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Abstract: This article uses the asymptotic homogenization method to investigate the mechanical characteristics of single-

walled carbon nanotubes. The asymptotic homogenization method has been used to derive the equations for the homogenized 

elastic properties matrix. Then, MATLAB is used to model nanotubes and implement the finite element simulation. Two types 

of chiralities, including armchair and zigzag, are taken into account in this regard. Young's modulus and shear modulus have 

been estimated for both armchair and zigzag nanotubes in accordance with the relationships between the derived coefficients 

and molecular mechanical characteristics. Investigations have been done into how diameter and orientation affect the 

mechanical characteristics of carbon nanotubes. The research's findings are corroborated and generally consistent with those 

found in other articles. 
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1. INTRODUCTION 
Today, with the progress of science, there are need to 

produce smaller parts in various industries such as the 

military, aviation, electronics, etc. Assembling these 

requires in order to the production of advanced materials 

with higher efficiency, leading to the increasing progress 

of research in the field of nanotechnology. Carbon 

nanotubes have a special importance in the field of 

nanotechnology due to their unique properties that they 

have, which led various scientists and researchers to try to 

accurately predict their properties. Kroto et al [1] 

investigated the mechanism of the carbon molecular chain 

and introduced fluorine by laser irradiation on the surface 

of graphite. During this approach, a significant group of 

60 carbon atoms with 5 and 6-sided arrangements are 

formed in the form of a closed shelf that is arranged in the 

form of a soccer ball. A few years after the discovery of 

fullerenes, carbon nanotubes were accidentally discovered 

in 1991 by Sumio Iijima [2] while studying carbon 

electrodes during electronic discharge. 

Carbon nanotubes have remarkable mechanical, thermal, 

and electrical properties due to their symmetrical 

structure. They are mechanically classified in the hard 

materials classes. In equal weight with the hard steel, they 

are expected to show resistance more than about one 

hundred times. In terms of thermal properties, nanotubes 

are stable up to 2800 degrees Celsius in a vacuum and up 

to 750 degrees Celsius in air. Moreover, they have two 

times higher thermal conductivity than pure diamonds. 

Also, in comparison with copper, carbon nanotubes have 

100 times more electrical load-carrying capacity [3]. In 

addition, carbon nanotubes can behave as conductive or 

semi-conductive, which is due to the arrangement of 

carbon atoms [4]. Due to the unique mechanical properties 

of carbon nanotubes, extensive studies and research have 

been conducted in this field, and these studies can be 

divided into two experimental and theoretical parts. 

Krishman et al [5] experimentally tested 27 single-walled 

nanotubes in the diameter range of 1-1.5 nm using thermal 

vibration analysis and obtained Young's modulus of 0.9 to 

1.7 TPa. By using an atomic force microscope, Tumbler et 

al. [6] obtained Young's modulus of about 1.2 TPa. 

Salvetat et al. [7] also found a value of 0.8 to 1.2 TPa for 

Young's modulus of carbon nanotubes utilizing an atomic 

force microscope. During theoretical research, Hernandez 

et al. [8] using the non-orthogonal tight junction 

formulation and considering the wall thickness as 0.34 nm, 

obtained Young's modulus of approximately 1.22 to 1.24 

TPa for single-walled nanotubes.   

Arroy et al. [9] approximated Young's modulus 0.686 TPa 

by using large atomic deformations based on the Tersoff-

Brenner potential function. Li and Chou [10] modeled the 

deformation of carbon nanotubes using structural 

mechanics approximation and stiffness matrix method and 

obtained Young's modulus equal to 0.89 -1.3 TPa and 

shear modulus equal to 0.27-0.49 TPa. Also, using the 

aforementioned method, they illustrated that the 

mechanical behavior of armchair and zigzag nanotubes is 

dependent on the diameter and orientation of the nanotube. 

Jin and Yuan [11] used the molecular dynamics method to 

investigate the mechanical properties of carbon nanotubes. 

