
International Journal of Science and Engineering Applications

Volume 11-Issue 05, 66 - 71, 2022, ISSN:- 2319 - 7560

DOI: 10.7753/IJSEA1105.1003

www.ijsea.com 66

A Literature Survey of

Complexity Metrics for Object-Oriented Programs

Nevy Kimani Maina1

School of Computing and

Information Technology

Murang' a University of

Technology, Kenya

Geoffrey Muchiri Muketha2

School of Computing and

Information Technology

Murang' a University of

Technology, Kenya

Geoffrey Mariga Wambugu3

School of Computing and

Information Technology

Murang' a University of

Technology, Kenya

Abstract: Software complexity refers to the factors that determine the complexity level of a software project. High complexity is caused

by the many attributes used in the system and the complex logic relationships among these attributes and features. The increased

complexity of software is undesirable and affects maintenance. Over the years, Software Engineering scholars recommended several

metrics like Halstead metric, cyclomatic complexity, and line of code metrics to deal with the complexity. With the complexity increasing

as time goes by, there is a need for better metrics that can evaluate software more effectively. This research aims to develop a metrics

model to determine the features that cause high complexity in software design architectures and to implement the multi-language

complexity evaluation model for software architectures. Although this is the case, the literature on complexity metrics that implement

diagram-centric complexity measures are inadequate. This study presents the outcomes obtained from our survey on metrics utilized in

object-oriented environments. The survey comprises a small set of the most common and frequently implemented software metrics,

which could be adopted to a group of object-oriented metrics and object-oriented programming. After reviewing the literature, Findings

indicate that metrics that employ diagram-centric complexity measures are lacking.

Keywords: Software quality, Software metrics, complexity metrics, Object-oriented programs

1. INTRODUCTION
Attributes of a software are measured using a software metric

to improve its quality. Many software metrics for software

quality assurance have been proposed and continue to be

presented. Software complexity metrics for procedural

languages have been demonstrated to highlight program areas

that are sophisticated to understand, test, or are prone to errors.

Objected-oriented programs for software complexity metrics

have been proposed by several researchers. Traditional

procedural metrics (McCabe’s Cyclomatic Complexity, and

Halstead’s Software Science) and modifications of them and

class and inheritance measures are among the metrics presented

so far. However, little research has been done to show that these

measurements accurately reflect the complexity of object-

oriented programs. Furthermore, it's unclear whether or not

typical procedural sizes bear object-oriented complexity.

Although most of these measures apply to all programming

languages, some metrics are particular to a subset of the

languages. Among metrics of this kind, are those that have been

proposed for object–oriented programming languages.

Researchers agree that high complexity suggests poor design,

which can be uncontrollable at times and impacts software

quality. Measures of diagram design can be used to identify

large diagrams that could be split or choose design reviews for

select diagrams.

Thus, this paper is a literature survey analyzing the current

software complexity metrics to determine whether there are

gaps in the literature.

The study is partitioned in the following sections and format;

section 2 is a brief overview of the basic ideas of object-

oriented programs, and section 3&4 presents the existing

complexity metrics for software. Future recommendations and

the conclusions are presented in section 5.

2. BASIC CONCEPTS OF OBJECT-

ORIENTED PROGRAMS
OOP (Object-Oriented Programming) has been advertised to

lead to high-quality software and enhance efficiency of the

programmer by reusing code.

The following are some of the most widely used

terminologies in object-oriented metrics:

1. Object: An object is a type of entity that may

save a state and perform various operations on

that state.

2. Message: it can be defined as a request for an

object to operate on another object.

3. Class: A collection of objects with a shared

structure and behavior expressed by methods. It

acts as a template from which an item can be

created.

4. Method: A method on an object that is

available to all class instances does not have to

be unique.

5. Instantiation: Creating an object instance and

binding or adding data to it.

http://www.ijsea.com/

International Journal of Science and Engineering Applications

Volume 11-Issue 05, 66 - 71, 2022, ISSN:- 2319 - 7560

DOI: 10.7753/IJSEA1105.1003

www.ijsea.com 67

6. Inheritance: A class-to-class connection where

an item in one class inherits features from more

than one classes.

7. Cohesion: How closely the methods in a class

are related to one another.

8. Coupling: Object A and Object B are connected

if and only if A sends a message to B.

