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Abstract: The Search and Rescue Network (SAR) is a kind of emergency network that pursuit people in need or imminent danger. This 

paper aims using a priori optimization to demonstrate the optimal assignment of HFDF receivers to the Generalized Search and Rescue 

(GSAR) network, which is independent of the weighting of the transmitter areas. The mathematical model seeks two objectives, the first 

one is maximizing the expected number of LOBs for HFDF receivers. The second is providing a fair share number of HFDF receivers 

allowed to cover the frequency. The result shown the efficiency of presented model ran by CPLEX toolbox of MATLAB 2020 software. 
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1. INTRODUCTION  
Search and rescue network has different forms and each of 

them with unique risks and dangers to victim and responder [1], 

[2].The U.S. is founded and maintained a system of search and 

rescue (SAR) stations encompassing seas and oceans, these 

stations are responsible for receiving and processing signals 

from distressed ships, vessels and airplanes in order to initiate 

the emergency operations. The spark of any emergencies is the 

time when three or more stations receive and process the same 

distress signal since in order to find an approximation of 

distressed vessel three stations are required.   

There are many optimization method for solving the search and 

rescue network. Among them, in this paper, we are planning to 

apply the multi-objective linear programming (MOLP) which 

is proposed by [5] to solve the problem as we will define in 

section 2. To solve their model, [5] convert the model to linear 

model in order to get the result in a fastetst time. 

Simulation is other technique that some reasecrhers used in 

their studioes to find an answer near to the optimal result [6] 

[3]. Simulation optimization can be defined as finding the best 

input variable values of all options, and not evaluating each 

option explicitly. The objective of simulation optimisation is to 

minimize the resources spent in a simulation experiment while 

maximizing data. [6] used simulation technique to reduce the 

cost of production and the rate of energy waste during the 

transmission on electricity distribution systems. [3] applied a 

discrete event simulation approach and scenario discussion to 

encompass a set of operational decisions to manage the 

complexity of the system. Moreover, they employed the Arena 

simulation software for designing blood supply chain to 

provide a critical comparison of the two primary Key 

Performance Indicators shortage and outdated units of the BSC.  

1.1 Relation Between Receiving 

Subsystems (RS) and Central Control (CC) 
It is noted that each station in the SAR network has only one 

RS system, but the number of high frequency direction finding 

(HFDF) receivers in each station is different. In our problem, 

the number of HFDF receivers varies between 0 and 10. For 

more clarification, RS probes the entire frequency spectrum 

and has less sensitive and accurate than the HFDF. Moreover, 

RS has the limitation on small signal-to-noise ration unlike 

HFDF. Every HFDF receivers is allotted to a 1 MHz bund 

within the frequency spectrum. 

 
Figure. 1 Relationship between RS and CC  

 

Prior to research background, the following schematic figure 

depicts the area of research in accordance with the receiving 

substation and estimated point of transmitted point and an 

acceptable circularized error radius. 

1.2 Error Radius  
The most recent research history on the topic of search and 

rescue culminated in optimal methods for the location of 

stations and frequency assignments. Since the subject is a well-

acknowledged area of research, many previous researches had 

added to the body of knowledge. [4] thoroughly discussed the 

problem and different analytical approaches. He explained that 

“classical sensitivity analysis and tolerance analysis were used 

to analyze the frequency assignments generated by the different 

weight sequences. The weight sequence with all weights 

having equal value produced the most robust frequency 

assignments for all time blocks”. 

We followed the same footpath to recalculate the results once 

more time. Although [4] used ADBASE, LINGO and CPLEX 

IBM ILOG Studio also provided the same computer runs 

results, which are enclosed to this report as well. 

As by [4] cited, the basis of his research is founded mainly on 

two antecedences, first, Steppe used a two-stage, network-flow 

multi-Objective linear integer programming (MOLIP) model 

[5] to determine the optimal position of the stations for the SAR 

problem. Second, Johnson's further work in this field has 

established optimal frequency assignments using the MOLIP 

network-flow model. 
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1.3 Research Objectives 
The goal of this research is to use a priori optimization to show 

that the optimal assignment of HFDF receivers to the 

Generalized Search and Rescue (GSAR) network is 

independent of the weighting of the transmitter areas. This is 

achieved by examining the impact of changing the weight value 

of a specific transmitter area on the geolocation likelihood for 

that area. The mathematical model has two purposes, the first 

of which is to optimize the predicted number of LOBs for 

HFDF receivers. And the second is to have a reasonable share 

of the number of HFDF receivers allowed to cover the 

frequency [5].  

