
International Journal of Science and Engineering Applications

Volume 12-Issue 01, 108 – 111, 2023, ISSN:- 2319 - 7560

DOI: 10.7753/IJSEA1201.1035

www.ijsea.com 108

The Impact of GloVe and Word2Vec Word-Embedding

Technologies on Bug Localization with Convolutional

Neural Network

Ahmed Sheikh Al-Aidaroos

Department of Information Technology

Al-ahgaff University

 Hadhramout, Mukalla, Yemen

Sara Mohammed Bamzahem

Department of Information Technology

 Al-ahgaff University

 Hadhramout, Mukalla, Yemen

Abstract: In the field of software engineering, software quality assurance faces many challenges, including overcoming the problem

of identifying errors in the source code. Finding the location of the error in the source code is a very important process, as is taking

advantage of the semantic information available in the bug reports and the source code to find the similarities between them, using

modern techniques called word embedding. This study aims to demonstrate how GloVe and Doc2Vec word-embedding technologies

affect bug localization accuracy and performance. Therefore, this study proposes to adapt DeepLoc by using GloVe embedding

techniques to process the source code instead of Word2vec and using Word2vec embedding techniques to process the bug report

instead of Sent2Vec. AspectJ represents the large dataset, which contains many bug reports, while SWT's small dataset contains

fewer bug reports. Experimental results show that the improved DeepLoc on SWT achieves 0.60 and 0.72 MAP and MRR,

respectively. While the improved DeepLoc on AspectJ achieves 0.17 and 0.27 MAP and MRR, respectively. The results of the

improved DeepLoc should be compared using two advanced models from previous studies: DeepLoc, DeepLocator.

Keywords: Bug Localization; Deep Learning; Word Embedding Techniques, GloVe Technique, Doc2Vec Technique.

1. INTRODUCTION
Software developers depend on the software life cycle when

developing their software, which consists of several phases,

including the testing and maintenance phases. However, after

the software is used by real users, some errors or unexpected

behaviors in the software's tasks are known as bugs. In this

case, users write a report describing these errors, and thus the

program must enter the maintenance phase.[1]. Localizing

bugs requires a lot of effort and takes a lot of time on the part

of software developers, so its cost is very expensive.[2].

Therefore, there is a need to facilitate the fault localization

process to save effort, cost, and time. Moreover, bug reports

are written in natural language, while source code files are

written in programming languages. Therefore, a solution to

the language incompatibility between natural languages and

programming languages is necessary. Thus, several solutions

have been proposed to localize the errors [2-6].

NOPL [3] is one of these solutions. By utilizing the angelic

localization algorithm, NOPL takes a buggy program and test

suite as input and generates a debug with a conditional

expression such as if then, and else statements as output.

Although NOPL effectively successfully fixed bugs related to

conditional if statements in Java, it did not consider the rest

of the other code statements in Java. Moreover, NOPL is

limited to Java only and does not recognize other

programming languages. Also, in some test cases, the

inability to set the maximum execution time is caused by an

angelic fix localization causing an infinite loop. Another

study [4] proposed a new paradigm of information-theoretic

infrared methods to support error localization tasks in

software systems and aim to establish accurate semantic

similarity relationships between source code and bug reports.

These methods, including Mutual Information (PMI) and

Uniform Google Distance (NGD), exploit coexistence

patterns of code terms in a software system to reveal hidden

textual semantic dimensions that other methods often fail to

capture. Furthermore, the study [5] DeepLocator, a deep

learning-based model, was proposed to improve error

localization performance through semantic information in

error reports. This is done using Word2Vec word embedding

technology to handle source code and bug reports. However,

the approach can be affected by derivation and the removal of

stop words. Some reports are written in long terms or in an

incomprehensible language, affecting the results’ quality.

Recently, a newer version of DeepLocator called DeepLoc

was released[6], a model that makes full use of semantic

information It processes bug reports and each line of source

code into vectors and retains the semantics of the sentence in

the vector. These vectors are then fed into CNNs to extract

their hidden semantics and properties and discover the

correlation between the feature vectors extracted from the bug

reports and the source code. Thus, DeepLoc was using

Word2Vec for source code and Sent2Vec for bug reporting.

