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Abstract: In the field of software engineering, software quality assurance faces many challenges, including overcoming the problem 

of identifying errors in the source code. Finding the location of the error in the source code is a very important process, as is taking 

advantage of the semantic information available in the bug reports and the source code to find the similarities between them,  using 

modern techniques called word embedding. This study aims to demonstrate how GloVe and Doc2Vec word-embedding technologies 

affect bug localization accuracy and performance. Therefore, this study proposes to adapt DeepLoc by using GloVe embedding 

techniques to process the source code instead of Word2vec and using Word2vec embedding techniques to process the bug report 

instead of Sent2Vec. AspectJ represents the large dataset, which contains many bug reports, while SWT's small dataset contains 

fewer bug reports. Experimental results show that the improved DeepLoc on SWT achieves 0.60 and 0.72 MAP and MRR, 

respectively. While the improved DeepLoc on AspectJ achieves 0.17 and 0.27 MAP and MRR, respectively. The results of the 

improved DeepLoc should be compared using two advanced models from previous studies: DeepLoc, DeepLocator. 
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1. INTRODUCTION 
Software developers depend on the software life cycle when 

developing their software, which consists of several phases, 

including the testing and maintenance phases. However, after 

the software is used by real users, some errors or unexpected 

behaviors in the software's tasks are known as bugs. In this 

case, users write a report describing these errors, and thus the 

program must enter the maintenance phase.[1]. Localizing 

bugs requires a lot of effort and takes a lot of time on the part 

of software developers, so its cost is very expensive.[2]. 

Therefore, there is a need to facilitate the fault localization 

process to save effort, cost, and time. Moreover, bug reports 

are written in natural language, while source code files are 

written in programming languages. Therefore, a solution to 

the language incompatibility between natural languages and 

programming languages is necessary. Thus, several solutions 

have been proposed to localize the errors [2-6]. 

NOPL [3]   is one of these solutions. By utilizing the angelic 

localization algorithm, NOPL takes a buggy program and test 

suite as input and generates a debug with a conditional 

expression such as if then, and else statements as output. 

Although NOPL effectively successfully fixed bugs related to 

conditional if statements in Java, it did not consider the rest 

of the other code statements in Java. Moreover, NOPL is 

limited to Java only and does not recognize other 

programming languages. Also, in some test cases, the 

inability to set the maximum execution time is caused by an 

angelic fix localization causing an infinite loop. Another 

study [4]  proposed a new paradigm of information-theoretic 

infrared methods to support error localization tasks in 

software systems and aim to establish accurate semantic 

similarity relationships  between source code and bug reports. 

These methods, including Mutual Information (PMI) and 

Uniform Google Distance (NGD), exploit coexistence 

patterns of code terms in a software system to reveal hidden 

textual semantic dimensions that other methods often fail to 

capture.  Furthermore, the study [5]   DeepLocator, a deep 

learning-based model, was proposed to improve error 

localization performance through semantic information in 

error reports. This is done using Word2Vec word embedding 

technology to handle source code and bug reports. However, 

the approach can be affected by derivation and the removal of 

stop words. Some reports are written in long terms or in an 

incomprehensible language, affecting the results’ quality. 

Recently, a newer version of DeepLocator called DeepLoc 

was released[6], a model that makes full use of semantic 

information It processes bug reports and each line of source 

code into vectors and retains the semantics of the sentence in 

the vector. These vectors are then fed into CNNs to extract 

their hidden semantics and properties and discover the 

correlation between the feature vectors extracted from the bug 

reports and the source code. Thus, DeepLoc was using 

Word2Vec for source code and Sent2Vec for bug reporting. 

Although the study showed that using Word2Vec to process 

the source code is better than Sent2Vec because the source 

code contains keywords such as "public," "for," "void," and 

"int). However, the study [7] confirmed that using GloVe 

gives better and faster results than Word2Vec. Thus, as a first 

scenario, this study proposed using GloVe word embedding 

technology to process source code, while Word2Vec word 

embedding technology was used to process bug reports. In 

addition, another study [2]  proposed a model that takes 

advantage of different script properties of error reports and 

source files as well as relationships between previously fixed 

error reports. Therefore, the study used one of the word 

embedding techniques, the global vector, for source code 

processing and bug reporting. However, the quality of bug 

reports, identifier naming conventions, and annotation 

methods in source files pose a threat to external validity. Also, 

open-source datasets are set in size, and if they are written in 
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a language with software other than Java, this affects the 

quality of the results. Thus, the Doc2Vec [8]  is one of the best 

ways that takes much less time to complete the processing 

process, so it is one of the best options to solve the time and 

speed challenge. The study also confirmed that the Doc2Vec 

model is much faster to build than traditional methods such 

as Word2Vec or Fast text word embedding techniques. 

