A Statistical Model for Analyzing Anthropometric Data and Developing Clothing Sizing Systems for Libyan School Children

Salima A. Bilhassan
Benghazi University
Benghazi, Libya

Raja Albalaaze
Benghazi University
Benghazi, Libya

Mariam Elgheriane
Benghazi University
Benghazi, Libya

Najat Elkwafi
Benghazi University
Benghazi Libya

Abstract

A garment sizing system is essential for effective clothing design and production. A sizing system classifies a specific population into homogeneous subgroups based on some key dimensions. Persons of the same subgroup have the same body shape characteristics, and share the same garment size. Anthropometric data plays important role in creating clothing sizing system. The current work represents the sixth step towards the overall goal of developing the Libyan children's clothing standards system based on physical measurements of the human body of Libyan schoolchildren. The objective of the current work is to study the physical measurements of students aged 6 to 17 years in the stages of primary, secondary. The body measurements of school children in Benghazi were collected and analyzed using simple statistics methods to understand the body ranges and current of student in all stages to develop the system sizing. The measurements were collected from previous projects. Some measurements were collected to complement a work of 90 (male and female) students between 6,7 and 8 years old from a school in Benghazi. ANOVA test was used to determine differences between age groups.

Keywords: Anthropometric data; sizing system; children clothing; schoolchildren; Children anthropometry

1. INTRODUCTION

Anthropometry is the branch of the human sciences that deals with body measurement, such as size, shape, reach, strength and working capacity (Gupta, 2014; Qutubuddin et al, 2012). This science helps designers to create spaces and products that are more suitable for the users, by taking into consideration different body dimensions and different activity requirements (Viviani et al, 2018; Shiru and Abubakar, 2012; Dawal et al, 2012). There have been several attempts to describe and represent the characteristics of entire populations (Veitch et al, 2007; Viviani et al, 2018; Shiru and Abubakar, 2012; Dawal et al, 2012; Gupta, 2014; Qutubuddin et al, 2012). There are different factors, which affected sizing system, such as gender and age. Many researchers find that there are significant differences between gender and age among almost body measurements (Ariadurai et al., 2009; Bari et al., 2015; Beazley, 1999; Chung et al., 2007; Gupta and Gangadhar, 2004; Gupta and Zakaria, 2014; Kang et al., 2001; Lee, 2013; Muslim et al., 2014; Zakaria, 2011, Bilhassan et al, 2018 (a); Bilhassan, 2018 (b); Bilhassan et al, 2020).

This study is motivated by the need to examine anthropometric measurements among school children in Libya; it is customary in Libya to use Size charts developed from different countries. This article reports the sixth step towards the overall objective. The overall objective is to develop a size chart based on anthropometric body measurements of Libyan schoolchildren. This article covers the results of all grades (aged 6 to 17 years) in the basic education stage.

2. METHODOLOGY

This section explains the material and method used in this research.

2.1 Participants

The data was collected by students from previous projects, were used (6-17 years) (Alarody et al, 2016; Albarki, 2017; Elmabrouk, 2017; Boushagour, 2018; Elurfi et al, 2018). These data are 19 measurements and 30 students per age group. There was a lack of data for age group (6-7-8). Sample size includes a total of the 90 Libyan primary students (45 males and 45 females). The fifteen students are from each a grade. The students aged between 6 to 8 years. The sample was randomly selected from one public school in the city of Benghazi during the school year (2018/2019). Measurements were taken after getting permission from the officials and principals in each school and all students voluntarily participated in the study. Table 1 includes summary of number of students included in the study.

Table 1. Summary of number of students included in the study

2.2 Body Measurements

Based on the objective of this project, only nineteen anthropometric dimensions are selected and used to establish the clothing sizing systems for students. These dimensions are selected based on previous studies (Ariadurai et al, 2009; AduBoakye et al, 2012; Alarody et al, 2016; Albarki et al, 2017; Elmabrouk et al, 2017; Boushagour et al, 2018; Elurfi et al, 2018; Bilhassan et al, 2018 (a); Bilhassan et al, 2018 (b); Bilhassan et al, 2019). Table 2 and Fig. 1 to Fig. 3 show the body dimensions. These measurements are used to make different types of clothing such as school uniforms. Readings were also taken two times and the average of the readings was recorded as the actual anthropometric measurements of the respondents.

Figure 1. Measures recorded from the front of the body (Gupta and Zakaria, 2014).

Figure 2. Measures recorded from the back of the body (Gupta and Zakaria, 2014).

Figure 3. Body girths or circumferences (Gupta and Zakaria, 2014).

Table 2. The Anthropometric Dimension

No.	Body Dimension
1	Weight
2	Height
3	Head circumference
4	Neck circumference
5	Waist circumerence
6	Chest circumference
7	Hip circumference
8	Arm circumference
9	Shoulder to shoulder length
10	Shoulder to wrist length
11	Shoulder to waist length
12	Front body length
13	Back body length
14	Waist to hips length
15	Shoulder length
16	Front body width
17	Back body width
18	Calf circumference
19	Knee circumference

2.3 Anthropometric Data Analysis

The collected data was analyzed using Minitab 17.1 statistical software. Descriptive statistics (using Microsoft Excel) such as mean, median, mode, min., max. and standard deviation were calculated for each dimension. As expected, data for all measurements followed a normal distribution. The ANOVA test was conducted to identify differences between the age groups. The results from this test were used to develop the clothing sizing system (Adu-Boakye et al., 2012).

3. RESULTS AND DISCUSSION

3.1 Descriptive Analysis

As expected that all measurements follow a normal distribution. This study found that the mean height for male is $(116.54,123.99,125.49,137.40,143.33,147.15,150.16$, $154.32,166.72,169.08,176.43,176.43) \mathrm{cm}$ for grade 6 to 17 respectively, while mean height for female respondents is (117.19, 126.17, 124.54, 139.70, 143.00, 152.63, 147.54, $158.59,157.32,158.70,159.66,159.33) \mathrm{cm}$ for grade 6 to 17 respectively. The standard deviation (SD) for almost all dimensions is quite large, showing great variation in the measurements.

3.2 Differences of Anthropometric Measurements by Gender (T-test)

T-tests were carried out to identify differences between males and females of 6 to 17 years of age. T-tests were carried out to identify how many sizes are to be developed based on the results of the analysis (Gupta and Gangadhar, 2004). The following sections are presented the results of t-test.

