
International Journal of Science and Engineering Applications 

Volume 7–Issue 04, 54-63, 2018, ISSN:-2319–7560 

www.ijsea.com  54 

EFFICIENT ALGORITHM TO TRANSFORM MINIMALIST SUBSET OF 

LTL FORMULA INTO FINITE STATE MODELS 

Bilal Kanso 

Lebanese University 

Department of Computer Science, Beirut 

Ali Kansou 

Lebanese University 

Department of Computer Science, Beirut 

 
 

Abstract: The translation of LTL formula into equivalent Büchi automata plays an important role in many algorithms for LTL model 

checking, which consist in obtaining a Büchi automaton that is equivalent to the software system specification and another one that is 

equivalent to the negation of the property. The intersection of the two Büchi automata is empty if the model satisfies the property. 

Generating the Büchi automaton corresponding to an LTL formula may, in the worst case, be exponential in the size of the formula, 

making the model checking effort exponential in the size of the original formula. There is no polynomial solution for checking 

emptiness of the intersection. That comes from the translation step of LTL formula into finite state models. This makes verification 

methods hard or even impossible to be implemented in practice. In this paper, we propose a subset of LTL formula which can be 

converted to Büchi automata whose the size is polynomial. 

 

 

Keywords: Linear Temporal Logic, Büchi  automata, Model checking, Compositional modelling 

 

 

1. INTRODUCTION  
Model checking becomes increasingly one of the most 

important tools to verify the correctness of computer-based 

control systems [1, 4, 12, 15]. It is a formal verification 

technique consisting in algorithmically verifying whether 

system properties such as the absence of deadlocks (described 

in some appropriate logical formalism such as temporal logic) 

are satisfied by the system (described as a suitable finite state 

model). The success of the model checking technique comes 

from the fact that it is completely automatic. Running a model 

checking on a given system model to verify a desired property 

leads automatically to fail state or successful state. In case the 

system model fails to satisfy the property, the model checking 

tool can offer a counterexample which can be used as an error 

trace provided for debugging purposes. 

Model checking approaches vary according to the logic used 

to specify system properties [3, 12, 18]. One of the most used 

logics is the Linear Temporal Logic (LTL) [11]. The 

underlying idea consists in transforming the negation of the 

LTL expression into a Büchi automaton, and then computing 

the product between the Büchi automaton representing the 

system and the one representing the negation of the LTL 

expression. If the product is not empty, that means the 

property expressed by the negation of the LTL expression is 

not satisfied by the system, otherwise the property is well-

satisfied. However, the decision problem for emptiness of the 

intersection is PSPACE-hard [2, 19]. That comes from the 

translation of LTL formula into Büchi automata. Indeed, the 

space complexity of this approach is linear in the size of 

Büchi automata and exponential in the length of the LTL 

formula: the Büchi automaton of a property (described as a 

LTL formula) is constructed in exponential space in the length 

of this property. This makes verification methods hard or even 

impossible to be implemented in practice and makes the 

scalability of the LTL model checking limited, which 

commonly referred to as the state explosion problem [8]. 

In this paper, we contribute to finding a subset of LTL 

properties that can be converted polynomially into Büchi 

automata. Finding such a subset of LTL logic will be viewed 

as one the most promising directions to bridge the gap 

between the increasing complexity of state models and actual 

model checking methods. We define a fragment that we call, 

Flat LTL Logic and we show how formula in this fragment 

can be transformed into Büchi automata whose the state space 

size is linear. Due to the structure of flat LTL formula, our 

algorithm can be compositional in the sense that the final 

finite state model associated to a given formula is obtained by 

developing a sub-automaton for each sub-formula of the 

principal formula. Hence, the basic idea for developing the 

final automaton for a flat LTL formula f is that f can be 

recursively decomposed into a set of sub-formula, arriving at 

sub-formula that can be completely handled. Composition is 

then used for assembling different sub-automata and then 

forming larger ones. Such a composition can be seen as an 

operation taking sub-automata for sub-formula as well as the 

flat LTL operator to provide a new more complex automaton.  