By acquisition of numerical methods and using two 
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approximations of energy and force, they obtained the 

mechanical properties of nanotubes with a diameter range 

of 0.407 to 1.357 nm. By using the energy method, 

Young's modulus and the shear modulus were equal to 

1.236 TPa and 0.49 TPa respectively. Simultaneously, by 

using the force method, Young's modulus was obtained 

equal to 1.35 TPa, and the shear modulus was calculated 

0.45 TPa. Tserpes and Papanikos [12] by hiring the 

structural mechanic’s method and using 3D finite 

elements, modeled armchair, zigzag, and chiral nanotubes. 

They investigated the effect of three factors nanotubes 

consist of wall thickness, nanotube diameter, and 

orientation on the mechanical properties of nanotubes. 

Their investigations demonstrated that the mechanical 

properties of nanotubes are highly sensitive to changes in 

thickness, diameter, and orientation. For the wall 

thickness of 0.34 nm, the gained results from their method 

predicted Young's modulus of about 0.952 to 1.066 TPa 

and the shear modulus of approximately 0.242 to 0.504 

TPa.  

Xiao et al. [13] investigated the mechanical properties of 

nanotubes using the analytical molecular structure 

mechanics approach and using the modified Morse 

potential function. Their model was able to predict 

Poisson's ratio, Young's modulus, and the stress-strain 

relationship of nanotubes under tensile and shear loading. 

They showed that Young's modulus of the nanotube is 

sensitive to the change in diameter and orientation as well. 

They achieved Young's modulus between 1 to 1.2 TPa, 

and shear modulus between 0.4 to 0.46 TPa. They also 

gained the Poisson's ratio between 0.2 and 0.35. 

Kalamkarov et al. [14], with the homogenization method, 

obtained Young's modulus and shear modulus equal to 

1.717 TPa and 0.322 TPa respectively. Chandraseker and 

Mukherjee [15] calculated the elastic modulus and stress-

strain curve of nanotubes using the ab initio 

approximation and the atomic continuum approximation. 

They hired the experimental interatomic potential, 

Christoph-Brenner in the atomic continuum 

approximation. The obtained results stated that the 

mechanical properties of the nanotube do not depend on 

the diameter and orientation, Young's modulus is between 

0.47-0.69 TPa and the shear modulus is between 0.19-0.24 

TPa. Rafiee et al. [16] predicted Young's modulus of 

carbon nanotubes using the complete nonlinear finite 

element model. They benefited the spring element to 

approximate molecular interactions in the atomic structure 

of nanotubes. Considering the nonlinear effects, they 

found that Young's modulus of the nanotube is 

independent of the orientation and diameter of the 

nanotube, and they obtained Young's modulus of about 

1.325 TPa for the single-walled nanotube.  

2. THE MOLECULAR STRUCTURE 

OF SWCNTS 
A hexagonal lattice of graphene is rolled up into a round-

hollow tube to make single-walled carbon nanotubes, 

Figure (1). The geometrical structure of the arrangement 

of atoms in carbon nanotubes is defined as chirality which 

is characterized by the chiral vector Ch and the chiral 

angle 𝜃. The orientation vector Ch can be defined as a 

linear combination of unit basis vectors in the hexagonal 

lattice as follows: 

 

𝐶ℎ = 𝑛𝑎1 + 𝑚𝑎2                                                     (1) 

 

In Eq. (1), a chiral angle denotes the direction of the chiral 

vector 𝜃: 

𝜃 = cos−1
(2𝑛 + 𝑚)

2√((𝑛2 + 𝑚2 + 𝑛𝑚)
                           (2) 

 

The chiral angles are 30° and 0°, when 𝑛 = 𝑚 and 𝑛 = 0, 

are respectively substituted for armchair and zigzag 

nanotubes. However, the radius of nanotubes at room 

temperature can be calculated as follows: 

 

𝑅 =
𝑙𝑒𝑛𝑔𝑡ℎ 𝑜𝑓 𝐶ℎ 

2𝜋
=

𝑎√(𝑛2 + 𝑚2 + 𝑛𝑚)

2𝜋
        (3) 

The equilibrium bond length of the atoms in the graphite 

sheets is denoted by the expression 𝑎 = 𝑎0√3 [5] 

 

Figure 1. Armichair and zigzag nanotubes developed 

from graphene [19] 

Chirality has a significant effect on the properties of 

nanotubes, including electrical conductivity, mechanical 

strength, and optical properties. Unlike graphite, which is 

considered a semiconductor, nanotubes can behave as a 

metal or a semi-metal according to the orientation vector 

[20]. 