3.2.1 Differences of anthropometric measurements by gender (for all ages)

The results of t -test show that almost all of the anthropometric measurements have no significant differences between the genders of respondents for all age groups 6 to 17 years. These differences would not be considered in design the clothing
sizing systems that are appropriate for children of different gender. These results diverse comare with results found in other researchers (Bilhassan et al, 2018 (b); Bilhassan et al, 2019)

There are differences in the anthropometric measurements: waist circumference, Arm circumference, and Knee circumference. These differences would be considered to design clothing sizing systems for different gender (as shown in Table 3).
Table 3. Differences of anthropometric measurements by gender

MEASUREMET	P-Value	Sig.
1	0.86	Not sig
2	0.14	Not sig
3	0.35	Not sig
4	0.29	Not sig
5	0.012	Sig
6	0.004	Not sig
7	0.35	Not sig
8	0.007	Sig
9	0.63	Not sig
10	0.80	Not sig
11	0.40	Not sig
12	0.90	Not sig
13	0.139	Not sig
14	0.95	Not sig
15	0.09	Not sig
16	0.26	Not sig
17	0.58	Not sig
18	0.44	Not sig
19	0.028	Sig

3.2.2 Differences of anthropometric measurements by gender (for ages group 6-11)

The results show that almost of the anthropometric measurements there are no differences significantly between the genders. These differences would not be considered to produce clothing that is appropriate for children of different genders. These results contrast with other researches (Bilhassan, 2018(b); Bilhassan (2019))

There are differences in the anthropometric measurements: neck circumference, waist circumference, and back body length as shown in Table 4.

3.2.3 Differences of anthropometric measurements by gender (for ages groups 12-17)

The results of t-test show that almost all of the anthropometric measurements have significant differences between the genders of respondents for age groups 12 to 17 years. These differences would be considered in design.
There are no differences in the anthropometric measurements: chest circumference, hip circumference, arm circumference, shoulder to wrist length, and shoulder to waist length, front body length, waist to hips length, back body width, calf circumference and knee circumference. These differences would not be considered to design clothing sizing systems for different gender (as shown in Table 5).

3.3 Differences of Anthropometric Measurements by Age (ANOVA)

3.3.1 Difference between anthropometric

 measurements for female for all ages groupsTable 6 shows that all of the anthropometric measurements have difference significantly between the ages of respondents. These differences would be considered to produce clothing that is appropriate for children of different ages. There are no differences in the anthropometric for all measurements.

Table 4. Differences of anthropometric measurements by gender for age groups 6-11

MEASUREMET	P-Value	Sig.
1	0.50	not sig
2	0.27	not sig
3	0.50	not sig
4	0	Sig
5	0	Sig
6	0.77	not sig
7	0.27	not sig
8	0.21	not sig
9	0.44	not sig
10	0.10	not sig
11	0.93	not sig
12	0.08	not sig
13	0	Sig
14	0.09	not sig
15	0.11	not sig
16	0.10	not sig
17	0.17	not sig
18	0.15	not sig
19	0.14	not sig

Table 5. Differences of anthropometric measurements by gender for age groups 12-17

MEASUREMET	P-Value	Sig.
1	0.64	not sig
2	0.05	not sig
3	0.24	not sig
4	0.83	not sig
5	0.52	not sig
6	0	Sig
7	0	Sig
8	0	Sig
9	0.60	not sig
10	0	Sig

11	0.03	Sig
12	0	Sig
13	0	Sig
14	0	Sig
15	0.41	not sig
16	0.12	not sig
17	0	Sig
18	0	Sig
19	0	Sig

3.3.2 Difference between anthropometric measurements for female for ages groups 6-11 (ANOVA) Table 7 shows that all of the anthropometric measurements have significant difference significant between the ages of respondents. These differences would be considered to produce clothing that is appropriate for children of different ages.

There are differences in the anthropometric measurements: weight, height, head circumference, neck circumference, waist circumference, chest circumference, shoulder to shoulder length, shoulder to wrist length, shoulder to waist length, front body length, back body length, waist to hip length, shoulder length, and front body width, These differences would be considered to design clothing sizing systems for different gender.

Table 6. Differences of anthropometric measurements by age groups for female (ANOVA)

MEASUREMET	P-Value	Sig.
1	0	Sig
2	0	Sig
3	0	Sig
4	0	Sig
5	0	Sig
6	0	Sig
7	0	Sig
8	0	Sig
9	0	Sig
10	0	Sig
11	0	Sig
12	0	Sig
13	0	Sig
14	0	Sig
15	0	Sig
16	0	Sig
17	0.03	Sig
18	0.02	Sig
19	0.01	Sig

Table 7. Differences of anthropometric measurements by age groups 6-11 for female (ANOVA)

MEASUREMET	P-Value	Sig.
1	<0.01	Sig
2	<0.01	Sig

3	<0.01	Sig
4	<0.01	Sig
5	<0.01	Sig
6	<0.01	Sig
7	0.51	not Sig
8	0.08	not sig
9	0.04	Sig
10	<0.01	Sig
11	<0.01	Sig
12	<0.01	Sig
13	0.03	Sig
14	0.03	Sig
15	0.04	Sig
16	0.13	Sig
17	0.06	not sig
18	0.05	not sig
19	0.05	not sig

3.3.3 Difference between anthropometric

 measurements for female for ages groups 12-17The results of ANOVA show that almost all of the anthropometric measurements have significant differences between the genders of respondents for age groups 12 to 17 years. These differences would be considered in design. There are differences in the anthropometric for all measurements except back body width as shown in Table 8.

Table 8. Differences of anthropometric measurements by age groups 12-17 for female (ANOVA)

MEASUREMET	P-Value	Sig.
1	<0.01	sig
2	<0.01	sig
3	<0.01	sig
4	<0.01	sig
5	<0.01	sig
6	<0.01	Sig
7	<0.01	sig
8	<0.01	sig
9	<0.01	sig
10	<0.01	sig
11	<0.01	sig
12	<0.01	sig
13	<0.01	sig
14	<0.01	sig
15	<0.01	sig
16	<0.01	sig
17	0.37	not sig
18	<0.01	sig
19	<0.01	sig

3.3.4 Differences between
 anthropometric

 measurements for male for all yearThere are differences in the anthropometric for all measurements (table 9).

Table 9. Differences of anthropometric measurements by all year for male (ANOVA)

MEASUREMET		
	P-Value	
		Sig.
1	<0.01	Sig
2	<0.01	Sig
3	<0.01	Sig
4	<0.01	Sig
5	<0.01	Sig
6	<0.01	Sig
7	<0.01	Sig
8	<0.01	Sig
9	<0.01	Sig
10	<0.01	Sig
11	<0.01	Sig
12	<0.01	Sig
13	<0.01	Sig
14	Sig	
15	0.37	Sig
16	<0.01	Sig
17	<0.01	Sig
18		Sig
19		Sig

3.3.5 Difference between anthropometric measurements for male for ages groups 6-11
Table 10 shows that all of the anthropometric measurements are difference significantly between the ages of respondents. These differences would be considered to produce clothing that is appropriate for children of different ages. There are no differences in the anthropometric measurements: 8,16 and 17 . These differences would not be considered in design the clothing sizing systems that are appropriate for children of different age groups. There are differences in the anthropometric for all measurements except arm circumference.