The main distinctions between object-oriented programming

(OOP languages) with classic procedural programming (CPP)

are message forwarding, encapsulation, and inheritance. OOP

encapsulates data and behavior (methods) in classes and objects

(instances of classes). The meaning of encapsulation is that a

programmer only interacts with an object via its interface while

the inner workings of an object are hidden. Encapsulation also

prevents unintended consequences in other items. Rather than

calling a procedure or function, objects in an OOP setup sends

message to entities responsible for performing the activity.

Inheritance enables programmers to create class hierarchies in

which characteristics of more broad and straightforward parent

classes are inherited by sub-classes. Sub-classes can also be

specialized by overriding or including parts of the inherited

code. One of the main benefits of OOP is that inheritance

encourages and enables code reuse. Because OOP is so young,

there are several ideas, recommendations, or methodologies

accepted globally for writing programs that are of high-quality.

Furthermore, little research has been conducted to analyze what

makes an OOP application difficult and complex.

3. TRADITIONAL SOFTWARE

COMPLEXITY METRICS
Software complexity measurements indicate how easy or

difficult it is for a programmer to accomplish normal

programming activities like understanding, testing, and

maintaining a program. The degree to which the qualities

assumed to lead to complexity within the code is measured by

software complexity metrics rather than the complexity itself.

The extent to which certain code qualities appear in the code

influences how easy or difficult it is for a programmer to work

with it. It might be difficult to test if a program has a convoluted

control flow and multiple application routes. As a result, the

number of conditional or looping statements might be used to

measure complexity.

The metrics described here were chosen from among the most

widely used traditional software metrics that have been

proposed and could easily be applied to object-oriented

programming.

3.1 Line of Code (LOC)
The LOC has been in existence for quite some time, it is more

basic, and the most common metric for calculating the size of

a program [1,2] Line of code LOC refers to a program's number

of instructions in the SLOC (Source Line of Code), excluding

comments and black lines. LOC has been criticized for lacking

accountability, functionality, cohesiveness, lack of counting

standards, and language and programmer dependency [2].

SLOC has other alternatives which include thousands or KLOC

(Kilo Lines of Code), thousands of delivered source

instructions (KDSI), bytes or number of characters, and non-

commented lines of code (NCLOC) [2]. Both LOC and its

derivatives, on the other hand, have restrictions.

3.2 McCabe Complexity Model
This model focuses on data flow in the architecture [3]. The

program is represented by the metrics as a graph, and the

definition of complexity, C is as follow;

C=E-N+2P

N represents the number of nodes, P represents the number of

connected components, and E represents the number of edges.

One of the issues with McCabe's complexity is that it does not

have different control flow statements (conditional statements)

and nesting levels of varying control flow structures.

For instance, an edge can be a function/method call, a use

relationship, or an inheritance link.

The restrictions must be remembered while using this metric,

and the mapping between the graph and the model elements

should be clearly defined.

3.3 Halstead Complexity
Software science by Halstead is based on the advancement of

determining the size of the program through counting lines of

code [4]. Halstead's metrics determine the number of operands

and the number of operators and their respective occurrence in

the code (program). The operands and operators are considered

when measuring Program Vocabulary, Length, Estimated

Program Length, Potential Volume, Effort, and Difficulty.

Critics have characterized Halstead as being complex to

compute and depending on a complete code [5]. They are also

criticized for being inadequate and confused. However, from a

perspective of measurement theory, they are reasonable [6] and

have solved line of code weaknesses where the computer

algorithm is defined as a collection of tokens [7].

3.4 Henry and Kafura’s Metrics
The complexity of a module based on the fan-out

and fan-in of data flow is defined by the Henry-

Kafura Information flow [8]. The module indicates that all sets

of procedures refer to a certain global variable.

http://www.ijsea.com/

International Journal of Science and Engineering Applications

Volume 11-Issue 05, 66 - 71, 2022, ISSN:- 2319 - 7560

DOI: 10.7753/IJSEA1105.1003

www.ijsea.com 68

A procedure's complexity considers the sophistication of its

code in terms of the length of lines and how complex its

connected to its surrounding in terms of whether it is fan-out or

fan-in. Fan-in is the amount of local flows that end at the

procedure and the number of worldwide variables from which

the function obtains data. Fan-out is the amount of regional

flows from the process and the number of variable updates.