3. ASYMPTOTIC 

HOMOGENIZATION METHOD 
With recent technological advancements, the utilization of 

composite materials in the industry has grown 

significantly. Composite materials are materials with 

distinct constituents whose qualities differ from the 

constituents themselves. Solids and voids are included in 

the classification of cellular bodies as a simple type of 

composite. It is possible to think of a composite with 

regular heterogeneity as having an alternating or periodic 

structure. It should be highlighted that this heterogeneity's 
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size should be extremely small in relation to the object's 

dimensions. These composites might be referred to as 

periodic microstructures based on modeling assumptions. 

The study of boundary value problems, including a 

significant amount of inhomogeneity, is highly 

challenging even with the aid of contemporary, high-speed 

computers. The natural solution to this issue is to 

substitute the composite with an equivalent model, a 

process known as homogenization [21]. The mechanical 

properties of the corresponding homogenized model were 

calculated using the theory of homogenization, which was 

created in 1970 [22–24]. In order to acquire the properties 

of the material on this scale, the first step in the 

homogenization theory is to mathematically assume that 

the material structure is periodic and solve the issues on 

the unit cell. The boundary value problems for the entire 

material come next in the second step. 

 

4. PERIODICITY AND 

ASYMPTOTIC EXPANSION 

An inhomogeneous material has a regular periodic 

structure if the functions defining the physical quantities 

or geometry of the material obey the following property. 

 

( )   (x)F x NY F+ =                                    (4)  

 
x = [x1, x2, x3]T is the position vector of points and N is 

a 3x3 matrix as follows: 

 

1

2

3

0 0

0 0

0 0

n

N n

n

 
 

=
 
          

          (5) 

 
In Eq. (4), Y = (Y1, Y2, Y3)  is a constant vector that 

determines the periodicity of the structure, and F can be a 

scalar, a vector, or even a tensor function of the location 

vector X. In a composite material with periodic repetition 

of Y unit cells, the mechanical behavior is described by 

the following relation: 

 

  ij ijkl klC e =                                         (6) 

 

The Cijkl  tensor is a periodic function of the spatial 

coordinate X. Therefore, the following equation is 

obtained: 

 

( ) ( )  ijkl ijklC x NY C x+ =                              (7)  

 
Cijkl has a periodicity of Y. In the theory of 

homogenization, it is assumed that period Y is small 

compared to the dimensions of the problem. In general, we 

will encounter two behaviors in a composite with a 

periodic structure. The first one is at the macroscopic level 

or the global level of X, which shows slow changes, and 

the other is at the microscopic level or the local level of y, 

which describes fast fluctuations. The ratio of the actual 

length of a single vector in microscopic coordinates to the 

actual length of a vector in macroscopic coordinates is 

defined by the parameter ε as follows: 

( ) Y
x


=                                                            (8) 

The functions that determine the behavior of composites 

can be expressed as follows: 

( ) ( ) ( )

( )

0 1

2 2

  ,   ,   

,    

Q x Q x y Q x y

Q x y

 



= + +

+ 
         (9) 

This method is called Double asymptotic expansion. This 

extension means that the approximate function of X and Y 

converges to the original function at infinity [21]. 

5. ELASTICITY IN CELLULAR 

BODIES 

This section explains the homogenization approach for 

cellular materials in the weak form state and extracts the 

essential equations for a numerical solution using finite 

elements. Guedes and Kikuchi were the first to employ 

this technique [25]. 