Table 10. Differences of anthropometric measurements by age groups 6-12 for female (ANOVA)

MEASUREMET	P-Value	Sig.
1	<0.01	Sig
2	<0.01	Sig
3	<0.01	Sig
4	<0.01	Sig
5	<0.01	Sig
6	<0.01	Sig
7	<0.01	Sig
8	0.26	not sig
9	<0.01	Sig
10	<0.01	Sig
11	<0.01	Sig
12	<0.01	Sig
13	<0.01	sig
14	<0.01	sig
15	<0.01	sig
16	<0.01	sig
17	<0.01	sig

18	<0.01	sig
19	<0.01	sig

3.3.6 Differences for male for ages groups 12-17

Table 11 shows that all of the anthropometric measurements are difference significantly between the ages of respondents. These differences would be considered to produce clothing that is appropriate for children of different ages. There are no differences in the anthropometric measurement 7 .
These differences would not be considered in design the clothing sizing systems that are appropriate for children of different age groups.
There are differences in the anthropometric for all measurements.

3.4 Correlation Analysis

A key measurement should also be a body measurement with strong relationships with most other body dimensions. Consequently based on this selection, it was possible to develop sizing system. They can be good predictors of the size of other parts of the body.
The criteria for key measurements vary and there are various methods to be established in this regard. By using correlation coefficients it could be possible to identify key measurements. Correlation coefficient values indicate the strength of linear relationships between variables and were, as such, implemented in this study. Pearson correlation coefficients analysis was carried out to determine the interrelationships between the various body measurements. The following statements explain the strength of the relationship between measurements:

- If correlation coefficient is, 0.5 then no relationship;
- If correlation coefficient is between 0.5 and 0.75 then there is a mild relationship;
- If correlation coefficient is 0.76 it indicates a strong relationship (Gupta and Gangadhar, 2004).

Table 11. Differences of anthropometric measurements by age groups 12-17 for male (ANOVA)

MEASUREMET	P-Value	Sig.
1	<0.01	Sig
2	<0.01	Sig
3	<0.01	Sig
4	<0.01	Sig
5	<0.01	Sig
6	<0.01	Sig
7	<0.01	Sig
8	<0.01	Sig
9	<0.01	Sig
10	<0.01	Sig
11	<0.01	Sig
12	<0.01	Sig
13	<0.01	Sig
14	<0.01	Sig
15	<0.01	Sig
16	<0.01	Sig
17	<0.01	Sig
18	<0.01	Sig

3.4.1 Correlation analysis for female

It is noted that the weight measurement strong correlation with height and waist circumference. All results for strong relationship between measurements were presented in Table 12.

Additionally front body width has strong with back body width, calf circumference, knee circumference. Additionally back body width has strong with calf circumference and knee circumference. Additionally calf circumference has strong with knee circumference. From these results, it may be concluded that weight measurement is the most critical measurement is shoulder to shoulder length and shoulder to wrist length and shoulder to waist length common to body garments. In general, it can be inferred that theses dimensions are the important landmarks on the body and hence should be related closely to the garment measurements.

3.4.2 Correlation analysis for male

The results illustrate relationships between measurements and shows the correlation coefficients between each measurement and the other. It is noted that the measurement appears to have strong relationships with other measurements as shown in Table 13. From these findings it may be concluded that measurement is the most critical measurement: height, head circumference, neck circumference are key measurements to body garments. In general, it can be inferred that theses dimensions are the important landmarks on the body and hence should be related closely to the garment measurements.

Table 12. Strong relationship between measurements for female

Dimensions	Strong relationship
1	$5-2$
2	$8-5$
3	$8-5-4$
4	$11-8$
5	-
6	7
7	-
8	-
9	$19-18-17-16-15-14-13-12-11-10$
10	$19-18-17-16-15-14-13-12-11$
11	$19-18-17-16-15-14-13-12$
12	$19-18-17-16-15-14-13$
13	$19-18-17-16-15-14$
14	$19-18-17-16-15$
15	$19-18-17-16$
16	$19-18-17$
17	$19-18$
18	19
19	-

Table 13. Strong relationship between measurements for male

Dimensions	Strong relationship
1	$9-5-2$
2	$16-14-9-5-4$
3	$18-16-14-11-9-8-5-4$
4	$18-14-11-8-5$
5	$16-14-9-8$

6	$19-18-7$
7	19
8	$18-16-14-11$
9	16
10	-
11	14
12	-
13	-
14	$18-16$
15	-
16	-
17	18
18	19
19	-

3.5 Regression analysis

Types of regression analysis: There are two types of regression analysis; the first is linear regression, which is the most widespread. Linear regression means that we study the linear relationship. The second type is the nonlinear regression that we need when studying relationships in the form of a curve rather than a straight line.

3.5.1 Results of regression (male)

3.5.1.1 Key dimension 1
$\mathrm{y}=-74-2.4 \times 1-3.54 \times 2+10.6 \times 3+0.71 \times 4+3.37 \times 5$
where;
$\mathrm{Y}=$ height,
x1=neck circumference,
$\mathrm{x} 2=$ waist circumference,
x3=shoulder to shoulder length,
x4=waist to hips lngth,
$x 5=$ front body width.
3.5.1. 2 Key dimension 2
$\mathrm{y}=38.5+0.100 \mathrm{x} 1-0.152 \times 2+0.500 \mathrm{x} 3+0.394 \mathrm{x} 4-0.0256$
x5 - 0.0730×6
$0.129 \times 7+0.0973 \times 8$
Where,
$\mathrm{Y}=$ head circumference,
$\mathrm{x} 1=$ neck circumference,
$\mathrm{x} 2=$ waist circumference,
x3=arm circumference,
$\mathrm{x} 4=$ shoulder to shoulder length,
$\mathrm{x} 5=$ shoulder to waist length,
x6= waist to hips length,
$\mathrm{x} 7=$ front body width,
$\mathrm{x} 8=$ calf circumference.

3.5.1.3 Key dimension 3

$\mathrm{y}=7.27+0.032 \mathrm{x} 1+0.199 \mathrm{x} 2+0.101 \times 3-0.016 \mathrm{x} 4+0.417$ x5
where,
$\mathrm{Y}=$ neck circumference,
$\mathrm{x} 1=$ waist circumference,
$\mathrm{x} 2=$ arm circumference,
$\mathrm{x} 3=$ shoulder to waist length,
$\mathrm{x} 4=$ waist to hips lngth,
x5 = calf circumference

3.5.2 Results of regression (female)

3.5.2.1 Key dimension 1
$\mathrm{y}=111-1.09 \times 1-0.638 \times 2-0.428 \times 3+2.32 \times 4+0.48 \times 5-$
$1.18 \times 6-0.320 \mathrm{x} 7+0.028 \times 8$
Where;
$y==$ shoulder to waist length,
$\mathrm{x} 1=$ front body length,
x2=back body length,
x3= waist to hips length,
$\mathrm{x} 4=$ shoulder length,
$x 5=$ front body width,
x6=back body width,
$\mathrm{x} 7=$ calf circumference,
x8=knee circumference.