Complexity = length of the procedure x [fan - in X

fan - out]2

The metrics used to determine the structural sophistication are

fan-in and fan-out. They also help to define maintainability.

These two measures can be defined for files and procedures.

An example is shown in the figure below, which links them as

edges and modules as nodes. For example, consider the

following graph with the modules as nodes and the links as

edges.

Fan-in of a particular module shows the total modules that

depends on it. A particular module’s fan-out indicates the

number of modules that depend on this module. The figure

above shows that Module-D has a fan-out of 2 links and a fan-

in of 3 links.

If the fan-in of a module is higher, it represents a better design

structure; that is, the module has been used several times. Thus,

it can be utilized for re-usability and decreases cost

redundancy.

Fan-out shows are coupled among various modules. If the fan-

out is high, this is an indication that the module is highly

coupled. The higher the fan-out, the more the maintainability.

Shepperd [9] recommended changing H&K’s data flow metric.

The measure of Information Flow in the Shepherd’s refinement

to the complexity of Henry and Kafura for module M is;

Complexity = (fan-in*fan-out)2

The refinement was proposed to measure while excluding the

length factor. Improvements by Shepperd [9] recorded a

particular perception of the structure of information flow; thus,

they coincide with measurement theory. The empirical

validation by Shepherd the relationship between the measure

and a certain process measure referred to as development time.

In Shepperd's data, the relationship between K&F measure and

development time was insignificant. But, his pure-data flow

structure was found to be significantly related. Thus, the level

of data flow is closely related with development time [10].

The Shepherd’s refinement to the H&K measure of IFC for a

module was analyzed by Sofia Nystedt and Claes Sandros [11]

and indicated that the two are not extremely helpful while

predicting program’s errors. However, various metrics

packages calculate the information flow complexity with

multiple formulas.

4. OOP SOFTWARE COMPLEXITY

METRICS
Code reuse is the strongest argument that favors OOP. This is

because it permits applications to be built faster and, at the

same time, enhances software quality. Although this is the case,

the benefits are only evident if the reused code is evident and is

of high quality. In the recent past, various OOP software

complexity metrics have been recommended as a measure of

the quality of software. The majority of them are either

quantitative measures of OOP or traditional software

complexity metrics extension, measuring features perceived to

lead to complexity.

The analysis of these metrics is presented in the subsequent

sections.

4.1 Chdamber and Kemerer Metrics

Various metrics have been defined for the object-oriented

domain. One of the most common metrics are Chidamber and

Kemerer metrics. Chidamber & Kemerer (1994) are Weighted

Methods per Class (MMC), and Depth of Inheritance Tree

(DIP), which can be used to determine the maximum length

from the root to the node of the tree, where greater design

complexity is made by deeper trees. Number of Chidren (NOC)

shows the number of immediate sub-classes that are

subordinated to a class from the class hierarchy. Coupled

between Object Classes), which is the count of number of

classes which couples it. Response for a Class (RFC) refers to

a set of methods can be adopted to respond to a message gotten

by an object class and Lack of Cohesion in Methods (LCOM)

which refers to the degree of similarity of methods. A class is

more cohesive if the amount of similar methods is more

significant. Various researchers have empirically approved the

metrics [12,13,14,15]. Although this is the case, researchers

have found them theoretically deficient [16,17].

4.2 MOOD Metrics Suite
The MOOD metrics object-oriented domain structural

complexity measures. These metrics were proposed in 1994

[24]. Method Hiding Factor (MHF), Attribute Inheritance

Factor (AIF), Attribute Hiding Factor (AHF), Coupling Factor

(CF), Polymorphism Factor (PF) and Method Inheritance

(MIF) were recommended in 1994 [18]. The MHF and AHF

were proposed as measures of encapsulation. The MHF metric

is the ratio of the invisibilities specified method in all classes to

the sum of attributes defined.