2. MODEL FORMULATION 
This section is an overview of the multi-objective linear 

programming (MOLP) and network programming formulas for 

the search and rescue network [6], [7], [2]. The weights for 

transmitter areas shall be given by the Department of Defense 

(DOD).  

The notations, parameters, and variables are:  

𝑖: transmitter locations 

𝑗: receiving locations 

𝑘: frequency bands 

Fik: Probability of a distress signal from location i on 

frequency k   

Pijk: Probability that a distress signal from location 𝑖 on 

frequency k is acquired by station j  

Wij: Probability that a line of bearing from station j is within 

the acceptable circularized error region defined for location i  

Ui: The normalized weight (0 – 1 range) of a distress signal 

from location i 

TN: The total number of HFDF receivers 

FS: The fair share of HFDF receivers for each frequency 

Where FS is the integer greater than or equal to the total 

number of HFDF receivers divided by the total number off 

frequencies to be covered.  

Xjk = 1, if station j is assigned cover frequency k, otherwise 0 

Yk = n𝑌𝑘 = {
𝑛
0

, if frequency k has excess coverage by n 

stations, otherwise 0 

2.1 Objectives and Constraints  
The model formulation for this multi-objective optimization 

model of a search and rescue network takes the following form 

[5]: 

Objective Function 1: This objective function maximizes the 

estimated number of accurate bearing lines for HFDF receivers 

[2]. 

i ij ik ijk jk

i j k

Max U W F P X  

Objective Function 2: This objective function minimizes the 

excess coverage of HFDF receivers for each frequency.  

k

k

Min Y  

Constraint 1: Limit the number of HFDF frequency 

assignments at each station to the number of receivers located 

at each station. 

,
jk j

k

X m j   

Constraint 2: This restriction allows at least two HFDF 

receivers to be allocated to cover each frequency.  

2,
jk

j

X k   

Constraint 3: Determines the sum of excess coverage provided 

at each frequency. The vector Yk is the indicator of excess 

coverage. 

,
jk k

j

X Y FS k    

2.2 Obtained Data from DOD 
A case study of actual data is provided, and the results are 

regenerated since the software changed. The following data is 

used to calculate the weights for the problem. Table 1 provides 

the probability of a signal being transmitted by a transmitter i 

on frequency k.  

 

Table 1. Signal transmission and frequency probability 

i / k Frequency 1 Frequency 2 Frequency 3 

Transmitter 1 0.04 0.04 0.04 

Transmitter 2 0.00 0.00 0.01 

Transmitter 3 0.03 0.05 0.05 

Transmitter 4 0.00 0.00 0.00 

 

Table 2 indicates the likelihood of a signal being transmitted 

from transmitter i to frequency k and acquired by station j.  

 

Table 2. Probability of signal transmission and station 

acquisition  

j Transmitter Transmitter Transmitter 

1 2 3 4 1 2 3 4 1 2 3 4 

1 0.98 0.32 0.51 0.01 0.95 0.13 0.35 0.0 0.96 0.33 0.52 0.01 

2 0.98 0.44 0.13 0.01 0.98 0.08 0.01 0.0 0.98 0.30 0.01 0.01 

3 0.97 0.01 0.01 0.01 0.92 0.46 0.71 0.0 0.83 0.31 0.51 0.01 

4 0.97 0.97 0.01 0.01 0.98 0.01 0.12 0.0 0.90 0.01 0.01 0.01 

5 0.98 0.03 0.01 0.01 0.94 0.04 0.01 0.0 0.94 0.19 0.00 0.01 

 

Table 3 indicates the likelihood that station j will receive a 

signal from the transmitter I when a signal has been transmitted. 
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Table 3. Probability of station receipt of signal  

i / j Station 1 Station 2 Station 3 Station 4 Station 5 

Transmitter 

1 

0.3808 0.747 0.1951 0.121 0.7956 

Transmitter 

2 

0.1477 0.1301 0.1140 0.0596 0.2504 

Transmitter 

3 

0.1471 0.0892 0.1580 0.0834 0.1509 

Transmitter 

4 

0.0515 0.7679 0.0615 0.0820 0.0427 

 

Table 4 offers different weighting sequences for the nine 

solutions to the sample problem.  