3.5.2.2 Key dimension 2

$\mathrm{y}=-39.6+0.127 \mathrm{x} 1+0.573 \mathrm{x} 2+0.165 \mathrm{x} 3+0.560 \mathrm{x} 4+0.57$
$\mathrm{x} 5-0.02 \times 6+0.199 \times 7+0.710 \times 8+0.296 \times 9$
Where;
$\mathrm{y}=$ shoulder to wrist length,
$\mathrm{x} 1==$ shoulder to waist length,
x2=front body length,
$\mathrm{x} 3=$ back body length,
$\mathrm{x} 4=$ waist to hips length,
$\mathrm{x} 5=$ shoulder length,
x6=front body width, x7=back body width,
$\mathrm{x} 8=$ calf circumference,
$\mathrm{x} 9=$ knee circumference.

3.5.2.3 Key dimension 3

$\mathrm{y}=41.1+0.859 \mathrm{x} 1-0.037 \mathrm{x} 2-0.362 \times 3-0.135 \mathrm{x} 4-0.726$
x5 - $0.554 \times 6-0.016 \times 7+0.001 \times 8+0.167 \times 9-0.260 \times 10$
Where;
$\mathrm{Y}=$ shoulder to shoulder length,
$\mathrm{x} 1=$ shoulder to wrist length,
$\mathrm{x} 2==$ shoulder to waist length,
$\mathrm{x} 3=$ front body length,
$\mathrm{x} 4=$ back body length,
$\mathrm{x} 5=$ waist to hips length,
$\mathrm{x} 6=$ shoulder length,
$\mathrm{x} 7=$ front body width,
x8=back body width,
$\mathrm{x} 9=$ calf circumference,
x10=knee circumference.

3.6 Principle component analysis

Principal component analysis (PCA) is a mathematical procedure that transforms a number of (possibly) correlated variables into a (smaller) number of uncorrelated variables called principal components. The results of principle component analysis show in tables (Table 14 and Table 15 below for male and female).

Table 14. Principal component analysis for male

Variable	PC1	PC2	PC3
M1	-0.144	-0.357	-0.104
M2	-0.242	-0.262	-0.018
M3	0.313	0.083	0.003
M4	0.317	0.014	-0.013
M5	-0.236	-0.255	-0.088
M6	0.226	-0.262	-0.182
M7	0.151	-0.296	-0.322
M8	0.306	0.023	-0.048
M9	-0.191	-0.299	-0.051

M10	0.013	-0.366	0.146
M11	0.250	0.024	-0.205
M12	0.197	-0.102	0.589
M13	0.032	-0.297	0.628
M14	0.310	0.006	-0.005
M15	0.228	-0.183	0.004
M16	-0.256	-0.184	-0.083
M17	0.226	-0.188	-0.030
M18	0.272	-0.194	-0.081
M19	0.146	-0.335	-0.143

Table 15. Principal component analysis for female

Variable	PC1	PC2	PC3
F1	0.027	0.312	0.447
F2	0.006	0.421	0.092
F3	0.011	-0.428	0.095
F4	0.015	-0.392	0.178
F5	0.024	0.381	0.274
F6	0.130	-0.068	0.599
F7	0.158	-0.146	0.49
F8	0.129	-0.384	0.104
F9	0.288	0.115	-0.032
F10	0.286	0.096	0.049
F11	0.283	-0.114	-0.03
F12	0.295	0.026	-0.079
F13	0.280	0.081	-0.155
F14	0.289	-0.115	-0.048
F15	0.301	-0.005	-0.086
F16	0.290	0.114	-0.107
F17	0.295	0.023	-0.076
F18	0.304	-0.001	-0.051
F19	0.303	0.028	-0.04

3.7 Development of Size Charts

The development of the size chart was carried out using values obtained from the statistical information based on the ANOVA test of body dimensions. The mean values and the standard deviations were used for creating size steps for the size chart. Therefore, different sizes of clothing for female and male aged 6 to17 years must be developed due to the differences in some measurements between age groups three sizes were developed: S (small), M (medium) and L (large).

These sizes were developed because of there were multiple body shape in each group of 6 to 17 years old (as shown in Table 16 and 17). There is a difference between ages in height measurement and most of the measurements based on ANOVA analysis. One of the values can be calculated if there is no difference between each parameter. However, three values can be calculated if there is difference between each parameter according to ANOVA.

Table 16. Size chart for age groups 6 to 11.

	Grade	Male and female		
		S	M	L
1	6	10.01	22.62	35.23
	7	16.58	26.41	36.25
	8	14.71	27.41	40.11

Table 16. cont.

	Grade	Male and female							
		S		M		L			
6	6	53.56		63.67		73.79			
	7	53.27		62.76		72.25			
	8	52.19		65.13		78.06			
	9	45.95		67.93		89.92			
	10	53.31		69.90		86.49			
	11	54.55		75.45		96.35			
		male			Female				
		S	m	1	S	m	1		
7	6	61.34	68.00	75.53	50.07	66.30	82.53		
	7	55.59	65.21	74.83					
	8	54.93	70.82	86.7150					
	9	46.32	64.00	81.68					
	10	48.05	69.68	91.32					
	11	47.72	74.03	100.35					
		male and female							
		s		M		1			
8	6	16.02		22.46		28.90			
	7								
	8								
	9								
	10								

	11			
		male and female		
		s	M	1
9	6	26.19	35.64	45.09
	7			
	8			
	9			
	10			
	11			
			e and fen	
		male and female		
		S	M	I
10	6	28.14	43.22	58.30
	7			
	8			
	9			
	10			
	11			
		male and famel		
		S	M	1
11	6	18.81	36.05	53.28
	7			
	8			
	9			
	10			
	11			

Table 16. cont.

	Grade	Male and female					
			S		M		L
12	6	21.54			37.14	52.74	
	7						
	8						
	9						
	10						
	11						
		male			Female		
		S	m	1	S	M	I
13	6	17.99	23.00	24.61	26.38	45.57	64.76
	7	14.12	37.37	60.61			
	8	26.18	41.10	56.02			
	9	34.16	39.90	45.64			
	10	35.64	41.25	46.86			
	11	33.63	41.03	48.43			
		male and female					
			s		M		I

Table 16. cont.

	Grade	Male			Femle		
		S	M	L	S	M	L
17	6	26.37	30.00	32.06	16.80	30.58	44.36
	7	24.60	32.30	40.01			
	8	24.43	33.32	42.22			
	9	22.74	27.83	32.93			
	10	22.80	31.57	40.33			
	11	23.07	30.63	38.20			
18	6	22.31	23.00	25.44	19.51	27.23	34.95
	7	22.91	25.13	27.36			
	8	23.01	24.77	26.54			
	9	19.84	26.37	32.89			
	10	21.30	30.20	39.10			
	11	22.37	32.23	42.10			

19	6	23.91	23.00	28.08			
	7	24.47	28.19	31.91			
	8	24.52	27.56	30.59	22.44	30.01	37.58
	9	22.27	29.93	37.60			
	10	24.52	32.53	40.55			
	11	26.01	34.30	42.59			

Table 17. size chart for age groups 12 to 17.