 In order to guide the construction of the final automaton for a 

flat LTL formula f from the sub-automata associated to the 

sub-formula f1, f2, … , fn  of f, we build the finite syntax tree, 

FST(f) of the formula f. The nodes of a finite syntax tree are 

labeled, either by flat LTL operators or by propositional 

operators. The leaves are labeled only by atomic propositions. 

http://www.ijsea.com/


International Journal of Science and Engineering Applications 

Volume 7–Issue 04, 54-63, 2018, ISSN:-2319–7560 

www.ijsea.com  55 

Thus, the target Büchi automaton is obtained by exploring the 

tree in pre-order. 

The rest of this article is organized as follows: Section 2 

briefly describes Büchi automata. In Section 3, we describe 

our fragment of LTL logic and the reasons to choose it. In 

Section 4, we present for each formula in our fragment LTL, 

its equivalent Büchi automata and show the proof of this 

equivalence. Section 5 presents the finite syntax tree 

associated to a formula defined in our fragment LTL while 

Section 6 shows the final algorithm that generates to any 

formula in our fragment an equivalent Büchi automaton. 

Section 7 presents the conclusion and some future works. 

 

2. Automata on infinite words 
 

2.1 Büchi automata 
Automata on infinite inputs were introduced by Büchi. A 

Büchi automaton is a non- deterministic finite-state automaton 

which takes infinite words as input [9, 10, 14]. A word is 

accepted if the automaton goes through some designated 

“good” states infinitely often while reading it. A Büchi 

automaton is a finite state automaton defined by a 5-tuple A 

= (S, s0, F, ×, ŭ ) where: 

¶ S is a finite set of states, 

¶ s0  ɴS is the initial state, 

¶ Σ is a non-empty set of atomic propositions, 

¶ F Ṗ S is a finite set of accepting states, 

¶ Δ : S × Σ → 2S is a transition function. 

 

In the following of this paper, the initial state of a Büchi  

automaton is pointed to by incoming arrows and the accepting 

states are marked by double circles. 

 A run of A on σ =σ (0)σ(1)σ(2) …   ɴ Σω  is an infinite 

sequence of states  s0s1s2 …  ɴSω  starting with the initial state 

s0 of A such that iᶅ, i ≥ 0,  si+1  ɴδ(si, σ(i)). A run s0s1s2 … is 

accepting by an automaton A if A goes through accepting 

states (i.e.  ɴF) infinitely often while reading it. The accepted 

language of a Büchi automaton A, denoted by ℒω(A), is then 

defined by: 

ℒω(A)  = { σ in Σω   | there is an accepting run for σ in A } 

2.2 Operations on Büchi automata 

The basic idea of the construction of the union of two Büchi 

automata A1  and A2 is to add a new initial (nonaccept) state 

snew to the set of states union of A1 and A2. The transitions of 

the union of A1 and A2 are transitions of both A1 and A2 with 

the following two transitions: 

a) A transition  from snew  to a state s labeled with a 

proposition p if and only if there is transition from 

the initial state  of  A1 to the state s labeled with the 

proposition p; 

 

b) A transition  from snew  to a state s labeled with a 

proposition p if and only if there is transition from 

the initial state  of  A2 to the state s labeled with the 

proposition p 

 

 

 

The construction of the intersection automaton works a little 

differently from the finite state automata case. One needs to 

check whether both sets of accepting states are visited 

infinitely often. Consider two runs r1 and r2 and a word σ 

where r1 goes through an accept state after σ(0), σ(2), Ễ  and 

r2 enters accept state after σ(0) σ(3) Ễ. Thus, there is no 

guarantee that r1 and r2 will enter accept states simultaneously. 