When volume force f and traction vector t are applied to a 

porous and pore-filled material with alternating 

microstructures, the elastic problem is taken into account. 

 

 

Figure 2. The problem of elasticity in a cellular body 

[26]. 

Ω is the range of R3 space with smooth boundaries Г  

including Гd (displacement boundaries) and Гt (traction 

boundaries). 

The main cell of the Y cell body is shown in figure (3). 

The domain Y is a rectangle of the space R3, which is 

defined as follows and has a hole ν. 

     1 2 30, * 0,  * 0,Y Y Y Y=                         (10) 

The boundaries of ν are defined by s as follows: 

( )s =                                                 (11) 
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It is assumed that it is smooth with sufficient size. In a 

general case, the traction P can also exist next to the hole. 

The solid part of the cell is defined by ¥ as follows: 

          (12) 

 

The following relation is also defined: 

                                    (13) 

 

It is assumed that no hole νi crosses the boundary Г. 

 

 

Figure 3. Cell body unit [26] 

The followings are stress-strain and strain-displacement 

equations: 

1
e ( )( )

2
l

ij

k l
kl

ijkl

k

kl

u u

x x

E e

 




 
= +

 

=

                                 (14) 

with condition  є єu є   the virtual displacement 

equation can also be defined as follows:  

        

є

є
t

є
єk i

ijkl i i

l j

є

i i i i
Г s

u
E d F d

x x

t dГ P dS є 




   



 
= +

 

+ 



 

 Ω
Ω Ω

               

by using the asymptotic expansion, Eq. (15) is expressed 

as follows: 

( )

0 0 1 0

k i k k i k i
ijkl 2

l j l l j l j

0 1 1 2

k k i k k i

l l j l l j

u v u u v u v1 1
E {

ε y y ε x y y y x

u u v u u v
ε .. }d

x y x x y y



        
+ + + +  

         

         
+ + + +    

          



Ω=

 

*¥   
є є

t

є

i i i i i i
Г s

F d t dГ P dS є    + +    ΩΩ
Ω

   

Herein, by setting equal powers of ε and simplifying 

equations, the following equations are finally obtained. 

For further study, refer to reference [21].  

( ) ( )

( )

( ) ( )
t

kl 0

p k i

ijkl ijpq
¥

q l j

ik
ijkl

¥
j

i i i i ¥
¥ Г

χ u x ν x1
E E dY d

y x x

ν xΨ1
E dY d

y x

1
f dY ν x d t ν x dГ  νєV

l

Y

Y

Y

    
− =      
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Ω
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Ω
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to simplify the above equations, the following notations 

are considered: 

( )

( )

( )

kl

pH

ijkl ijkl ijpq
¥

q

k
ijkl

¥

i
¥

χ1
x E E dY  

y

Ψ
 τ x E dY 

y

1
 f dY

ij

l

i

E
Y

b x
Y

 
= −   


=



=






    

Therefore, equation (16) can be written as follows:  

( ) ( )
( )

( )

( ) ( ) ( )
t

0

k i iH

ijkl

l j j

i i i i ¥
Г

u x ν x ν x
d τ x d

x x x

x ν x d t ν x dГ   νєV

ijE

b

 



  
= +

  

+ 

 

 

Ω Ω

Ω
  

This Eq. (19) is very similar to virtual displacement Eq. 

(15) and shows the macroscopic balance. In the above 

equation, 𝐸𝑖𝑗𝑘𝑙
𝐻  is the homogeneous elastic constant, τij  is 

the average stress remaining inside the cell, which is 

related to the traction P next to the hole, and 𝑏𝑖is the 

average volumetric force [21]. 