In contrast, the Attribute Hiding Factor is the ratio of all

attribute invisibilities declared in all classes to the sum of all

attributes. Both AIF and MIF are based on inheritance. The

Method Inheritance metric is the sum of all methods inherited

in the entire classes divided by the sum of all available

methods. The AIF statistics on the other hand, is the sum of all

attributes inherited in all classes divided by the total number of

attributes available in all classes. PF is the ratio of the real

number polymorphic scenarios for a given class to the

maximum number of various polymorphic scenarios for the

same class. The coupling factor is the ratio of the greatest

http://www.ijsea.com/

International Journal of Science and Engineering Applications

Volume 11-Issue 05, 66 - 71, 2022, ISSN:- 2319 - 7560

DOI: 10.7753/IJSEA1105.1003

www.ijsea.com 69

possible number of non-inherited connections [25]. These

measures have been chastised for failing to anticipate class

errors [26].

4.3 Mishra Inheritance Metrics
Two inheritance metrics were proposed by Mishra (2012),

which are program level ACI (Average Complexity

Inheritance), and class level CCI (Class Complexity due to

Inheritance). There is a light at the end of the tunnel since the

metrics have been found to be mathematically correct through

the use of Weyuker’s properties. Although the metrics need to

be verified empirically to determine whether they can be useful

measures of software quality.

4.4 Li Metrics
Six metrics were proposed by Li (1998) to solve the limitations

of C&K metrics [17]. The metrics include Number of Ancestor

Classes (NAC), Number of Descendent Classes (NDC),

Number of Local Methods (NLM), Couple Through Abstract

Data Type (CTA), Class Method Complexity (CMC), and

Coupled Through Message Passing (CTM). The NAC

determines the total number of ancestor classes inherited by a

class. The total number of local methods in a class is measured

by the number of local methods that can be analyzed outside

the class. The CMC metric totals the internal structure

complexity of all local methods. An NDC metrics provides the

sum of sub-classes of a class. The CTA measures the total

number of classes that are utilized as abstract data types. In

conclusion, the Coupling Through Message Passing metric

returns the number of various messages sent from a class to

different classes without considering the inheritance

characteristic [23]. HoI metrics solved the gaps in C&K metrics

since they required modifications to effectively approximate

maintainability.

4.5 Abreu and Carapuca Metrics
Five metrics were defined by Abreu and Carapuca (1994) that

are utilized to determine inheritance in OOP [18]. These

include Total Progeny Count (TPC), Total Children Count

(TCC), Total Parent Count (TPAC), Total Length of

Inheritance Chain (TLI), Total Ascendancy Count (TAC). The

TCC is the number of classes directly inherited. TPC is the

number of classes that directly or indirectly inherits from a

class. TPAC is the number of sub-classes from which a class is

inherited directly. TAC was represented and defined as the

number of super-classes from which a class inherits directly or

indirectly. Lastly, the inheritance total length is the amount of

edges in the inheritance hierarchy graph. The metrics focused

only on the inheritance perception of the OOP and other

structural perception of a program.

4.6 Lorenz and Kidd Metrics Suite
Three metrics were derived by Lorenz and Kidd (1994) which

include NMI (Number of Methods), NNA (Number of New

Methods), and NMO (Number of Methods Overridden) [19].

The number of methods measures the total number of methods

which a subclass inherits from. In contrast, the number of

methods overridden by a subclass and a class, and number of

new methods measures the number of new strategies in a

subclass [20]. The metrics have been criticized to measure class

properties and to be simplistic. This is an indication that they

cannot be depended on to analyze the quality of a software [21,

22].

4.7 Misra, Adewumi, Fernandez-Sanz and

Damasevicius Metrics
Objected oriented complexity measures were proposed [27].

MC (Method Complexity), AC (Attribute Complexity), CWC

(Coupling Weight for a Class), CLC (Class Complexity), and

CC (Code Complexity) are some of the measures used. The MC

metric is calculated by adding all of a class's allocated weights.

The weights of calls and called methods are added to the CWC

metric. The sum of features of a class is determined using the

AC metric. By adding AC and MC, the CLC measure

determines class complexity. Finally, the CC metric considers

the interaction between classes, which increases the complexity

of the classes. The weights of subclasses are multiplied, and all

classes in the same level are allocated the same weight. These

measures have been shown to be theoretically valid, but they

must be tested in real-world applications to be useful.