	Grade	Male and Female		
		S	M	L
1	12	15.58	43.62	71.67
	13	28.53	50.90	73.28
	14	27.23	54.57	81.90
	15	32.69	58.79	84.89
	16	23.07	64.72	106.36
	17	37.36	63.23	89.10
2	12	134.43	148.85	163.27
	13	141.88	156.46	171.03
	14	145.77	162.02	178.26
	15	143.89	163.89	183.89
	16	145.36	166.57	187.78
	17	146.48	167.88	189.29

Table 17. cont.

		Male and Female		
		S	M	L
3	12	50.66	54.55	58.43
	13	49.70	54.62	59.54
	14	50.00	55.95	61.90
	15	50.54	55.42	60.29
	16	51.13	55.88	60.64
	17	51.14	56.34	61.53
4	12	23.83	29.83	35.83
	13	26.16	31.32	36.47
	14	27.41	32.65	37.90
	15	25.80	35.63	45.46
	16	26.48	36.16	45.84
	17	28.39	36.95	45.51
5	12	42.64	70.59	98.53
	13	56.14	74.23	92.32

Table 17. cont.

		male			female		
		s	m	1	S	m	1
8	12	$\begin{gathered} 20.8 \\ 1 \end{gathered}$	$\begin{gathered} 26.5 \\ 7 \end{gathered}$	$\begin{gathered} \hline 32.3 \\ 3 \end{gathered}$	$\begin{gathered} \hline 14.1 \\ 6 \end{gathered}$	$\begin{gathered} 23.6 \\ 7 \end{gathered}$	33.17
	13	$\begin{gathered} 19.2 \\ 1 \\ \hline \end{gathered}$	$\begin{gathered} 27.6 \\ 1 \\ \hline \end{gathered}$	$\begin{gathered} 36.0 \\ 1 \\ \hline \end{gathered}$	20.9 6	25.9 8	31.01
	14	$\begin{gathered} 19.9 \\ 9 \\ \hline \end{gathered}$	$\begin{gathered} 27.4 \\ 4 \end{gathered}$	$\begin{gathered} 34.8 \\ 9 \\ \hline \end{gathered}$	$\begin{gathered} \hline 20.8 \\ 6 \\ \hline \end{gathered}$	$\begin{gathered} \hline 26.7 \\ 6 \\ \hline \end{gathered}$	32.67
	15	$\begin{gathered} \hline 18.8 \\ 8 \\ \hline \end{gathered}$	$\begin{gathered} 25.3 \\ 7 \\ \hline \end{gathered}$	$\begin{gathered} \hline 31.8 \\ 5 \\ \hline \end{gathered}$	$\begin{gathered} \hline 21.7 \\ 6 \\ \hline \end{gathered}$	$\begin{gathered} \hline 27.5 \\ 6 \\ \hline \end{gathered}$	33.37
	16	$\begin{gathered} 18.2 \\ 2 \\ \hline \end{gathered}$	$\begin{gathered} 26.4 \\ 0 \\ \hline \end{gathered}$	$\begin{gathered} 34.5 \\ 8 \\ \hline \end{gathered}$	$\begin{gathered} \hline 21.8 \\ 0 \\ \hline \end{gathered}$	$\begin{gathered} \hline 27.4 \\ 3 \\ \hline \end{gathered}$	33.06
	17	$\begin{gathered} 18.3 \\ 3 \\ \hline \end{gathered}$	$\begin{gathered} \hline 25.9 \\ 0 \\ \hline \end{gathered}$	$\begin{gathered} 33.4 \\ 7 \\ \hline \end{gathered}$	$\begin{gathered} \hline 11.8 \\ 6 \\ \hline \end{gathered}$	30.2 4	48.61
		male and female					
			s		M		
9	12	32.55		38.72		44.89	
	13	30.98		38.32		45.66	
	14	30.7		39.61		48.52	
	15	30.7		42.46		50.22	

Table 17. cont.

	苞	male			female		
		S	m	1	s	m	1
12	12	$\begin{gathered} \hline 31.2 \\ 6 \\ \hline \end{gathered}$	$\begin{gathered} 34.6 \\ 1 \\ \hline \end{gathered}$	$\begin{gathered} 37.9 \\ 6 \\ \hline \end{gathered}$	$\begin{gathered} 25.1 \\ 7 \\ \hline \end{gathered}$	$\begin{gathered} 32.2 \\ 5 \\ \hline \end{gathered}$	$\begin{gathered} 39.3 \\ 3 \\ \hline \end{gathered}$
	13	$\begin{gathered} 30.0 \\ 6 \\ \hline \end{gathered}$	$\begin{gathered} 34.7 \\ 0 \\ \hline \end{gathered}$	$\begin{gathered} 39.3 \\ 4 \\ \hline \end{gathered}$	$\begin{gathered} 26.1 \\ 5 \\ \hline \end{gathered}$	$\begin{gathered} 34.0 \\ 8 \\ \hline \end{gathered}$	$\begin{gathered} \hline 42.0 \\ 0 \\ \hline \end{gathered}$
	14	$\begin{gathered} 27.6 \\ 1 \end{gathered}$	$\begin{gathered} 37.8 \\ 9 \end{gathered}$	$\begin{gathered} 48.1 \\ 6 \\ \hline \end{gathered}$	$\begin{gathered} 28.3 \\ 0 \end{gathered}$	$\begin{gathered} 35.9 \\ 8 \end{gathered}$	$\begin{gathered} 43.6 \\ 6 \end{gathered}$
	15	$\begin{gathered} \hline 34.1 \\ 1 \\ \hline \end{gathered}$	$\begin{gathered} 38.3 \\ 7 \\ \hline \end{gathered}$	$\begin{gathered} \hline 42.6 \\ 2 \\ \hline \end{gathered}$	$\begin{gathered} 25.8 \\ 1 \\ \hline \end{gathered}$	$\begin{gathered} 30.9 \\ 7 \\ \hline \end{gathered}$	$\begin{gathered} 36.1 \\ 2 \\ \hline \end{gathered}$
	16	$\begin{gathered} 31.0 \\ 6 \\ \hline \end{gathered}$	$\begin{gathered} 38.5 \\ 0 \\ \hline \end{gathered}$	$\begin{gathered} 45.9 \\ 4 \\ \hline \end{gathered}$	$\begin{gathered} 24.2 \\ 1 \\ \hline \end{gathered}$	$\begin{gathered} 33.0 \\ 8 \\ \hline \end{gathered}$	$\begin{gathered} 41.9 \\ 4 \\ \hline \end{gathered}$
	17	$\begin{gathered} \hline 33.4 \\ 2 \\ \hline \end{gathered}$	$\begin{gathered} \hline 39.4 \\ 2 \\ \hline \end{gathered}$	$\begin{gathered} \hline 45.4 \\ 1 \\ \hline \end{gathered}$	$\begin{gathered} 23.4 \\ 2 \\ \hline \end{gathered}$	$\begin{gathered} 31.7 \\ 9 \\ \hline \end{gathered}$	$\begin{gathered} 40.1 \\ 6 \\ \hline \end{gathered}$
		male			female		
		S	m	1	S	m	1
13	12	$\begin{gathered} \hline 35.3 \\ 7 \\ \hline \end{gathered}$	$\begin{gathered} \hline 42.5 \\ 7 \\ \hline \end{gathered}$	$\begin{gathered} \hline 49.7 \\ 8 \\ \hline \end{gathered}$	$\begin{gathered} 28.7 \\ 5 \\ \hline \end{gathered}$	$\begin{gathered} \hline 35.4 \\ 9 \\ \hline \end{gathered}$	$\begin{gathered} 42.2 \\ 3 \\ \hline \end{gathered}$