6. SOLVING EQUATIONS BY 

FINITE ELEMENT NUMERICAL 

METHOD 

For the case where the thickness of the structure is small, 

(such as pipes and shells D>> t), the assumption of plane 

stress can be used for analysis, in this case, the stress and 

strain relationships become as follows: 

1 11 12 1

2 12 22 2

12 66 12

0

0

0 0

D D є

D D є

D







     
    

=    
          

                   (20) 

By using equation (19) and applying the simplifications 

and using the finite element method, the homogenized 

      |      ¥  
x

x є y є


= =
  
  

  
Ω Ω

1

Allcell

ii
S S =

=

(17) 

(19) 

(18) 

(15) 

(16) 
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elements of the matrix of elastic properties can finally be 

found. Interested readers are referred to reference [21].  

( )( )

( )( )

( )( )

( )( )

11 11 1

12 12 1

22 22 2

66 66 3

 
1

 

1

1

1

H T

Y

H T

Y

H T

Y

H T

Y

D D d є dY
Y

D D d є dY
Y

D D d є dY
Y

D D d є dY
Y









= −

= −

= −

= −









                 (21) 

In the above relations  and ( )є  are the displacement 

field and the strain field respectively. 1d , 2d , 3d  are the 

columns of the elasticity matrix D and are defined as 

follows: 

11 12

1 12 2 22 3

66

0

           0

0 0

D D

d D d D d

D

     
     

= = =     
     
           

Therefore, according to equation (21), homogenized 

elastic properties matrix elements can be obtained. For 

further reading, refer to reference [21]. 

7. FINITE ELEMENT SIMULATION  

Here, Eq. (21) was solved using the finite element method, 

and the homogeneous modulus was obtained. Modeling of 

the single wall Carbon Nanotube is very sophisticated, 

therefore, in order to analyze and simulation of SWCNT, 

the model should be simplified. In this research, one of the 

impressed models which are presented is implemented 

[29]. The nanotube geometry was modeled by MATLAB 

software, which also was used by Ferdosi et al [30] to 

model single-walled carbon nanotubes to calculate the 

buckling and post-buckling behavior. In the homogeneous 

method, that are been used in this article, it is necessary to 

consider the cross-section of the carbon-carbon bond as a 

rectangle, Figure (6). 

A space-frame model is here employed for the zigzag and 

armchair nanotubes with different chiralities and aspect 

ratios. In this approach, the linkage between carbon atoms 

is modeled as a three-dimensional elastic beam. By 

establishing a linkage between structural mechanics and 

molecular mechanics, the sectional property parameters of 

these beam members are obtained. The general potential 

energy, when the electrostatic interactions are ignored, is 

expressed as follows: 

VDW ELE E E E E E E   = + + + + +             (23) 

In the equation above, Eρ, Eθ, Eω, and Eτ are respectively 

the potentials related to bond stretching, angle changes, 

inversion, and twisting as shown in Figure (4). Also, EVDW 

and EEL are Vandals forces and electrostatic reactions, 

which both are caused by non-bonded reactions.  

 

 

 

  

 

 

 

 

 

Figure 4. Interatomic reactions in molecular 

mechanics: (a) Tension. (b) Bending. (c) Inversion. (d) 

Torsion [27]. 

In single-walled carbon nanotubes, the first four terms that 

have the most effect are considered. The main energy 

distribution of all atoms comes from the first four terms of 

Eq. (23) and the potentials caused by non-bonded 

reactions can be ignored. Therefore, the energy of the 

system is expressed as follows: 

E E E E E   = + + +                                     (24) 

In the above equation, each of the terms is defined as 

follows: 

21
( )

2
r i

Bonds

E k r =                                        (25) 

21
( )

2
i

angles

E k  =                                      (26) 

21
( )

2
i

Bonds

E k  =                                      (27) 

21
( )

2
i

Bonds

E k  =                                       (28) 

And in the above relationship, ∆ri, ∆ϴi, ∆ωi, and ∆φi, 

respectively, show the bond stretching energy, bond angle 

bending energy, out-of-plane torsion energy, and dihedral 

(22) 
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angle torsion energy. Moreover, kr, kϴ, kω, kτ, 

correspond to the force constants associated with the 

stretching, bending, and torsion of bonds. According to the 

structural mechanic’s theory, the covalent forces between 

two carbon atoms are replaced by the 3D beam element 

and the carbon atoms act as the joint of the beam, which is 

shown in Figure (5). 