5. CONCLUSIONS AND FUTURE

WORK
 This study's findings indicate that almost all software metrics

calculate are model-centric measurements of software and not

diagram-centric. Class metrics, for example, tally all of a class's

attributes, affiliations, operations, and so on. It makes no

difference whether these elements appear on any diagrams or

the classes themselves. Diagram-centric metrics are also

intriguing for practical reasons. We can utilize said diagram

size and complexity metrics to find large diagrams that can be

divided up or choose diagrams for design reviews and

inspections.

In an attempt to solve the lack of diagram-centric complexity

measures that implement diagram size and complexity

measures, future studies should focus on defining complexity

metrics for the measurement of complexity during the design

modules. The metrics should be capable of use at the

architectural and detailed design stages and assist in preventing

module implementation and maintenance problems. Further,

the results of the experimental evaluation of these metrics will

assist in demonstrating the benefits of the design method in

controlling complexity through the software life-cycle and

hence in demonstrating the ability to assist in producing

maintainable design products and software.

http://www.ijsea.com/

International Journal of Science and Engineering Applications

Volume 11-Issue 05, 66 - 71, 2022, ISSN:- 2319 - 7560

DOI: 10.7753/IJSEA1105.1003

www.ijsea.com 70

Nevy Kimani Maina is an ICT

OFFICER at the Department of

Information Communication

Technology at Murang'a County

Assembly, Kenya. He earned his

Bachelor of Business and

Information Technology (BBIT)

from Murang' a University of

Technology in 2016. He is

currently pursuing his MSc. in

Information Technology at Murang'a University of

Technology, Kenya. His research interests include software

metrics, software quality, and business intelligence.

Geoffrey Muchiri Muketha is the

Director, Directorate of Postgraduate

Studies Murang' a University of

Technology, Kenya. He received his

BSc. in Information Science from

Moi University in 1995, his MSc. in

Computer Science from Periyar

University, India in 2004, and his

Ph.D. in Software Engineering from

Universiti Putra Malaysia in 2011.

He has wide experience in teaching and supervision of

postgraduate students. His research interests include software

and business process metrics, software quality, verification and

validation, empirical methods in software engineering, and

component-based software engineering. He is a member of the

International Association of Engineers (IAENG).

Dr. Geoffrey Mariga Wambugu

Dean of the School of Computing

and Information Technology,

Murang' a University of Technology,

Kenya. He obtained his BSc Degree

in Mathematics and Computer

Science from Jomo Kenyatta

University of Agriculture and

Technology in 2000, and his MSc

Degree in Information Systems from the University of Nairobi

in 2012. He holds a Doctor of Philosophy in Information

Technology degree from JKUAT. His interests include

Machine Learning and Text Analytics. Dr. Mariga has been

involved in the design, development and implementation of

IT/ICT and Computer Science Curricula in different

Universities and Colleges in Kenya.

6. REFERENCES
[1] Debbarma, M. K., Debbarma, S., Debbarma, N., Chakma, K.,

& Jamatia, A. (2013). A review and analysis of software

complexity metrics in structural testing. International

Journal of Computer and Communication Engineering, 2(2),

129-133.

[2] Albin, T, S. Art Of Software Architecture, vol. 1. John Wiley

And Sons Ltd, New York, 2013.

[3] Albuquerque, D., Cafeo, B., Garcia, A., Barbosa, S.,

Abrahao, S., & Ribeiro, A. (2015). Quantifying usability

of domain-specific languages: An empirical study on

software maintenance. Journal of Systems and Software,

101, 245-259.

[4] Bagheri, H., Garcia, J., Sadeghi, A., Malek, S., &

Medvidovic, N. (2016). Software architectural principles

in contemporary mobile software: from conception to

practice. Journal of Systems and Software, 119, 31-44.

[5] Barillari, F., Gorga, I., & Piccinini, S. (2018). U.S. Patent

Application No. 10/025,586.

[6] Fenton, N., & Bieman, J. (2014). Software metrics: a

rigorous and practical approach. CRC press.

[7] Bass, L., Clements, P., & Kazman, R. (2003). Software

architecture in practice. Addison-Wesley Professional.

[8] Bhatia, M. P. S., Kumar, A., & Beniwal, R. (2016).

Ontologies for software engineering: Past, present and

future. Indian Journal of Science and Technology, 9(9).

[9] Bonet, R., & Salvador, F. (2017). When the boss is away:

Manager–worker separation and worker performance in a

multisite software maintenance organization.