To overcome this problem, we need to identify the accept 

states of the intersection of the two automata. To do so, we 

create two copies of the intersected state space. In the first 

copy, we check for occurrence of the first acceptance set. In 

the second copy, we check for occurrence of the second 

acceptance set. When a run enters a final state in the first 

copy, we wait for that run also enters in an accept state in the 

second copy. When this is encountered, we switch back to the 

first copy and so on. We repeat jumping back and forth 

between the two copies whenever we find an accepting state. 

http://www.ijsea.com/


International Journal of Science and Engineering Applications 

Volume 7–Issue 04, 54-63, 2018, ISSN:-2319–7560 

www.ijsea.com  56 

 

 

 

3. Flat LTL Logic  
In this section, we introduce our subset of LTL logic that we 

call Flat LTL Logic. This fragment will be used to express 

temporal properties and then translate them into Büchi 

automata in linear size. The syntax of our Flat LTL logic adds 

to usual boolean propositional operators ¬  (negation) and  ᷈ 

(conjunction), some modal operators that describe how the 

behaviour changes with time.  

Á Next: Xφ requires that the formula φ be true in the 

next state; 

Á Until: φ1 U φ2 requires that the formula φ1 be true 

until the formula φ2 is true, which is required to 

happen; 

Á Eventually: ◊φ requires that the formula φ be true 

at some point in the future (starting from the 

present) and it is equivalent to ◊ φ  ≡ true U φ;  

Á Release: φ1 R φ2 requires that its second argument 

φ2 always be true, a requirement that is released as 

soon as its first argument φ1 becomes true. It is 

equivalent to φ1 R ű2  ≡  ¬  (¬ φ1 U ¬ φ2).  

 

 

 

 

 

 

 

 

 

3.1 Our fragment LTL Logic  
 

 

Example: the formula X(a U ¬(d R (¬ b U X c))) is not in ℒf 

since the sub-formula (¬b U X c) in ¬(d R (¬b U X c)) should 

be of the form Δ  U  θ that is not the case. But, the formula 

X(a U ¬ (d R (¬ b R X c))) is in ℒf. 

For the sake of brevity and the lack of space, we only discuss 

here why the fragment θ U φ is included within our LTL 

fragment to the detriment of both formula φ1U φ2 and φ1 U θ. 

It is well-known the size of an Büchi automaton A that 

recognizes the complement language ℒω( A ) of the language 

accepted ℒω(A) by an automaton A is exponential [13, 16]. 

Suppose we have separately built an automaton A1 for φ1 and 

an automaton A2 for φ2, and let us then try to compositionally 

obtain the resulting automaton A for φ. According to the until 

operator's semantics, it is required that φ holds at the current 

moment, if there is some future moment for which φ2 holds 

and φ1 holds at all moments until that future moment. That 

means constructing the automaton for φ = φ1 U φ2 firstly 

requires constructing of the intersection of A1 and A2 . As 

stated previously, computing A2 is exponential and 

therefore, constructing the Büchi automaton for φ1 U  φ2 is 

exponential. To avoid this kind of formula, we choose the 

formula θ U φ to be a part of our LTL subset where the 

construction of the Büchi automaton associated to it, does not 

need to complement any Büchi automaton. 

3.2 Flat Positive Normal Form (FPNF) 
 

As LTL formula, flat LTL formula can be transformed into 

the so-called Flat Positive Normal form (FPNF). This form is 

characterized by the fact that negations only occur adjacent to 

atomic propositions. All negation symbols of the given LTL 

formula have to be pushed inwards over the temporal 

operators.  

http://www.ijsea.com/


International Journal of Science and Engineering Applications 

Volume 7–Issue 04, 54-63, 2018, ISSN:-2319–7560 

www.ijsea.com  57 

 

Each formula φ  ɴℒf can be transformed into a formula φ′  ɴ

ℒFPNF. This is done by pushing negations inside, near to 

atomic propositions. To do this, we use the following 

transformation rules: 

¬ true →  false ¬ (φ U  θ) →  ¬φ R ¬θ 

¬ ¬ φ → φ  ¬ (φ1  ᷈ φ2) → ¬φ1  ᷉ ¬ φ2   

¬ Xφ → X ¬φ ¬ (θ R φ) → ¬θ U ¬φ 

This transformation is done in linear complexity as it is shown 

by the following theorem: 

 

Example: the formula X(a U ¬(d R (¬ b R Xc))) is in ℒf, but 

not in ℒFPNF. It can be transformed into X (a U  (¬d U (b U X 

¬c))) which is in ℒFPNF. 