Although the study showed that using Word2Vec to process

the source code is better than Sent2Vec because the source

code contains keywords such as "public," "for," "void," and

"int). However, the study [7] confirmed that using GloVe

gives better and faster results than Word2Vec. Thus, as a first

scenario, this study proposed using GloVe word embedding

technology to process source code, while Word2Vec word

embedding technology was used to process bug reports. In

addition, another study [2] proposed a model that takes

advantage of different script properties of error reports and

source files as well as relationships between previously fixed

error reports. Therefore, the study used one of the word

embedding techniques, the global vector, for source code

processing and bug reporting. However, the quality of bug

reports, identifier naming conventions, and annotation

methods in source files pose a threat to external validity. Also,

open-source datasets are set in size, and if they are written in

http://www.ijsea.com/

International Journal of Science and Engineering Applications

Volume 12-Issue 01, 108 – 111, 2023, ISSN:- 2319 - 7560

DOI: 10.7753/IJSEA1201.1035

109

a language with software other than Java, this affects the

quality of the results. Thus, the Doc2Vec [8] is one of the best

ways that takes much less time to complete the processing

process, so it is one of the best options to solve the time and

speed challenge. The study also confirmed that the Doc2Vec

model is much faster to build than traditional methods such

as Word2Vec or Fast text word embedding techniques.

Therefore, as a second scenario, this study proposed to utilize

the GloVe word embedding technique to process the source

code, while the Doc2Vec word embedding technique was

used to process the bug reports.

2. LITERATURE REVIEW
Many studies have discussed bug localization in different

approaches [2-6, 9-12]. Generally, these approaches can be

categorized into 3 categories: the traditional program

analysis ,machine learning & (information retrieval), and

deep learning. even though the study discussed the most

important achievements and challenges in the field of

research, it was absent from many other contributions in the

field.

One study in [3] Which uses an angelic localization algorithm

to fix errors in conditional statements such as if, then and so

on clauses. This, named NOPL. However, it does not take into

account the rest of the other statements in Java. Moreover,

NOPL is not limited to Java only it recognizes other

programming languages. Also, it causes a defective patch

localization.

Khatiwada et al. in [4] proposed a model of infrared

informatics methods to support error localization tasks in

software systems. Although the study succeeded in

determining the localization of the error by arranging the files

using IR techniques, it affected the error tracking in the

software system to understand the cause of the error and

isolate the relevant parts. While this process can be feasible

when analyzing smaller systems, analyzing relatively large

and complex systems can be tedious and error prone.

Moreover, [9] proposed text retrieval (TR), where a search

source code is indexed, which is then queried for the relevant

code file for a given bug report. Although the study succeeded

in determining the localization of errors through information

retrieval techniques, However, TR-based methods showed

poor performance when using all-text in bug reporting.

Gharibi et al. [2] proposed a text properties model is a multi-

component approach to error localization that takes advantage

of the unique text properties of error reports and source files

and word-embedding techniques that arrange the relevant

source files for each error report and then search for

similarities between the source code files and the error report

so that it can be reached where it has a relationship to the error

report in the source code. In this way, however, the quality of

error reports, identifier naming conventions, and the way

comments are written in source files pose a threat of incorrect

results. Furthermore, DeepLocator[5] proposed a deep

learning-based model for semantics in error reports and

source code. DeepLocator bridges the semantic gap by using

an Abstract Syntax Tree to analyze the syntax of the source

code. In addition, one uses word-embedding techniques to

achieve semantic similarities, however, the approach can be

affected by the removal of stop words. If developers in the

project team prefer to use very long statements to express bug

reports, the filter size should also be longer in the neural

network settings, and these factors affect the approach. After

that, DeepLocator was developed into DeepLoc by Xiao et al.

The study [6] proposed The DeepLoc model is a new model

based on deep learning that takes full advantage of semantic

information, although the study successfully fixed the error

and improved performance and accuracy of the model as

shown in Figure1.

Figure 1: The Overall Structure of Deeploc

However, localization procedure made it difficult to represent

the source code with Sent2Vec. Therefore, Sent2Vec is not

good for converting source files into vectors because source

code is written in programming language and contains

reserved words such as constant, public, etc., as proven by the

study [6].Furthermore, the DeepLoc model work, consisting

of six phases: analysis and pre-processing, token matching,

VSM similarity, stack trace, semantic similarity, and fixed

bug reporting . as shows in Figure 2 This is a simplified

explanation of the six stages that operate in DeepLoc:

Source code files

New Bug

Report

Token

Maching
VSM

Similarity

Stack

Trace

Semantic

Similarity

Combined

Word2Vec
Sent2vec

Fixed Bug

Reports

Previously

Fixed Bug

Report

Bug ReportSource code

Trained

DeepLoc

Bug

Report

Buggy

Files

Figure 2: The Stages of The Deeploc

 Some studies have demonstrated that the use of different

word embedding techniques is possible in the field of error

localization. There are studies that have used Word2Vec

technology for source code processing and bug reporting. In

addition, other studies have used Word2Vec technology for

source code processing and Sent2Vec for error reporting.

