs. Related URA means there exist some

dependency links among corresponding

artifa

cts

of

URA

s.

T

he

chan

ge pertaining to an attribute depending on

the accessibility is tabulated in table 3. 1

 Table 3.1: Focus evaluation table

Attribute

FOCUS

Private

HIGH

Public

LOW

Protected

If (link = Inheritance)
LOW

 Else

HIGH

http://www.ijsea.com/

International Journal of Science and Engineering Applications

Volume 6 Issue 06, 2017, ISSN-2319-7560 (Online)

www.ijsea.com 159

If an attribute of an artifact is private

then change of that attribute may not impose

changes in related artifacts. Thus the focus

of private attribute is HIGH. Similarly

public attribute focus is LOW. If the

attribute is protected, the change may affect

the related artifacts depending on link

between URAs. If the link is inheritance link

then focus is LOW, otherwise focus is

HIGH. Cdegree of a link is the indicator of

the amount of dependency that exists

between the two related artifacts [1]. The

value of the cdegree has a range [0,1]. The

link is said to be “strong”, if the cdegree

value is more than the threshold (say 0.5)

and this link is called cohesive link. The link

is said to be “weak” if the cdegree value is

less than threshold value and link is called

non-cohesive link.

3.3 Evaluation of URA graph

 The fig. 3.1(a) shows the two

categories of versioning and non-versioning

attributes of a node. Fig. 3.1(b) shows the

changes in the versioning attributes leads to

new versions. Fig. 3.1(c) shows the changes

in non-versioning attributes create new

equivalents. Changes in the cardinality of

the sets of versioning attributes create new

version. This is shown in fig. 3.1(d). Fig.

3.1(e) shows the changes in the cardinality

of set of the non-versioning attributes create

new equivalent. Fig. 3.1(f) illustrates the

changes in graph semantics due to addition

and deletion of links create new versions of

the nodes affected.

 Change is propagated to other

nodes depending on the type of the change,

focus of the change and the cdegree of the

links to other nodes. A summary of change

propagation is as follows-

 Incase of version change, if the cdegree

of the link connecting two nodes is

greater than or equal to threshold value,

then it is communicated as version

change or version change

recommendation from a node to its

neighboring node. This is illustrated in

fig. 3.1(g)

 Incase of version change, if the cdegree

of the link connecting two nodes is

lesser than threshold value, then it is

communicated as equivalent change or

equivalent change recommendation from

a node to its neighboring node. This is

illustrated in fig. 3.1(h)

 Incase of equivalent change, if the

cdegree of the link connecting two nodes

is greater than or equal to threshold

value then it is communicated as

equivalent change or equivalent change

recommendation from a node to its

neighboring node. This is illustrated in

fig. 3.1(i).

 Incase of equivalent change, if the

cdegree of the link connecting two nodes

is lesser than threshold value, then it is

considered as equivalent change or

equivalent change recommendation from

a node to its neighboring node. This is

illustrated in fig. 3.1(j).

 ar1

 ar2

 br1

 br2

a

A

B

http://www.ijsea.com/

International Journal of Science and Engineering Applications

Volume 6 Issue 06, 2017, ISSN-2319-7560 (Online)

www.ijsea.com 160

 (a)

(b)

 (c)

 (d)

 (f)

 (g)

 (h)

Ar1 is changed

Ar2 is changed

0.3

ar1

ar2

ar4

(i)

(e)

 Fig. 3.1 Evaluation of URA Graph

0.5

0.5

0.3

0.5

0.9 0.9

C

2.3

a
a

A

1.0

B

0.0
C

3.0

a

A

0.0

B

0.0

a a

A

0.0

A

1.0

B

0.0

B

0.0

a a

A

0.0

A

0.1

B

0.0

B

0.0

 ar1

 ar3

 ar2

 a a

A

0.0

A

1.0

B

0.0

B

0.0

a a

A

0.0

A

0.1

B

0.0

B

0.0

a a

A

0.0

A

1.0

B

0.0

B

1.0

D

1.1

a

A

0.2

B

0.0
D

1.2

a

A

0.1

B

0.0

a a

A

0.0

A

0.1

B

0.0

B

1.0

http://www.ijsea.com/

International Journal of Science and Engineering Applications

Volume 6 Issue 06, 2017, ISSN-2319-7560 (Online)

www.ijsea.com 161

(j)

3.4 Change Propagation (in case of

Inheritance, Aggregation and Association)

T

he

three

different links between the classes in OO

systems are inheritance, aggregation and

association. These are mapped to URA

labeled links i.e., cohesive and non-cohesive

links. These mappings as well as change

propagation are discussed in this subsection.

3.4.1 Inheritance: The unidirectional

dependency link between the base class and

derived class is called inheritance link. The

changes made to base class affect the

derived class. Change in a private attribute

leads to change with HIGH focus. Change in

a public or protected attribute leads to

change with LOW focus. The changing

attribute can be either versioning attribute or

non-versioning attribute. Correspondingly

the focus of the change will become version

focus or equivalent focus. The

representation of UML class diagram with

inheritance structure as a URA graph is

shown in fig 3.2.