3.3 Semantics 

The semantics of LTL formula is defined over infinite1 

sequences σ : ℕ → 2Σ. In other words, a model is an infinite 

sequence A0 A1 Ễ of subsets of Σ. The function σ, called 

interpretation function, describes how the truth of atomic 

propositions changes as time progresses. For every sequence 

σ, we write σ = (σ(0), Ễ, σ(n), Ễ). Thus, we have the 

following notations: 

Á σ(i) denotes the state at index i and  σ(i:j)  the part 

of  σ containing the sequence of states between i 

and j; 

Á σ(i…) =Ai A i+1 A i+2 Ễ denotes the suffix of a 

sequence σ = A0 A1 A2 Ễ  ɴ (2Σ)ω  starting2 in the ( 

i+1)st symbol Ai. 

We also write σ(i) Ṻ  φ  to denote that "φ is true at time 

instant i in the model σ". This notion is defined inductively, 

according to the structure of φ. 

The LTL formula are interpreted over infinite sequences of 

states σ: ℕ →  2Σ as follows: 

                                                           
1 2Σ  is the power set of the proposition set Σ. 
2 ω: is typically used to denote infinity. 

 

The semantics of a LTL formula can be also seen as the 

language Words(φ) that contains all infinite words over the 

set of atomic propositions (i.e. alphabet) 2Σ  that satisfy φ. 

Thus, the language Words(φ) for a LTL formula φ is formally 

defined by Words(φ) ={σ  ɴ (2Σ )ω   ᷄ σ  Ṻ  φ}. 

 

 

4. Construction Of Buchi Automata For 

Flat LTL Logic  
 

Our algorithm is a compositional algorithm. It constructs for 

each sub-formula in our fragment LTL logic, an equivalent 

Büchi automaton and in a compositional way regroup all 

resulting Büchi automata in order to get the target Büchi 

automaton of the target flat LTL formula. 

 In the sequel, we firstly explain for each sub-formula in our 

fragment LTL logic how its equivalent Büchi automaton can 

be obtained.   

4.1  Büchi automata for θ formula 
The Büchi automaton associated to a propositional formula θ 

is obtained by creating two states s0 and s1 and two transitions 

tr1 and tr2. s0  is the only initial state while s1 is the only final 

state. tr1 is the transition from s0 to s1 labeling with θ while the 

transition tr2 is a loop labeled with true over the state s2. 

http://www.ijsea.com/


International Journal of Science and Engineering Applications 

Volume 7–Issue 04, 54-63, 2018, ISSN:-2319–7560 

www.ijsea.com  58 

 

Figure 1 shows the Büchi automaton associated to the 

propositional formula θ = a  ᷈¬b.  

 

Figure 1: Example of automaton associated to θ  

 

 

4.2 Büchi automata for θ U φ formula 
The main idea behind the composition θ U φ is to add a new 

initial (nonaccept) state snew to the set of states of the 

automaton Aφ associated to φ with the following transitions:  

a) A loop over the added state snew labelled with the 

propositional formula θ  

b) Transitions snew to a state s labelled with a 

proposition p if and only if there a transition from 

the initial state s0  of Aφ to the state s labelled with 

the proposition p . 

All other transitions of Aφ, as well as the accept states, remain 

unchanged. The state snew is the single initial state of the 

resulting automaton, is not accept, and, clearly, has no 

incoming transitions except the loop one. 