More importantly, studies have shown that using GloVe for

both source code and bug reporting can achieve the same

goal. While this study proposes to try two scenarios, the first

uses GloVe technology for source code and Word2Vec

technology for error reporting. As for the second scenario,

that uses GloVe techniques for source code and Do2Vec for

bug reporting in order to ensure the effectiveness of these

proposed techniques compared to previously implemented

techniques.

International Journal of Science and Engineering Applications

Volume 12-Issue 01, 108 – 111, 2023, ISSN:- 2319 - 7560

DOI: 10.7753/IJSEA1201.1035

110

3. METHODOLOGY

Enhanced DeepLoc Model, a deep learning-based model that

automatically detects errors in source code by compiling

problematic files associated with bug reports. The model

consists of six phases: analysis and pre-processing, token

matching, VSM similarity, stack trace, semantic similarity,

and fixed bug reporting. Moreover, in the improved approach,

the change was only in the semantic similarity phase. The

words themselves cannot be entered directly into CNN [13].

Thus, pre-processed words must be embedded in vectors, and

there are many types of word embedding techniques that have

been accepted so far in the field of bug localization and that

have proven effective in this field and in different fields. In

addition, this study used empirically tested techniques to

convert words in bug reports and source files into vectors that

preserve words with high efficiency and accuracy. Error

indicators in error reports generally consist of summaries and

descriptions of many words. Fortunately, error reports are

written in natural language, so each word in the report is

converted to a vector using one of the words embed methods

known as "word2vec methods." Moreover, try to get the best

results by using efficient methods to automatically handle the

source code and convert the code from source to vectors

quickly and accurately. Thus, the improved DeepLoc method

used a semantic similarity technique known as "Global

Vector." This approach is used in Spacy12's GloVe Common

Crawl model to calculate semantic similarity for processing

source code.

4. PROPOSED MODEL

Our proposed bug localization model utilized the Word2vec

embedding techniques to process the bug report; and GloVec

word embedding techniques will also be used to process the

source code. as shown in the Figure 3.

Source code files

New Bug

Report

Token

Maching

VSM

Similarity

Stack

Trace

Semantic

Similarity

GloVec

(Spacy)

Word2vec

word

embedding

Fixed Bug

Reports

Previously

Fixed Bug

Report

Bug ReportSource code

Trained

DeepLoc

Bug

Report

Buggy

Files

Figure 3: The Overall Structure of Our proposed bug

localization model

5. RESULTS AND DISCUSSION

In this paper, the output of running the Our proposed bug

localization model that GloVe technology was used to

process the source code, while Word2Vec technology was

used to process the bug report to check the effects on

DeepLoc's performance in terms of the evaluation matrix:

accuracy, MRR, and MAP. The dataset consists of two parts:

AspectJ, which represents large projects, and SWT, which

represents small projects.

PART1: RESULTS OF SWT

comparing the results of the Our proposed bug localization

model to several complex bug localization models such as

DeepLocator and DeepLoc, based on the same data set (SWT)

as illustrated in Table 1.

Table 1. The Overall Performance of Scenario one and

the Previous Studies on SWT

Graphics Our Model DeepLoc DeepLocator

Accuracy@1 0.65 0.39 0.36

Accuracy@5 0.81 0.66 0.60

Accuracy@1

0
0.88 0.77

0.75

MAP 0.60 0.40 0.39

MRR 0.72 0.49 0.48

As shown in Table1, the results of our proposed bug

localization model which show the best performance among

all previous studies in terms of all evaluation matrix criteria.

However, our proposed bug localization model gains 0.65 in

Accuracy@1, Therefore, this paper found that the first

scenario is effective with small projects, as illustrated in

Figure 4.

Figure 4: The Performance Comparison of Scenario 1 and

the previous studies on WST

PART2: RESULTS OF ASPECTJ

Comparing the results of our proposed bug localization model

to several complex bug localization models such as DeepLoc

and DeepLocator, based on the same data set (AspectJ) as

illustrated in Table 2.

Table 2. The Overall Performance of Scenario one and

the Previous Studies on AspectJ

Graphics Our Model DeepLoc DeepLocator

Accuracy@1 0.17 0.45 0.40

Accuracy@5 0.36 0.71 0.66

Accuracy@1

0
0.52 0.80 0.78

MAP 0.17 0.42 0.34

MRR 0.27 0.51 0.49

International Journal of Science and Engineering Applications

Volume 12-Issue 01, 108 – 111, 2023, ISSN:- 2319 - 7560

DOI: 10.7753/IJSEA1201.1035

111

As shown in Table 2, the results of our proposed bug

localization model on the AspectJ dataset were lower than all

other models in terms of all evaluation matrix criteria.