 (a) Inheritance

 Fig. 3.2 Inheritance and URA Graph.

3.4.2 Aggregation: It is a unidirectional

dependency link. Fig.3.3 shows the

representation of UML class diagram with

aggregation structure and its corresponding

URA graph. It is a cohesive link because

change made to part classes affects the

whole class. Change in a private or protected

0.7

0.5

0.5

(a) URA Graph Representation of

Inheritance

 URA

 Artifact

 Equivalent

 Version

Cohesive Link

Non-Cohesive Link

Inheritance

Aggregation

Association

D

1.1

a

A

0.1

2

B

0.0
D

1.2

a

A

0.1

B

0.0

 A

 0.0

 B

 0.0

 X

Base Class

http://www.ijsea.com/

International Journal of Science and Engineering Applications

Volume 6 Issue 06, 2017, ISSN-2319-7560 (Online)

www.ijsea.com 162

attribute leads to a change with HIGH focus.

Change in a public attribute leads to a

change with low focus.

 Fig. 3.3 (a) Aggregation

3.4.3 Association: It is a bidirectional

dependency link in UML class diagram. It

can be cohesive or non-cohesive link. The

property of link can be found by using

cdegree value. Fig 3.4 shows UML class

diagram with association structure and its

corresponding URA graph.

 Fig. 3.4(a) Association

4. System Design

The following section explains URA

graph generator, attribute classifier and

change propagator.

4.1 URA Graph Generator

The Fig. 4.1 shows URA graph

generator which takes two versions of

software systems as input and generates

their corresponding URA graphs.

Fig. 3.3(b) URA Graph Representation of

 Aggregation

Fig. 3.4(b) URA Graph Association of

 Association

Fig. 4.1 URA Graph Generator.

URA graphs of two

versions

 A

 0.0

 B

 0.0

Class A

Features

Class B

Features

 A

 0.0

 B

 0.0

 Class A

 Features

 Class B

 Features

Artifact

Classifier

Attribute

Identifier

Classifier

Version 1

Version 1’s

URA

Graph

Version 2’ s

URA Graph Version 2

URA Graph

Generator

http://www.ijsea.com/

International Journal of Science and Engineering Applications

Volume 6 Issue 06, 2017, ISSN-2319-7560 (Online)

www.ijsea.com 163

4.2 Attribute Classifier

 The input to attribute classifier is

URA graphs of the two versions, which are

generated by the URA graph generator. It

gives the URA graph of the first version

with its attributes classified as versioning,

non-versioning or unknown. Fig. 3.2 shows

the attribute classifier

4.3 Change Propagator

 The input to change propagator are class

(artifact) in the source version and the

modified class. It generates the list of

affected artifacts by using the URA Graph

of the source version. Fig 4.3 shows change

propagator

5 Algorithms

 The following sections explains the

URA Graph generation, Attribute

classification

and Change

Propagation

algorithms

5.1 URA graph

generation

Input: Two successive versions of the

project.

Output: URA graphs of two versions.

Algorithm:

Repeat the steps 1 to 2 for each

class (artifacts) present in the

source.

Step 1: A table of all existing

classes is

 constructed in the

first parse of the

 source. The attributes and methods

 are extracted for each class. This

 forms the URA node of this class.

Step 2: The links between the classes are

 determined in the second parse of the

 source.

5.2 Attribute classification

Input: URA graphs of two versions,

generated by the URA graph generator.

Output: URA graph of first version, with

the attributes of the artifacts classified as

versioning, non-versioning and unknown.

Algorithm:

Step 1: Consider a particular class from the

 two versions of system.

Step 2: Determine whether the change is

 version change or an equivalent

 change.

URA Graph of first

version with attribute
classified

 Fig. 4.2 Attribute Classifier

Class in
source

version

Modified

Class

 U
R

A

G
rap

h

o
f

S
o

u
rce v

ersio
n

List of

affected

Artifacts

 Fig. 4.3 Change Propagator

Artifact

Comparato

r

Attribute

Identifier

Change

propagator

http://www.ijsea.com/

International Journal of Science and Engineering Applications

Volume 6 Issue 06, 2017, ISSN-2319-7560 (Online)

www.ijsea.com 164

Step 3: Determine the attributes, which

 caused the above change.

Step 4: Accordingly classify the attributes as

 versioning and non-versioning

 attributes.

5.3 Change Propagation:

Input: A class in the source version and its

modified form and URA graph of the source

version.

Output: List of effected classes (Version

changed classes and equivalent changed

classes).

Algorithm:

Step 1: compare the input class of the source

 version and its modified form.

Step 2: Identify the attributes, which were

 changed.

Step 3: Identify whether the change is a

 version change or an equivalent

 change based on classification status

 of the variables that were changed.