 
Figure 5. beam element: (a) Tension. (b) Bending. (c) 

Torsion [26]. 

 

Based on the theory of structural mechanics, the 

Calculation of strain energy for analysis of stress and 

strain, in different mechanical structures, is inevitable. 

Some structures should be analyzed for strength based on 

strain energy release to figure out the tolerance of the 

design under different loading conditions such as impact 

or quasi-static load [28]. Based on the theory of structural 

mechanics, the strain energy of a uniform beam under the 

axial force N, bending moment M, and torsion T is 

expressed as follows: 

𝑈𝐴 =
1

2
∫

𝑁2

𝐸𝐴
𝑑𝑙

𝐿

0

=
1

2

𝑁2

𝐸𝐴
=

1

2

𝐸𝐴

𝐿
(Δ𝐿)2                     (29) 

𝑈𝑀 =
1

2
∫

𝑀2

𝐸𝐼
𝑑𝑙

𝐿

0

=
1

2

𝐸𝐼

𝐿
𝛼2 =

1

2

𝐸𝐼

𝐿
(2α)2                (30) 

𝑈𝑇 =
1

2
∫

𝑇2

𝐺𝐽
𝑑𝑙

𝐿

0

=
1

2

𝑇2𝐿

𝐺𝐽
=

1

2

𝐺𝐽

𝐿
(Δ𝛽)2                    (31) 

In the above equations, E and G, are Young's modulus and 

shear modulus of the beam element, and A, I, J, and L 

respectively represent the cross-section, the moment of 

inertia, the polar moment of inertia, and the length of the 

beam element. In addition, ∆L, ∆α, and ∆β denote the 

deviation of bond length, bond angle, and dihedral angle 

from the equilibrium position, respectively. By comparing 

equations (25) to (28) with equations (29) to (30), the 

relationship between structural mechanic’s parameters, 

EA, EI, and GJ, with molecular mechanic’s parameters, kr, 

kθ, and kτ will be established as follows: 

r
EA

k
L

=                                                            (32) 

EI
k

L
=                                                            (33) 

GJ
k

L
=                                                            (34) 

Herein, the force coefficients kr, kϴ, and kτ are known as 

hardness constants. The values are presented in table (1). 

 

Table 1. Values used for force constants [26]. 

τk ϴk rk 

10-7*78/2 
2N nm/rad 

10-7*76/8 
2N nm/rad 

10-7*52/6 
N/nm 

According to Eqs. (32-34), EA, EI, and GJ can be gained 

by choosing the appropriate cross-section. By choosing a 

rectangular cross section for the carbon-carbon bond, 

which is shown in Figure (6), the desired properties for the 

written code are obtained. 

 

Figure 6. rectangular cross section for carbon-carbon 

bond [26]. 

For the rectangular cross section, the area and moment of 

inertia will be achieved from the following equations: 

3 3

12 12

b h bh
A bh     I =      I =     J=I +I   =       (35) 

Then, by comparing equations (32) and (33), the following 

formula for parameter b will be obtained. 

12
r

k
b  

k

=                                                       (36) 

By substitution force coefficient values presented in table 

(3) on Eq. (36) the value of 0.127 nm will be obtained for 

parameter b. The rest of the parameters consist of Young's 

modulus (E), shear modulus (G), and Poisson's ratio (υ) 

are also obtained from the aforementioned equations. The 

values used in this article are presented in Table (2). In this 

article, the h parameter is taken as the thickness parameter 

of the nanotube and is equal to 0.34 nm.  
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Table 2. Information entered for single-walled 

nanotubes from the article [26]. 

h    b υ G E 

0.34 
(nm) 

0.127 
(nm) 

0.3 
0.825 
(TPa) 

2.144 
(TPa) 

 

Therefore, by entering the information presented in table 

(2), the matrix of elastic properties for the desired unit cell 

shown in figure (7) was calculated. Obtained results for 

armchair and zigzag nanotubes are reported in tables (3) 

and (4). 