Organization Science, 28(2), 244-261.

[10] Hourani, H., Wasmi, H., & Alrawashdeh, T. (2019, April).

A code complexity model of object oriented programming

(OOP). In 2019 IEEE Jordan International Joint

Conference on Electrical Engineering and Information

Technology (JEEIT) (pp. 560-564). IEEE.

[11] Sandros, C., & Nystedt, S. (1999). Software Complexity

and Project Performance.

[12] Denaro, G., Lavazza, L., & Pezze, M. (2003, November).

An empirical evaluation of object oriented metrics in

industrial setting. In The 5th CaberNet Plenary Workshop,

Porto Santo, Madeira Archipelago, Portugal.

[13] Basili, V.R. Rombach, H.D. 'The TAME Project: Towards

Improvement- Oriented Software Environments'. IEEE

Trans, on Softw. Eng. 14(6) pp758-773.1988.

[14] Muketha, G.M. (2011). Size and complexity metrics as

indicators of maintainability of business process

execution language process models (Doctoral dissertation,

Universiti Putra Malaysia).

[15] Ndia, John & Muketha, Geoffrey & Omieno, Kelvin.

(2019). A SURVEY OF CASCADING STYLE SHEETS

COMPLEXITY METRICS. International Journal of

Software Engineering & Applications. 10. 21-33.

10.5121/ijsea.2019.10303.

[16] McCall, J.A., Richards, P.K., and Walters, G.F., (1977)

"Factors in Software Quality", RADC TR-77-369, Vols I,

II, III, US Rome Air Development Centre Reports.

[17] Hansen, P., & Hacks, S. (2017). Continuous Delivery for

Enterprise Architecture Maintenance. Full-scale Software

Engineering/The Art of Software Testing, 56.

[18] Lin, C. J., & Yeh, D. M. (2016, December). A Software

Maintenance Project Size Estimation Tool Based On

Cosmic Full Function Point. In Computer Symposium

(ICS), 2016 International (pp. 555-560). IEEE.

[19] Linos, P., Lucas, W., Myers, S., & Maier, E. (2007,

November). A metrics tool for multi-language software.

In Proceedings of the 11th IASTED International Conference

on Software Engineering and Applications (pp. 324-329).

ACTA Press.

[20] Baroni, A. L., & Abreu, F. B. (2003, July). An OCL-based

formalization of the MOOSE metric suite. In Proc. 7th

ECOOP Workshop on Quantitative Approaches in Object-

Orietend Software Engineering.

[21] King’ori, Ann Wambui and Muketha, Geoffrey Muchiri

and Micheni, Elyjoy Muthoni, A Literature Survey of

Cognitive Complexity Metrics for Statechart Diagrams

(July 31, 2019). International Journal of Software

Engineering & Applications (IJSEA), Vol.10, No.4, July

2019,

http://www.ijsea.com/

International Journal of Science and Engineering Applications

Volume 11-Issue 05, 66 - 71, 2022, ISSN:- 2319 - 7560

DOI: 10.7753/IJSEA1105.1003

www.ijsea.com 71

[22] Harrison, R., Counsell, S., & Nithi, R. (1997, July). An

overview of object-oriented design metrics. In Proceedings

Eighth IEEE International Workshop on Software

Technology and Engineering Practice incorporating

Computer Aided Software Engineering (pp. 230-235). IEEE.

[23] Gupta, A., & Jha, R. K. (2015). A survey of 5G network:

Architecture and emerging technologies. IEEE access, 3,

1206-1232.

[24] e Abreu, F. B., & Carapuça, R. (1994). Candidate metrics for

object-oriented software within a taxonomy

framework. Journal of Systems and Software, 26(1), 87-96.

[25] Neelamegam, C., & Punithavalli, M. (2009). A survey-object

oriented quality metrics. Global Journal of Computer Science

and Technology, 9(4), 183-186.

[26] Shaik, A., Reddy, K., & Damodaram, A. (2012). Object

oriented software metrics and quality assessment: Current

state of the art. International Journal of Computer

Applications, 37(11), 6-15.

[27] Misra, J. R., & Irvine, K. D. (2018). The Hippo signaling

network and its biological functions. Annual review of

genetics, 52, 65-87.

http://www.ijsea.com/