 

Example: Figure 2 illustrates the composition definition of θ 

U φ. Figure 2a shows the Büchi automaton associated to (◊ b) 

R c. To construct the Büchi automaton associated to (a U ((◊ 

b) R c)), we add a new state snew that we consider as initial 

state. Then, for each transition outgoing from snew with label 

l and goes to state s, we add a transition from snew to the state 

s with a label l. Finally, we then add a loop labeled with the 

atomic proposition a over the added state.  

 

Figure 2: Example of composition: θ U φ  

 

 

4.3 Eventually operator ◊φ:  
The Büchi automaton construction of the formula ◊φ is a 

particular case of the Büchi automaton construction of the 

formula θ U φ where θ is the true formula. Thus, the main 

idea behind the composition ◊φ  is to add a new initial 

(nonaccept) state snew to the automaton states set Aφ associated 

to φ with the same transitions defined for θ U  φ where the 

loop over the added state snew is labeled with true  instead of 

the atomic formula θ. 

4.4 Büchi automata for Xφ formula 
The main idea behind the composition Xφ consists in adding 

two new states snew (neither initial state or accept state) and 

sinit (considered as the initial state) to the state set of the 

automaton Aφ  with the following transitions:  

a) Add for any transition in Aφ which starts from the 

initial state s0 to a state s, a transition from snew to s; 

b) Add a transition from the initial state sinit to the snew 

labeled with true. 

http://www.ijsea.com/


International Journal of Science and Engineering Applications 

Volume 7–Issue 04, 54-63, 2018, ISSN:-2319–7560 

www.ijsea.com  59 

All other transitions of Aφ remain unchanged and final states 

of Aφ become accept ones of Aψ  and initial state of Aψ  

become the state sinit. 

 
 

Example: Figure 3 illustrates the definition of Xφ. Figure 3a 

shows the Büchi automaton associated to the formula (a U (X 

b R c)). To construct the Büchi automaton equivalent to X(a U 

(Xb R c)), we add a new state snew and for each transition tr 

starting from the initial state s0
φ  to a state s, a transition from 

snew to s with the same label. Finally, we add the state sinit that 

we consider as initial and we connect sinit to snew with a 

transition labeled with the true label. 

 

 

Figure 3: Example of composition: Xφ  

 

 

 

4.5 Büchi automata for φ R θ formula 
The formula φ R θ informally means that θ is true until φ 

becomes true, or θ  is true forever. Thus, the construction of a 

Büchi automaton for φ R θ can be done by construction the 

Büchi  automaton associated to the fact that θ  is true until φ 

becomes true and the construction of a Büchi automaton 

associated to the fact that θ is true forever. Finally, make the 

union between the two constructed Büchi automata. 

Consequently, to build the Büchi automaton for φ R θ, we 

need to add two new states si and sf to the set of states of the 

automaton Aφ. si becomes the single initial state of the 

resulting automaton and sf is added to set of final states of the 

resulting automaton. The following transitions are added to 

the set of transitions of the resulting automaton:  

a) For any transition from the initial state s0  of Aφ to a 

state s labeled with a proposition p, add a transition 

from the state si to s labeled with the proposition p  ᷈

θ; 

b) A loop over the added state si labeled with the 

propositional formula θ; 

c) A loop over the added state sf labeled with the 

propositional formula θ;  

d) A transition from the state si to the state sf labeled 

with the proposition θ.  

All other transitions of Aφ, as well as the accept states, remain 

unchanged.  