	13	$\begin{gathered} 28.4 \\ 1 \\ \hline \end{gathered}$	44.4	$\begin{gathered} 60.4 \\ 1 \\ \hline \end{gathered}$	$\begin{gathered} 28.3 \\ 2 \\ \hline \end{gathered}$	$\begin{gathered} 35.8 \\ 5 \\ \hline \end{gathered}$	$\begin{gathered} 43.3 \\ 8 \\ \hline \end{gathered}$
	14	$\begin{gathered} \hline 38.0 \\ 0 \\ \hline \end{gathered}$	$\begin{gathered} \hline 49.0 \\ 9 \\ \hline \end{gathered}$	$\begin{gathered} \hline 60.1 \\ 8 \\ \hline \end{gathered}$	$\begin{gathered} \hline 29.8 \\ 6 \\ \hline \end{gathered}$	$\begin{gathered} \hline 37.2 \\ 0 \\ \hline \end{gathered}$	$\begin{gathered} \hline 44.5 \\ 5 \\ \hline \end{gathered}$
	15	$\begin{gathered} \hline 44.1 \\ 0 \\ \hline \end{gathered}$	$\begin{gathered} \hline 53.3 \\ 3 \\ \hline \end{gathered}$	$\begin{gathered} 62.5 \\ 7 \\ \hline \end{gathered}$	$\begin{gathered} 40.0 \\ 2 \\ \hline \end{gathered}$	$\begin{gathered} \hline 45.4 \\ 0 \\ \hline \end{gathered}$	$\begin{gathered} \hline 50.7 \\ 7 \\ \hline \end{gathered}$
	16	$\begin{gathered} 43.8 \\ 7 \end{gathered}$	$\begin{gathered} 53.6 \\ 7 \end{gathered}$	$\begin{gathered} 63.4 \\ 7 \end{gathered}$	$\begin{gathered} 37.6 \\ 8 \end{gathered}$	44.4	$\begin{gathered} 51.1 \\ 3 \end{gathered}$
	17	$\begin{gathered} 47.0 \\ 6 \\ \hline \end{gathered}$	$\begin{gathered} 53.5 \\ 5 \\ \hline \end{gathered}$	$\begin{gathered} 60.0 \\ 4 \\ \hline \end{gathered}$	$\begin{gathered} 33.3 \\ 9 \\ \hline \end{gathered}$	$\begin{gathered} 44.1 \\ 5 \\ \hline \end{gathered}$	$\begin{gathered} 54.9 \\ 1 \\ \hline \end{gathered}$
			male			female	
		S	m	1	S	m	1
	12	$\begin{gathered} 21.1 \\ 8 \\ \hline \end{gathered}$	$\begin{gathered} 27.5 \\ 2 \\ \hline \end{gathered}$	$\begin{gathered} 33.8 \\ 5 \\ \hline \end{gathered}$	$\begin{gathered} 18.2 \\ 0 \\ \hline \end{gathered}$	$\begin{gathered} 24.5 \\ 2 \\ \hline \end{gathered}$	$\begin{gathered} \hline 30.8 \\ 4 \\ \hline \end{gathered}$
	13	$\begin{gathered} 18.0 \\ 0 \\ \hline \end{gathered}$	$\begin{gathered} \hline 23.8 \\ 8 \\ \hline \end{gathered}$	$\begin{gathered} 29.7 \\ 6 \\ \hline \end{gathered}$	$\begin{gathered} \hline 13.0 \\ 1 \\ \hline \end{gathered}$	$\begin{gathered} \hline 17.4 \\ 7 \\ \hline \end{gathered}$	$\begin{gathered} 21.9 \\ 3 \\ \hline \end{gathered}$
14	14	$\begin{gathered} 18.3 \\ 9 \\ \hline \end{gathered}$	$\begin{gathered} 26.2 \\ 6 \\ \hline \end{gathered}$	$\begin{gathered} \hline 34.1 \\ 2 \\ \hline \end{gathered}$	$\begin{gathered} \hline 19.1 \\ 0 \\ \hline \end{gathered}$	$\begin{gathered} \hline 22.4 \\ 0 \\ \hline \end{gathered}$	$\begin{gathered} \hline 25.6 \\ 9 \\ \hline \end{gathered}$
14	15	$\begin{gathered} 14.9 \\ 7 \end{gathered}$	$\begin{gathered} 17.1 \\ 3 \end{gathered}$	$\begin{gathered} 19.3 \\ 0 \end{gathered}$	$\begin{gathered} 12.5 \\ 1 \end{gathered}$	$\begin{gathered} 17.0 \\ 5 \end{gathered}$	$\begin{gathered} 21.5 \\ 8 \end{gathered}$
	16	$\begin{gathered} 14.8 \\ 2 \\ \hline \end{gathered}$	$\begin{gathered} 16.6 \\ 3 \end{gathered}$	$\begin{gathered} 18.4 \\ 5 \end{gathered}$	6.70	$\begin{gathered} 17.7 \\ 8 \end{gathered}$	$\begin{gathered} 28.8 \\ 7 \end{gathered}$
	17	$\begin{gathered} \hline 14.6 \\ 1 \\ \hline \end{gathered}$	$\begin{gathered} 16.8 \\ 2 \\ \hline \end{gathered}$	$\begin{gathered} \hline 19.0 \\ 2 \\ \hline \end{gathered}$	7.07	$\begin{gathered} 18.9 \\ 7 \\ \hline \end{gathered}$	$\begin{gathered} \hline 30.8 \\ 6 \\ \hline \end{gathered}$
				ale a	fema		
		S					
	12	9.73					. 07
	13	10.66					. 8
	14	7.65					74
15	15	10.8					44
	16	8.77					38
	17	7.94					26
		S					
16	12	28.24		36.36		44.48	
	13	28.78		35.21		41.63	
	14	26.8		35.2		43.61	
	15	28.06		37.53		47.01	
	16	26.21		35.97		45.73	
	17	26.56		37.67		48.78	