 

Table 4. Weighting sequence for the nine solutions to the 

sample problem  

i / 

s 

Station 

1 

Station 

2 

Station 

3 

Station 

4 

Station 

5 

Station 

6 

Station 

7 

Station 

8 

Station 

9 
1 0.25 0.50 0.167 0.167 0.167 0.70 0.10 0.10 0.10 

2 0.25 0.167 0.50 0.167 0.167 0.10 0.70 0.10 0.10 

3 0.25 0.167 0.167 0.50 0.167 0.10 0.10 0.70 0.10 

4 0.25 0.167 0.167 0.167 0.50 0.10 0.10 0.10 0.70 

 

Table 5. Manual sensitivity analysis range for time block 

one weight  

Weight # Original Value Low Value High Value 

20 0.203 1% 10% 

22 0.145 16% 4% 

27 0.203 6% 0% 

30 0.145 28% 5% 

31 0.203 11% 8% 

 

Table 6. Manual sensitivity analysis range for time block 

six weights  

Weight # Original Value Low Value High Value 

9 

 

 

0.1491 10% 15% 

20 0.1491 23% 4% 

27 0.1491 3% 27% 

30 0.1355 28% 4% 

31 0.1897 11% 14% 

40 0.1355 2% 13% 

 

2.3 Methodology 
The technique used was a constraint reduced feasible region 

method in a "toy problem" type of scenario where a condensed 

version of the larger problem was extracted and run to show 

that the calculations are accurate, and that the solution is viable. 

The constraint reduced method to solve a MCLP is to “convert 

one of the two criterion functions, in this case f2(x), into a 

constraint, which is added to the existing constraint set 𝑥 ∈ 𝑋.” 

[6], [8], [9], [10]. The formulation of our toy problem therefore 

goes from the following objective function and constraint 

function notation: 

𝑚𝑎𝑥 𝑓1(𝑥) =  0.0043 ∗ 𝑥11 +  0.004275 ∗ 𝑥12 +  0.004725 ∗ 𝑥13 
 

+ 0.007325 ∗ 𝑥21 +  0.00726 ∗ 𝑥22 +  0.00736 ∗ 𝑥23 

+ 0.001938 ∗ 𝑥31 +  0.0032 ∗ 𝑥32 +  0.002725 ∗ 𝑥33 

+ 0.001183 ∗ 𝑥41 +  0.0013 ∗ 𝑥42 +  0.001103 ∗ 𝑥43

+  0.007813 ∗ 𝑥51 +  0.007495 ∗ 𝑥52 

+  0.0076 ∗ 𝑥53; 
 

𝑚𝑖𝑛 𝑓2(𝑥) =  −𝑦1 −  𝑦2 −  𝑦3; 

𝑥11 +  𝑥12 +  𝑥13 +  𝑥21 +  𝑥22 +  𝑥23 +  𝑥31 +  𝑥32 +  𝑥33 

+  𝑥41 +  𝑥42 +  𝑥43 +  𝑥51 +  𝑥52 

+  𝑥53 <=  15; 

𝑋11 +  𝑥21 +  𝑥31 +  𝑥41 +  𝑥51 −  𝑒1 <=  3; 

𝑥12 +  𝑥22 +  𝑥32 +  𝑥42 +  𝑥52 −  𝑒2 <=  3; 

𝑋13 +  𝑥23 +  𝑋33 +  𝑋43 +  𝑥53 −  𝑒3 <=  3; 

𝑋11 +  𝑥21 +  𝑥31 +  𝑥41 +  𝑥51 >=  2; 

𝑋12 +  𝑋22 +  𝑋32 +  𝑋42 +  𝑋52 >=  2; 

𝑋13 +  𝑥23 +  𝑥33 +  𝑥43 +  𝑥53 >=  2; 

 

To the following form: 

 

𝑚𝑎𝑥 𝑓1(𝑥) =  0.0043 ∗ 𝑥11 +  0.004275 ∗ 𝑥12 +  0.004725 ∗ 𝑥13 

+ 0.007325 ∗ 𝑥21 +  0.00726 ∗ 𝑥22 +  0.00736 ∗ 𝑥23 

+ 0.001938 ∗ 𝑥31 +  0.0032 ∗ 𝑥32 +  0.002725 ∗ 𝑥33 

+ 0.001183 ∗ 𝑥41 +  0.0013 ∗ 𝑥42 +  0.001103 ∗ 𝑥43 

+ 0.007813 ∗ 𝑥51 +  0.007495 ∗ 𝑥52 +  0.0076 ∗ 𝑥53; 

 

−𝑦1 −  𝑦2 −  𝑦3 = 𝑅; 