 

Example: Figure 4 illustrates the composition definition of φ 

R θ. Figure 4a shows the Büchi automaton associated to the 

formula c U  ◊b. To construct the Büchi automaton associated 

to the flat LTL formula ((c U ◊b) R  a), we add a state si that 

we consider as the only initial state and a state sf  that we 

consider as a final state. We add a loop labelled with the 

atomic proposition $a$ over the two added states. Finally, for 

each transition outgoing from the initial state of the automaton 

φ with label l and goes to state s, we add a transition from the 

added state si to the state s with a label  (l  ᷈a). We also add a 

transition labelled with a from the state si to the state sf. 

http://www.ijsea.com/


International Journal of Science and Engineering Applications 

Volume 7–Issue 04, 54-63, 2018, ISSN:-2319–7560 

www.ijsea.com  60 

 

Figure 4: Example of composition: φ R ɗ 

 

 

 

 

5.  Finite syntax tree of flat LTL formula  
A flat LTL formula φ can be transformed into a tree 

containing all the information about the possible sub-formula 

of φ. It will form the cornerstone of the construction of Büchi 

automata from flat LTL formula. We assume that our flat LTL 

formula are fully parenthesized and we show how to build the 

finite syntax tree, named FST(φ), algorithmically for a flat 

LTL formula φ. This tree can be thought of as a data structure 

representing the sub-formula after a finite breaking up the 

formula into a list of tokens. We distinguish four kinds of 

tokens: left brackets "(", right brackets ")", FLTL operators 

and propositional variables. FLTL operators represent the 

internal nodes of our tree while the propositional variables 

represent the leaf nodes. Our algorithm to build FST(φ) is3 

inspired from [5] and uses a stack for operators and a stack for 

propositional variables, and consists of the following rules: 

a) If the current token is a left bracket "(" (i.e. we are 

reading a new sub-formula), push it on the operator 

stack; 

b) If the current token is a operator (i.e. in {' '᷈, ' '᷉, 'X', 

'U', ‘◊', 'R', '¬' }), push it on the operator stack; 

                                                           
3 Shunting-yard algorithm proposed by Djikstra and used to 

parse mathematical expressions specified in infix notation. 

c) If the current token is a propositional variable p, 

create a tree with single node whose the value is p 

and push the created tree on the variable stack; 

d) If the current token is a right bracket ")" (i.e. we 

have just finished reading a sub-formula), pop 

operators off the operator stack while this operator 

is not a left bracket. If the popped operator is an 

unary operator, pop one tree variable from variable 

stack and create new tree whose the root is the 

popped operator and it is only child is the popped 

tree. If the popped operator is a binary operator, pop 

two tree variables from variable stack and create 

new tree whose the root is the popped operator and 

its right child the first popped tree and its left child 

the second popped tree. If no left bracket is found 

during popping the variable stack, throw a 

mismatched bracket expression. Otherwise, pop 

found left bracket from the operator stack; 

e) At the end of reading expression tokens, pop all 

operators off the operator stack and for each popped 

operator: 

Á If the popped operator is an unary 

operator, pop one tree variable from 

variable stack and create new tree whose 

the root is the popped operator and it is 

only child is the popped tree. Then, push 

the created tree on the variable stack; 

Á If the popped operator is a binary operator, 

pop two tree variables from variable stack 

and create new tree whose the root is the 

popped operator and its right child the first 

popped tree and its left child the second 

popped tree. Then, push the created tree 

on the variable stack; 

Á If the popped operator is left or right 

bracket, throw an unbalanced left brackets. 

Hence, our mechanism of creating FST(φ) can be described by 

the algorithm illustrated in Figure 5. 

http://www.ijsea.com/


International Journal of Science and Engineering Applications 

Volume 7–Issue 04, 54-63, 2018, ISSN:-2319–7560 

www.ijsea.com  61 

 

Figure 5: Building syntax tree for a FLTL formula  

 

 

 

 

Example: Figure 6a shows the finite syntax tree FST(φ) 

generated for the FLTL expression: 

φ = ◊ a →  (b → ((¬f) U (d  ᷈(¬e)))) R c. 