Table 17. cont.

		male and female		
		s	M	1
17	12	18.63	38.17	57.72
	13			
	14			
	15			
	16			
	17			
				ale

		S	m	1	S	m	1
18	12	$\begin{gathered} 26.6 \\ 5 \end{gathered}$	$\begin{gathered} 31.3 \\ 5 \end{gathered}$	$\begin{gathered} 36.0 \\ 5 \end{gathered}$	$\begin{gathered} 19.5 \\ 8 \end{gathered}$	$\begin{gathered} 30.7 \\ 2 \end{gathered}$	$\begin{gathered} 41.8 \\ 7 \end{gathered}$
	13	$\begin{gathered} 24.8 \\ 0 \\ \hline \end{gathered}$	$\begin{gathered} 33.9 \\ 5 \end{gathered}$	43.1	$\begin{gathered} 28.0 \\ 1 \end{gathered}$	$\begin{gathered} 33.6 \\ 4 \end{gathered}$	$\begin{gathered} 39.2 \\ 8 \\ \hline \end{gathered}$
	14	$\begin{gathered} 27.5 \\ 0 \\ \hline \end{gathered}$	$\begin{gathered} \hline 36.2 \\ 0 \\ \hline \end{gathered}$	$\begin{gathered} 44.9 \\ 0 \\ \hline \end{gathered}$	$\begin{gathered} 27.2 \\ 8 \\ \hline \end{gathered}$	$\begin{gathered} 33.5 \\ 9 \\ \hline \end{gathered}$	$\begin{gathered} 39.9 \\ 0 \\ \hline \end{gathered}$
	15	$\begin{gathered} \hline 27.1 \\ 4 \\ \hline \end{gathered}$	$\begin{gathered} 35.7 \\ 8 \\ \hline \end{gathered}$	$\begin{gathered} 44.4 \\ 3 \\ \hline \end{gathered}$	$\begin{gathered} 28.2 \\ 2 \\ \hline \end{gathered}$	$\begin{gathered} 34.9 \\ 2 \\ \hline \end{gathered}$	$\begin{gathered} 41.6 \\ 3 \\ \hline \end{gathered}$
	16	$\begin{gathered} \hline 26.0 \\ 2 \\ \hline \end{gathered}$	$\begin{gathered} 35.0 \\ 3 \\ \hline \end{gathered}$	$\begin{gathered} 44.0 \\ 5 \\ \hline \end{gathered}$	$\begin{gathered} 30.0 \\ 5 \\ \hline \end{gathered}$	$\begin{gathered} 34.9 \\ 1 \\ \hline \end{gathered}$	$\begin{gathered} 39.7 \\ 7 \\ \hline \end{gathered}$
	17	$\begin{gathered} 25.1 \\ 5 \\ \hline \end{gathered}$	$\begin{gathered} 34.7 \\ 2 \\ \hline \end{gathered}$	$\begin{gathered} 44.2 \\ 8 \\ \hline \end{gathered}$	$\begin{gathered} 28.9 \\ 3 \\ \hline \end{gathered}$	$\begin{gathered} 36.0 \\ 9 \\ \hline \end{gathered}$	$\begin{gathered} 43.2 \\ 5 \\ \hline \end{gathered}$
		male			female		
		s	m	1	s	m	1
19	12	$\begin{gathered} 30.2 \\ 7 \\ \hline \end{gathered}$	$\begin{gathered} 35.1 \\ 6 \\ \hline \end{gathered}$	$\begin{gathered} 40.0 \\ 5 \\ \hline \end{gathered}$	$\begin{gathered} \hline 36.9 \\ 0 \\ \hline \end{gathered}$	$\begin{gathered} 44.9 \\ 7 \\ \hline \end{gathered}$	$\begin{gathered} 53.0 \\ 3 \\ \hline \end{gathered}$
	13	$\begin{gathered} \hline 31.0 \\ 3 \\ \hline \end{gathered}$	$\begin{gathered} 38.2 \\ 6 \\ \hline \end{gathered}$	$\begin{gathered} \hline 45.4 \\ 8 \\ \hline \end{gathered}$	$\begin{gathered} 33.9 \\ 4 \\ \hline \end{gathered}$	$\begin{gathered} 42.0 \\ 9 \\ \hline \end{gathered}$	$\begin{gathered} \hline 50.2 \\ 4 \\ \hline \end{gathered}$
	14	$\begin{gathered} 26.9 \\ 5 \\ \hline \end{gathered}$	$\begin{gathered} 36.2 \\ 6 \\ \hline \end{gathered}$	$\begin{gathered} 45.5 \\ 6 \\ \hline \end{gathered}$	$\begin{gathered} 36.7 \\ 1 \\ \hline \end{gathered}$	$\begin{gathered} 45.0 \\ 0 \\ \hline \end{gathered}$	$\begin{gathered} 53.2 \\ 9 \\ \hline \end{gathered}$
	15	$\begin{gathered} \hline 30.0 \\ 8 \\ \hline \end{gathered}$	$\begin{gathered} 36.6 \\ 2 \\ \hline \end{gathered}$	$\begin{gathered} 43.1 \\ 6 \\ \hline \end{gathered}$	$\begin{gathered} 31.3 \\ 6 \\ \hline \end{gathered}$	$\begin{gathered} 38.5 \\ 7 \\ \hline \end{gathered}$	$\begin{gathered} 45.7 \\ 7 \\ \hline \end{gathered}$
	16	$\begin{gathered} 15.9 \\ 8 \\ \hline \end{gathered}$	$\begin{gathered} \hline 37.6 \\ 0 \\ \hline \end{gathered}$	$\begin{gathered} \hline 59.2 \\ 2 \\ \hline \end{gathered}$	$\begin{gathered} \hline 30.2 \\ 6 \\ \hline \end{gathered}$	$\begin{gathered} \hline 39.8 \\ 1 \\ \hline \end{gathered}$	$\begin{gathered} \hline 49.3 \\ 5 \\ \hline \end{gathered}$
	17	$\begin{gathered} 28.5 \\ 0 \\ \hline \end{gathered}$	$\begin{gathered} 35.8 \\ 8 \\ \hline \end{gathered}$	$\begin{gathered} 43.2 \\ 6 \\ \hline \end{gathered}$	$\begin{gathered} 29.2 \\ 4 \\ \hline \end{gathered}$	$\begin{gathered} 36.2 \\ 7 \\ \hline \end{gathered}$	$\begin{gathered} 43.2 \\ 9 \\ \hline \end{gathered}$

4. CONCLUSION

The following conclusions were derived

1. As expected that all measurements follow a normal distribution.
2. The ANOVA test was used to find the differences between age groups. From the results of these tests, there were differences of anthropometric measurements between age groups for females (ages group from 6 to 11), except hip circumference, arm circumference, back body width, calf circumference and knee circumference are no significant differences. However, most of measurements are significant difference except back body width for age group 12 to 17 . For male students, all measurements are significant differences except arm circumference (age group 6-11). However, there are no significant differences between age groups (12-17) for all measurements (male students).
3. The key dimensions should be those which have the strongest correlations with most other body dimensions. Form the results, it can be concluded that Height, Head circumference and Neck circumference is very strongly correlated with some of dimensions for male students. Moreover, Shoulder to Shoulder length, shoulder to wrist length, and shoulder to waist length are key dimensions for female students. In general, it can be inferred that theses dimensions are the important landmarks on the body and hence should be related closely to the garment measurements.
In conclusion, the main aspect that needs to be seen by an apparel manufacturer is clothing size. They need to know the exact size before producing their clothes. Thus, the development of sizes should be according to their procedure in order to produce an accurate size that fits the consumer's body, especially children.