Table 3. The results for the elastic properties matrix of 

1050 4-node elements for armchair (Terapascal units). 

66D 22D 12D 11D 

0.352 0.993 0.361 1.098 

 

Table 4. The results for the elastic properties matrix of 

1050 4-node elements for zigzag (Terapascal units). 

66D 22D 12D 11D 

0.349 1.105 0.360 0.997 

 

By assuming the plane stress state and for an orthotropic 

material, the relationship between the matrix coefficients 

of elastic properties and the mechanical properties are 

defined as bellow: 

1 12 1
11 21

12 21 12 21

2
22 66 12

12 21

     
1 1

    
1

E E
D D

E
D D G



   

 

= =
− −

= =
−

                 

Since the matrix of elastic properties is symmetry, it is 

concluded that:  

 

         

There are five equations and five unknowns in this. The 

mechanical characteristics of zigzag and armchair 

nanotubes are concurrently determined by solving these 

equations.  

 

 

 

 

 

 

 

 

 

 

Figure 7. carbon nanotube unit cell (a) armchair (b) 

zigzag [14]. 

 

8. DISCUSSION AND CONCLUSION 

This study used the asymptotic homogenization method to 

examine the mechanical properties of single-walled 

carbon nanotubes for zigzag and armchair nanotubes. 

Here, just the Wander wall forces are taken into account 

in a periodic arrangement of single-walled carbon 

nanotube unit cells. In actuality, the homogenization 

procedure substituted the intended structure for an 

equivalent homogenized model that behaved identically to 

the initial heterogeneous structure. 

The homogenized equations are resolved using the finite 

element method. For a wall thickness of 0.34 nm, the 

information needed to be taken from the article [26] was 

altered, and the issue was resolved for 1050 4-node 

elements. Tables (3) and (4) for armchair and zigzag 

nanotubes, respectively, show the obtained results. The 

armchair's Young's modulus and the zigzag nanotube's 

shear modulus were determined by using the values shown 

in Tables (3) and (4) and using equations (37) and (38). 

Young's modulus results are illustrated in Figures (8-10) 

and contrasted with results from various articles. 

A. Young's modulus: Figures (8-10) show Young’s 

modulus for armchair and zigzag nanotubes that were 

obtained using the homogenization method. 

The amount of Young's modulus achieved for the zigzag 

and armchair nanotubes is 0.972 TPa and 0.875 TPa, 

respectively, as illustrated in Figure (8). It is evident that 

the zigzag Young's module is larger than the armchair. 

According to Li and Chou [10], Kalamkarov et al. [14], 

and Rafiee et al. [16], the mechanical properties of carbon 

nanotube cells are affected by their orientation, which 

accounts for this variation. The Young's module zigzag in 

Figure (8) is almost 8% larger than the armchair, which is 

reasonably close to the outcomes reported by Sao et al. 

[13]. They discovered a 5% variation in modulus between 

12 21

1 2

ν ν

EE
=

(37) 

(38) 
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zigzag and armchair. Arroyo et al. [9] also predicted the 

same values for Young's modulus of the armchair and 

zigzag nanotubes in large diameters. 

The Young's modulus for carbon nanotubes acquired using 

the current method for various diameters yields the same 

values, as can be seen from Figures (9) and (10), which is 

in good agreement with the outcomes obtained using the 

homogenization method of Kalamkarov et al. [14]. The 

Young's modulus values achieved at small diameters vary 

from those obtained using other methods. As shown in 

Figures (9) and (10), Rafiee et al. [16], Xiao et al. [13], 

Arroyo et al. [9], and Li and Chou [10] indicated that 

Young's modulus of both armchair and zigzag nanotubes 

will increase at low diameters with increasing diameters of 

the nanotube. Also, it is shown that in the larger diameters 

the growth in Young's modulus magnitude stops and 

reaches a constant level. 