 

 

 

Figure 6: Example of finite syntax tree 
 

This finite syntax tree will be used to construct the Büchi 

automaton equivalent to a flat LTL formula φ in flat positive 

normal form. Since our algorithm takes as input a flat positive 

LTL formula, any node in the finite syntax tree labeled with 

the negation operator ¬ is certainly located directly before a 

leaf. For technical reasons, we merge the nodes labeled with ¬ 

with the leaf which directly follows in the finite syntax tree. 

Figure 6b illustrates the finite syntax tree presented in Figure 

6a after pushing negations to leaves.  

6. FROM FINITE SYNTAX  TREE TO 

BUCHI AUTOMATA  
Our algorithm to build Büchi automata from flat LTL formula 

is compositional in the sense that the final Büchi automaton is 

obtained by developing a sub-automaton for each sub-formula 

http://www.ijsea.com/


International Journal of Science and Engineering Applications 

Volume 7–Issue 04, 54-63, 2018, ISSN:-2319–7560 

www.ijsea.com  62 

of the principal formula. Hence, the basic idea for developing 

the final automaton for a flat LTL formula φ is to explore 

FST(φ) in a pre-order traversal. That is to say, we visit the 

root node first, then recursively do a pre-order traversal of the 

left sub-tree, followed by a recursive pre-order traversal of the 

right sub-tree. The algorithm, illustrated in Figure 7, allows 

us to build a Büchi automaton from a finite syntax tree of a 

positive flat LTL formula T=FST(φ) and uses the following 

five functions: 

a) CreateBuchiProp(θ): takes as input a propositional 

formula θ and returns the automaton as defined in 

Definition 6 (Section 4);  

b) CreateBuchiUnary(op, BA): takes as input an 

unary LTL formula (i.e. op  ɴ {X, ◊}) and a Büchi 

automaton BA and returns a Büchi automaton 

defined according to definitions of  ◊  and  X given 

in Section 4; 

c) CreateBuchiBinary(op, BAl,BAr): that takes as 

input  ᷈or  ᷉operator and two Büchi automata BAl 

and BAr and returns a Büchi automaton defined 

according to definitions of  ᷈and  ᷉given in Section 

2; 

d) BuchiUntil(θ, BA): that takes as input a 

propositional formula θ  and a Büchi  automaton BA 

and returns the automaton as defined in Definition 7 

(Section 4); 

e) BuchiRelease(θ, BA): that takes as input a 

propositional formula θ  and a Büchi automaton BA 

and returns the automaton as defined in Definition 9 

(Section 4). 

 

Figure 7: building buchi automata: buildBA(T)  
 

 

 

 

7.  CONCLUSION AND FUTURE WORK  
This paper presents a compositional algorithm for generating 

Büchi automata from a fragment of LTL logic. We firstly 

proposed the grammar of this fragment and then built for each 

formula φ, its equivalent automata. We secondly showed how 

to compositionally build from Büchi automata associated to 

each sub-formula, the Büchi automaton of the target formula. 

We thirdly showed the complexity and the correctness of our 

Büchi automata generation method. 

 

Future work : several research lines can be continued from 

the present work. First, some temporal operators such as 

always, precedes or since are not considered in this paper, as 

an immediate perspective, we will study how to include these 

operators in our LTL fragment. Second, in [6, 7], Dwyer's 

presents a translational semantics for his pattern properties. 

Indeed, for each pattern property, he associates an equivalent 

LTL formula. In [17], the authors show how Büchi automata 

can be polynomially generated from pattern properties 

proposed by Dwyer. It will be interesting to study whether the 

translational semantics given by Dwyer is covered by our 

fragment. This will be done by comparing Büchi automata 

generated by the algorithm proposed in [17] with the Büchi 

automata generated by our algorithm. 

 

REFERENCES 
 

[1] C. Baier and J.P. Katoen. Principles of Model Checking 

(Representation and Mind Series). The MIT Press, 2008. 

[2] E. Clarke, O. Grumberg, and K. Hamaguchi. Another look 

at LTL model checking. In Formal  methods in system design, 

pages 415-427. Springer-Verlag, 1994. 