𝑥11 +  𝑥12 +  𝑥13 +  𝑥21 +  𝑥22 +  𝑥23 +  𝑥31 +  𝑥32 +  𝑥33 

+  𝑥41 +  𝑥42 +  𝑥43 +  𝑥51 +  𝑥52 

+  𝑥53 <=  15; 

𝑋11 +  𝑥21 +  𝑥31 +  𝑥41 +  𝑥51 −  𝑒1 <=  3; 

𝑥12 +  𝑥22 +  𝑥32 +  𝑥42 +  𝑥52 −  𝑒2 <=  3; 

𝑋13 +  𝑥23 +  𝑋33 +  𝑋43 +  𝑥53 −  𝑒3 <=  3; 

𝑋11 +  𝑥21 +  𝑥31 +  𝑥41 +  𝑥51 >=  2; 

𝑋12 +  𝑋22 +  𝑋32 +  𝑋42 +  𝑋52 >=  2; 

𝑋13 +  𝑥23 +  𝑥33 +  𝑥43 +  𝑥53 >=  2; 

Where R is a “satisficing level for f2”. Then, “by graphically 

[and numerically] minimizing and maximizing f2 over X, the 

feasible region defined by the original constraint set, we are 

able to find all the N-points. 

The formulation of the linear program limits decision variables, 

Xjk and Yk, to integer values. Specifically, Xjk must be equal to 

zero or one, while Yk may take any positive integer value less 

than or equal to the number of receiving stations on the 

network.  

For this toy problem, we utilized Lindo Systems’ software, 

Lingo, to input and solve this linear problem. The values of R 

that we used ranged in value from 0 to -6. The detailed solution 

to this problem is presented in the solutions section and 

compared to the results from some of the other previous thesis 

papers. 
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3. SOLUTION OF CONSTRAINT 

REDUCED METHOD 
As the solution procedure explained, we were able to run the 

model and obtain similar results mentioned in the references. 

In the appendices part, the Lingo program for the constraint 

reduced method for the toy problem and different values of R, 

ranging from 0 to -6, is provided. The N-Points acquired from 

this solution are tabulated in Table 7 and Table 8 below.  

 

Table 7. N-points 

R Values X-space, N-points 

R 

 

 

 

X11 X12 X13 X21 X22 X23 X31 X32 X33 X41 X42 X43 

-6 1 1 1 1 1 1 1 1 1 1 1 1 

-5 1 1 1 1 1 1 1 1 1 1 1 0 

-4 1 1 1 1 1 1 1 1 1 0 1 0 

-3 1 1 1 1 1 1 1 1 1 0 0 0 

-2 1 1 1 1 1 1 0 1 1 0 0 0 

-1 1 1 1 1 1 1 0 1 0 0 0 0 

0 1 1 1 1 1 1 0 0 0 0 0 0 

 

Table 8. N-points continued   

X-space, N-points Continued Y-space, N-Points 

X51 X52 X53 Y1 Y2 Y3 E1 E2 E3 f1(x) f2(x) 

1 1 1 0 0 0 2 2 2 0.069601 -6 

1 1 1 0 0 0 2 2 1 0.068498 -5 

1 1 1 0 0 0 1 2 1 0.067315 -4 

1 1 1 0 0 0 1 1 1 0.066015 -3 

1 1 1 0 0 0 0 1 1 0.064077 -2 

1 1 1 0 0 0 0 1 0 0.061352 -1 

1 1 1 0 0 0 0 0 0 0.058152 0 

 

The following solution is gained through the thesis’s results, 

and it is presented that the Lingo’s output is closely matched 

the EVAL computer software developed by DOD. 

 

 
Figure. 2 Solution 

The following graphical representation depicts the Y-space 

which is the optimal values given from the trade-offs between 

two objective functions.  

 

 
Figure. 2 Graph of N-points in Y-space demonstrating the efficient 

frontier 

 

4. CONCLUSION 
This paper used a priori optimization to demonstrate the 

optimal assignment of HFDF receivers to the Generalized 

Search and Rescue (GSAR) network, which is independent of 

the weighting of the transmitter areas. The model objective 

presented was to optimize the estimated number of LOBs for 

HFDF receivers and to provide a reasonable share of the 

number of HFDF receivers allowed to cover the frequency. 

Although optimization models are of remarkable importance 

when it boils down to accuracy, being time consuming and 

engaging computational resources are the reasons to consider 

artificial intelligence approaches too, such as Simulated 

Annealing algorithm [11], Genetic Algorithm [12], [13], [14], 

discrete event simulation [6] [3], and heuristic algorithms [15]–

[17]. 
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