Step 4: Accordingly mark the class as

 version changed or equivalent

 changed class.

Step 5: Propagate the direct and indirect

 changes using the URA graph and

 mark the effected classes accordingly.

6 Results and conclusions

The tool was tested using

professional software by name “Restricted

Focus Viewer”. Restricted Focus Viewer

(RFV) 1.1, RFV 2.0 and RFV 2.1 are the

three different versions considered for the

testing purpose. There is a version change

between RFV 1.1 and RFV 2.1. There is an

equivalent change between RFV 2.0 and

RFV 2.1.

6.1 Results

 The results are illustrated by the

following screen shots of the output. The

fig. 6.1 shows the main screen which

contains the automated attribute classifier

and Change propagator.

 Fig. 6.1: Main Screen

 Fig. 6.2 shows the open dialog to

select source directory of the version to

construct the pivot graph.

 Fig. 6.2: Open Dialog

The attributes of RFV_FOCUS_Window

class are classified and the classification

results are shown in fig. 6.3

http://www.ijsea.com/

International Journal of Science and Engineering Applications

Volume 6 Issue 06, 2017, ISSN-2319-7560 (Online)

www.ijsea.com 165

 Fig. 6.3 Classification Results

Figure 5.4 Shows the results of propagation

function on RFV_Focus_Window classes.

 Fig. 6.4 Propagation Results

6.2Conclusions

This process of automation provides

a method for finding the versioning and non-

versioning attributes of an artifact. This

project has been used to collect and analyze

the data for a number of applications.

Improved measures for calculation of

cdegree (cohesion degree) may be adopted.

The effect of changes made in an artifact can

be determined to a higher degree of

precession. This may be achieved by slight

improvement in the strategy used for

keeping track of the links of an artifact.

7. References

[1] D. Janaki Ram, M. Sreekanth, A.

Ananda Rao, Version Management in

Unified Modeling Language”, Technical

Report IITM-CSE-DOS, IIT Madras,

India.

[2] D. Janaki Ram, S. Sreenath, R. Rama

Krishna,” A Generic Model for

Semantics- Based Versioning in Projects

”, IEEE Transactions on Systems, Man

and Cybernetics, vol. 30, No. 2, March

2000.

[3] S. Srinath, k. Venkatesh, D. Janaki

Ram,”An Integratd Solution Based

Approach to Software Development

using Unified Reuse Artifacts”, ACM

Software Engineering Notes. July 1997.

[4] Lucki, ”A Graph Model for Software

Evolution ”, IEEE Transactions on

Software Engineering, Vol. 60, No. 8,

Aug 1990.

[5] Chia-Song Ma, Carl K. Chand and Jane

Cleland-Huand, ”Measuring the

Intensity of Object Coupling in C++

Programs” IEEE 2001

[6] “Versioning in Apache”,

Http//www.apr.

apache.org/versioning.html.

[7] Beech D. and B. Mahbod, “Generalized

Version Control in an Object Oriented

Database”, ICDE, PP. 14-22, 1988.

[8] Zeller A., A Unified Version Model for

Configuration Management,

SIGSOFT’95: proceedings of 3rd ACM

SIGSOFT symposium on foundations of

software engineering, New yark, NY,

USA .

[9] Babich W. A., software configuration

management. Addotion –Wesley,

Reading, Massachusetts, 1986.

http://www.ijsea.com/

International Journal of Science and Engineering Applications

Volume 6 Issue 06, 2017, ISSN-2319-7560 (Online)

www.ijsea.com 166

[10] Conradi R. and B. Westfechtel, Version

Models for Software Configuration

Management, ACM Compt. Surv., Vol.

30 , no. 2, pp. 232-282, 1998.

[11] Beech D. and B. Mahbob, Generalized

Version Control in an Object Oriented

Database. , ICDE, pp. 14-22, 1988.

[12] Ahmed R. and S. B. Navathe, Version

Menagement of Composite Objects in

CAD Database, SIGMOD’91, :

proceedings of the 1991 ACM SIGMOD

international conference on management

of data, (New Yark, NY, USA).

[13] Janasen A. R., “ Restructed Focus

Viewer Website. ”http://www.

monash.edu.au/tonoj/RFV

[14] Clarkson, P. J., Simons, C. and Eckert,

C.M, Change Propagation in the Design

of Complex Products of the Engineering

Design Conference, Brunel University,

Uxbridge, UK. 2000.

[15] Munch, B.P. Conradi, R. “A layered

architecture for uniform version

management”, IEEE Transactions on

Software Engineering, Dec 2001.

[16] Sebstain Ulewicz et at.,“Software

changes in Factory Automation”, IEEE

Transactions on Software Engineering,

IEEE 2014.

[17] Chenguang Zhu, “Semantic

Slicing of Software Version Histories”

IEEE Transactions on Software

Engineering, February 2017

http://www.ijsea.com/