[3] E. M. Clarke, E. A. Emerson, and A. P. Sistla. Automatic 

verification of finite state concurrent systems using temporal 

logic specifications. ACM Trans. Program. Lang. Syst., 

8(2):244-263, April 1986. 

[4] Edmund M. Clarke, Jr., Orna Grumberg, and Doron A. 

Peled. Model Checking. MIT Press,  Cambridge, MA, USA, 

1999. 

[5] E.W. Dijkstra. An Algol 60 translator for the x1 and 

Making a translator for Algol 60. Technical Report 35, 

Mathematisch Centrum, Amsterdam, 1961. 

[6] M.B. Dwyer, G.S. Avrunin, and J.C. Corbett. Property 

specification patterns for finite-state verification. In FMSP, 

pages 7- 15, 1998. 

http://www.ijsea.com/


International Journal of Science and Engineering Applications 

Volume 7–Issue 04, 54-63, 2018, ISSN:-2319–7560 

www.ijsea.com  63 

[7] M.B. Dwyer, G.S. Avrunin, and J.C. Corbett. Patterns in 

property specifications for finite-state verification. In 

Proceedings of the 21st International Conference on Software 

Programming, pages 411 - 420, 1999. 

[8] P. Gastin and D. Oddoux. Fast LTL to Buchi automata 

translation. In Proceedings of the 13th International 

Conference on Computer Aided Verification (CAV'01), 

volume 2102 of LNCS, pages 53- 65, Paris, France, jully 

2001. Springer. 

[9] V. King, O. Kupferman, and M.Y. Vardi. On the 

Complexity of Parity Word Automata, pages 276 -286. 

Springer Berlin Heidelberg, Berlin, Heidelberg, 2001. 

[10] M. Mukund. Finite-state automata on infinite inputs, 

1996. 

[11] A. Pnueli. The temporal logic of programs. In 

Proceedings of the 18th Annual Symposium on Foundations 

of Computer Science, SFCS '77, pages 46-57, Washington, 

DC, USA, 1977. IEEE Computer Society.  

[12] J.P. Queille and J. Sifakis. Specification and verification 

of concurrent systems in cesar. In Proceedings of the 5th 

Colloquium on International Symposium on Programming, 

pages 337 - 351, London, UK, UK, 1982. Springer-Verlag. 

[13] S. Safra. On the complexity of omega-automata. In 29th 

Annual Symposium on Foundations of Computer Science, 

White Plains, New York, USA, 24-26 October 1988, pages 

319- 327, 1988. 

[14] S. Safra. Complexity of Automata on Infinite Objects. 

PhD thesis, Weizmann Institute of Science, Rehovot, Israel, 

March 1989. 

[15] A.P. Sistla and E.M. Clarke. The complexity of 

propositional linear temporal logics. J. ACM, 32(3):733- 749, 

july 1985. 

[16] A.P Sistla, M.Y. Vardi, and P. Wolper. The 

complementation problem for Buchi automata with 

applications to temporal logic. In Automata, Languages and 

Programming, pages 465 - 474, Berlin, Heidelberg, 1985. 

Springer Berlin Heidelberg. 

[17] S. Taha, J. Julliand, F. Dadeau, K. Castillos, and B. 

Kanso. A compositional automata-based semantics and 

preserving transformation rules for testing property patterns. 

Formal Asp. Comput., 27(4):641 - 664, 2015. 

[18]  M. Y. Vardi and P.Wolper. An automata-theoretic 

approach to automatic program verification. In Proc. 1st 

Symp. on Logic in Computer Science, pages 332 - 344, 

Cambridge, June 1986. 

[19]  M.Y. Vardi. Branching vs. linear time: Final showdown. 

In Proceedings of the 7th International Conference on Tools 

and Algorithms for the Construction and Analysis of Systems, 

TACAS 2001, pages 1 - 22, London, UK, 2001. Springer-

Verlag. 

 

http://www.ijsea.com/