Therefore, this paper found that the first scenario is not

suitable for large projects, as shown in Figure 5.

Figure 5: The Performance Comparison of Scenario 1 and

the Previous Studies on AspectJ

6. CONCLUSION AND FUTURE WORK
In this paper, an approach that benefits software engineers is

improved by finding the wrong part in the source code to

easily correct the error later on. This has adopted the use of

different word embedding methods, text analysis, and

semantic similarity. This study was performed on the

DeepLoc model, which is a deep learning-based model that

consists of a neural network with word embedding

techniques. Current approaches to error localization focus on

similarities between reports and source code or relationships

between term weights. However, most of these methods

ignore semantic information in error reports and source files.

Since there is a lexical difference between error reporting and

source code in particular, the proposed approach bridges the

semantic gap using embedding techniques. Keywords to

remember when writing bug reports and source code In

addition, compare the proposed approach with different state-

of-the-art methods (DeepLocator, HyLoc, LR + WE, and Bug

Locator), and then implement the approach in the AspectJ and

SWT dataset projects, which contain a lot of error reports and

source code files. The experimental results showed that the

best performance obtained through the proposed approach

was with the SWT data set.

Where the value of MAP and MRR is greater than all previous

methods except for the textual properties model, whose

values are slightly greater than the proposed approach. In the

future, it intends to improve the performance of DeepLoc by

adding a Doc2Vec technique to handle bug reports.

7. REFERENCES

[1] S. K. Lukins, N. A. Kraft, and L. H. Etzkorn, "Bug

localization using latent dirichlet allocation,"

Information and Software Technology, vol. 52, pp. 972-

990, 2010.

[2] R. Gharibi, A. H. Rasekh, M. H. Sadreddini, and S. M.

Fakhrahmad, "Leveraging textual properties of bug

reports to localize relevant source files," Information

Processing & Management, vol. 54, pp. 1058-1076,

2018.

[3] J. Xuan, M. Martinez, F. Demarco, M. Clement, S. L.

Marcote, T. Durieux, D. Le Berre, and M. Monperrus,

"Nopol: Automatic repair of conditional statement bugs

in java programs," IEEE Transactions on Software

Engineering, vol. 43, pp. 34-55, 2016.

[4] S. Khatiwada, M. Tushev, and A. Mahmoud, "Just

enough semantics: An information theoretic approach

for IR-based software bug localization," Information and

Software Technology, vol. 93, pp. 45-57, 2018.

[5] Y. Xiao, J. Keung, Q. Mi, and K. E. Bennin, "Improving

bug localization with an enhanced convolutional neural

network," in 2017 24th Asia-Pacific Software

Engineering Conference (APSEC), 2017, pp. 338-347.

[6] Y. Xiao, J. Keung, K. E. Bennin, and Q. Mi, "Improving

bug localization with word embedding and enhanced

convolutional neural networks," Information and

Software Technology, vol. 105, pp. 17-29, 2019.

[7] J. Pennington, R. Socher, and C. D. Manning, "Glove:

Global vectors for word representation," in Proceedings

of the 2014 conference on empirical methods in natural

language processing (EMNLP), 2014, pp. 1532-1543.

[8] R. Lee, " Computer and Information Science 2021—

Summer-Book " vol. Volume 985, 2021.

[9] C. Mills, E. Parra, J. Pantiuchina, G. Bavota, and S.

Haiduc, "On the relationship between bug reports and

queries for text retrieval-based bug localization,"

Empirical Software Engineering, vol. 25, pp. 3086-3127,

2020.

[10] S. Amasaki, H. Aman, and T. Yokogawa, "A

Comparative Study of Vectorization Methods on

BugLocator," in 2019 45th Euromicro Conference on

Software Engineering and Advanced Applications

(SEAA), 2019, pp. 236-243.

[11] J. Zhou, H. Zhang, and D. Lo, "Where should the bugs

be fixed? more accurate information retrieval-based bug

localization based on bug reports," in 2012 34th

International Conference on Software Engineering

(ICSE), 2012, pp. 14-24.

[12] N. Miryeganeh, S. Hashtroudi, and H. Hemmati,

"Globug: using global data in fault localization," Journal

of Systems and Software, vol. 177, p. 110961, 2021.

[13] Y. Zhang and B. Wallace, "A sensitivity analysis of (and

practitioners' guide to) convolutional neural networks

for sentence classification," arXiv preprint

arXiv:1510.03820, 2015.