 

 

Figure 8. Comparison of the obtained results for Young’s modulus of armchair and zigzag nanotubes from 

homogenization method. 

 

 

Figure 9. Comparison of the present obtained results for the Young’s modulus of the armchair with different articles. 
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The homogenization method's formulation ignores the 

influence of the nanotube's curvature, which is the cause of 

these minor variations in smaller diameters. In fact, the 

carbon-carbon bonds are more distorted at lower diameters 

because the nanotube has higher curvature at smaller 

diameters. The impact of bond distortion and curvature 

steadily diminishes as the diameter of the nanotubes grows. 

Because of this, the influence of diameter and curvature on 

mechanical qualities in larger diameters is much 

diminished. The current findings produced by the 

homogenization approach obtained results from other 

different described ways as a result of increasing the 

diameter.

 

 

  

Figure 10. Comparison of the present obtained results for the Young’s modulus of zigzag with different articles.  

 

B. Shear modulus: Figures (11-13) show the shear 

modulus for armchair and zigzag nanotubes that were 

obtained using the homogenization method.  

As it is shown in Figures (11-13), the shear modulus for 

the armchair and zigzag nanotubes are, consequently, 

0.352 TPa and 0.349 TPa, which are in suitable assent with 

the gained results by Chandraseker and Mukherjee [15], 

and also Li and Chu. [10]. Kalamkarov et al. [14], 

predicted the difference between magnitude of the shear 

modulus of armchair and zigzag nanotubes. In Figure (11), 

the shear module armchair is about 2.4% larger than 

zigzag, which is acceptably close to the results declared by 

Kalamkarov et al. [14]. As can be seen in Figures 12 and 

13, the prediction of the values obtained for the shear 

modulus in armchair and zigzag nanotubes are in good 

agreement with the predictions obtained by the Figures 

method of Kalamkarov et al [14], and Chandraseker et al 

[15]. Moreover, it is illustrated that the small differences 

in lower diameters, which are also mentioned in the 

previous part, exist in the shear module too. The amount 

of distinction is reduced by increasing the diameter.  
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Figure 11. Comparison of the obtained results for shear modulus of armchair and zigzag nanotubes from 

homogenization method. 

 

 

Figure 12. Comparison of the present obtained results for the shear modulus of armchair with different articles.   
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Figure 13. Comparison of the present obtained results for the shear modulus of zigzag with different articles.   

As shown in Figures (8-10) for Young’s modulus and 

Figures (11-13) for shear modulus, the results obtained 

from the homogenization method are in good acceptance 

with the gained results from different articles. The 

differences in the results in distinct articles can be 

considered as a result of the different parameters and 

methods used in predicting the mechanical properties of 

carbon nanotubes like the wall thickness and Carbon-

Carbon cross-section area. 

One of the advantages of homogenization method is the less 

computational effort in predicting the mechanical 

properties of nanotubes compared to other methods. By 

measuring the homogenized elastic coefficients, the 

hexagonal atomic model can be replaced with the 

homogeneous model of nanotubes. Hence, we will be able 

to find all the properties and requirements of nanotubes 

such as free vibrations, buckling, bending, etc.  

9. CONCLUSION 

In this study, the asymptotic homogenization approach 

was used to calculate the Young's and shear modulus of 

single-walled carbon nanotubes for armchair and zigzag 

nanotubes. 1050 4-node elements were employed in the 

finite element method to solve the obtained equations. 

Although Young's modulus and shear modulus values of 

carbon nanotubes calculated using this method are not 

sensitive to variations in diameter, the results demonstrate 

that different outcomes can be achieved by altering the 

orientation of carbon nanotubes. Young's modulus of 

carbon nanotubes for the armchair and zigzag nanotubes 

is calculated using the asymptotic homogenization 

approach to be 0.875 and 0.972 TPa, respectively. 

Likewise, the shear modulus is 0.352 TPa for one and 

0.349 TPa for the other. Both of these have strong 

concordance with other approaches discussed in earlier 

studies. 
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