5. ACKNOWLEDGMENTS

This study is a part of a BSc. project conducted at School of Industrial and Manufacturing Systems Engineering at University of Benghazi in Fall 2018-2019. The authors would like to thank all participants for their contributions.

6. REFERENCES

[1] Adu-Boakye, S., Power, J., Wallace, T., Chen, Z. (2012) Development of a Sizing System for Ghanaian Women for the Production of Ready-To-Wear Clothing. In: The 88th Textile Institute World Conference 2012, 15th-17th May 2012, Selangor, Malaysia.
[2] Ariadurai, A. S., Nilusha, T. P. G. and Dissanayake, M. R. 2009. An anthropometric study on Sri Lankan school children for developing clothing sizes, Journal of Social Science, 19, 51-56.
[3] Alarody, 1.; Kared, M.; Abdelmalek, S.; An anthropometric study to develop clothing charts for Benghazi school children; B.Sc. Project, Industrial and Manufacturing Systems Engineering Department; University of Benghazi; Fall 2015/2016.
[4] Albarki, F.; Bu-Hager, A.; Basheer, M. and Ali, M.; An anthropometric study to develop clothing charts for seventh, eight and ninth grades of benghazi school children b.Sc. Project, Industrial and Manufacturing Systems Engineering Department; University of Benghazi; Spring 2016/2017.
[5] Bilhassan*, S.; Albarki, F.; Bu-Hager, A.; Basheer, M.; Ali M.; 2018(a); An anthropometric study to develop clothing charts for seventh, eighth and ninth grades of Benghazi schoolchildren; Libyan Journal of Science \& Technology vol. 7, No. 2
[6] Bilhassan, S; ELMABROK, A; ELMEHASHHSH, K; Ali, H; Kaddom, A; Elhouni, H; 2018 (b); Development of A Clothing Sizing System for Benghazian Children Based on Anthropometric Measurements; The International Journal of Engineering and Information Technology), Vol.4, No.2.
[7] Bilhassan, S., Ali, H., Boushagour, H., Mohmed, H., Alobaidy, N., Development of a Clothing Sizing System for Benghazian School Girls Students Based on Anthropometric Measurements. International Journal of Science and Engineering Applications Volume 9-Issue 03, 31-35, 2019, ISSN:-2319-7560 www.ijsea.com 31
[8] Boushagour, H.; Alobaidy, N.; Ali, H.; Mohammed, H.; An anthropometric study to develop clothing sizing system for Benghazi school girl students based on Anthropometric measurement; B.sc Project, Industrial and manufacturing system Engineering Department; University of Benghazi; Fall 2017/1018.
[9] Chan, A.C.K., 2014. The development of apparel sizing systems from anthropometric data. In Anthropometry, Apparel Sizing and Design (pp. 167-196).
[10] Dawal,S., Zadry, H., Syed Azmi, S., Rohim, S.; Sartika, S.; 2012; Anthropometric database for the learning environment of high school and university students. Int. J. Occup. Saf. Ergon., 18 (4), pp. 461-472.
[11] Elmabrouk, A.; Elmehashhash, K.; Ali, H.; Kaddom, A.; Elhouni, h,; An anthropometric study to develop clothing charts for Benghazi school children B.Sc. Project,

Industrial and Manufacturing Systems Engineering Department; University of Benghazi; Fall 2016/2017.
[12] Elurfi, A.; Abdelsalam, A.; Mohamed, H.; Alammari, M.; Develop Clothing Charts for Fifteenth, Sixteenth and Seventeenth Grades of Benghazi School Children; B.sc Project, Industrial and manufacturing system Engineering Department; University of Benghazi; Spring 2017/1018.
[13] Gupta, D., Zakaria, N., Anthropometry, apparel sizing and design, Woodhead Publishing Limited in association with The Textile Institute, UK, 2014.
[14] Gupta, D., 2014. Anthropometry and the design and production of apparel: an overview. In Anthropometry, Apparel Sizing and Design (pp. 34-66).
[15] Gupta, D. and Gangadhar, B.R., 2004. A statistical model for developing body size charts for garments. International Journal of Clothing Science and Technology, 16(5), pp.458-469.
[16] Qutubuddin SM, Hebbal SS, and Kumar ACS. 2012. Significance of anthropometric data for the manufacturing organizations. Int J Eng Res Indus Appl 5(I):111-26.
[17] Shiru, J., Abubakar, S., 2012; Anthropometry in engineering design (a case study of cassava grating machines installed in Doko and Kutigi metropolis of Lavun local government areas of Niger state) Niger. Acad. Forum, 22 (1), pp. 132-139.
[18] Veitch, D., Veitch, L. and Henneberg, M., 2007. Sizing for the clothing industry using principal component
analysis-an Australian example. Journal of ASTM International, 4(3), pp.1-12.
[19] Viviani, C., P.
M. Arezes, S. Bragança, J. Molenbroek, I. Dianat, and H. I. Castellucci. 2018. "Accuracy, Precision and Reliability in Anthropometric Surveys for Ergonomics Purposes in Adult Working Populations: A Literature Review." International Journal of Industrial Ergonomics 65: 1-16.
[20] Widyanti, A., Mahachandra, M., Soetisna, H.R. and Sutalaksana, I.Z., 2017. Anthropometry of Indonesian Sundanese children and the development of clothing size system for Indonesian Sundanese children aged 6-10 year. International Journal of Industrial Ergonomics, 61, pp.37-46.
[21] Xia, S. and Istook, C., 2017. A Method to Create Body Sizing Systems. Clothing and Textiles Research Journal, 35(4), pp.235-248.
[22] Zakaria, N. and Gupta, D., 2014. Apparel sizing: existing sizing systems and the development of new sizing systems. In Anthropometry, Apparel Sizing and Design (pp. 3-33).
[23] Zakaria, N., 2014. Body shape analysis and identification of key dimensions for apparel sizing systems. In Anthropometry, Apparel Sizing and Design (pp. 95119)