Therefore, as a second scenario, this study proposed to utilize 

the GloVe word embedding technique to process the source 

code, while the Doc2Vec word embedding technique was 

used to process the bug reports. 

2. LITERATURE REVIEW 
Many studies have discussed bug localization in different 

approaches [2-6, 9-12]. Generally, these approaches can be 

categorized into 3 categories: the traditional program 

analysis  ,machine learning & (information retrieval), and 

deep learning.  even though the study discussed the most 

important achievements and challenges in the field of 

research, it was absent from many other contributions in the 

field. 

One study in [3]  Which uses an angelic localization algorithm 

to fix errors in conditional statements such as if, then and so 

on clauses. This, named NOPL. However, it does not take into 

account the rest of the other statements in Java. Moreover, 

NOPL is not limited to Java only it recognizes other 

programming languages. Also, it causes a defective patch 

localization. 

Khatiwada et al. in [4]  proposed a model of infrared 

informatics methods to support error localization tasks in 

software systems. Although the study succeeded in 

determining the localization of the error by arranging the files 

using IR techniques, it affected the error tracking in the 

software system to understand the cause of the error and 

isolate the relevant parts. While this process can be feasible 

when analyzing smaller systems, analyzing relatively large 

and complex systems can be tedious and error prone. 

Moreover, [9] proposed text retrieval (TR), where a search 

source code is indexed, which is then queried for the relevant 

code file for a given bug report. Although the study succeeded 

in determining the localization of errors through information 

retrieval techniques, However, TR-based methods showed 

poor performance when using all-text in bug reporting. 

Gharibi et al. [2] proposed a text properties model is a multi-

component approach to error localization that takes advantage 

of the unique text properties of error reports and source files 

and word-embedding techniques that arrange the relevant 

source files for each error report and then search for 

similarities between the source code files and the error report 

so that it can be reached where it has a relationship to the error 

report in the source code. In this way, however, the quality of 

error reports, identifier naming conventions, and the way 

comments are written in source files pose a threat of incorrect 

results. Furthermore, DeepLocator[5]  proposed a deep 

learning-based model for semantics in error reports and 

source code. DeepLocator bridges the semantic gap by using 

an Abstract Syntax Tree to analyze the syntax of the source 

code. In addition, one uses word-embedding techniques to 

achieve semantic similarities, however, the approach can be 

affected by the removal of stop words. If developers in the 

project team prefer to use very long statements to express bug 

reports, the filter size should also be longer in the neural 

network settings, and these factors affect the approach. After 

that, DeepLocator was developed into DeepLoc by Xiao et al. 

The study [6] proposed  The DeepLoc model is a new model 

based on deep learning that takes full advantage of semantic 

information, although the study successfully fixed the error 

and improved performance and accuracy of the model as 

shown in Figure1. 

 
Figure 1: The Overall Structure of Deeploc  

However, localization procedure made it difficult to represent 

the source code with Sent2Vec. Therefore, Sent2Vec is not 

good for converting source files into vectors because source 

code is written in programming language and contains 

reserved words such as constant, public, etc., as proven by the 

study  [6].Furthermore, the DeepLoc model work, consisting 

of six phases: analysis and pre-processing, token matching, 

VSM similarity, stack trace, semantic similarity, and fixed 

bug reporting    . as shows in Figure  2 This is a simplified 

explanation of the six stages that operate in DeepLoc: 
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Figure 2: The Stages of The Deeploc 

 Some studies have demonstrated that the use of different 

word embedding techniques is possible in the field of error 

localization. There are studies that have used Word2Vec 

technology for source code processing and bug reporting. In 

addition, other studies have used Word2Vec technology for 

source code processing and Sent2Vec for error reporting. 

More importantly, studies have shown that using GloVe for 

both source code and bug reporting can achieve the same 

goal. While this study proposes to try two scenarios, the first 

uses GloVe technology for source code and Word2Vec 

technology for error reporting. As for the second scenario, 

that uses GloVe techniques for source code and Do2Vec for 

bug reporting in order to ensure the effectiveness of these 

proposed techniques compared to previously implemented 

techniques. 
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3. METHODOLOGY 

Enhanced DeepLoc Model, a deep learning-based model that 

automatically detects errors in source code by compiling 

problematic files associated with bug reports. The model 

consists of six phases: analysis and pre-processing, token 

matching, VSM similarity, stack trace, semantic similarity, 

and fixed bug reporting. Moreover, in the improved approach, 

the change was only in the semantic similarity phase. The 

words themselves cannot be entered directly into CNN [13]. 

Thus, pre-processed words must be embedded in vectors, and 

there are many types of word embedding techniques that have 

been accepted so far in the field of bug localization and that 

have proven effective in this field and in different fields. In 

addition, this study used empirically tested techniques to 

convert words in bug reports and source files into vectors that 

preserve words with high efficiency and accuracy. Error 

indicators in error reports generally consist of summaries and 

descriptions of many words. Fortunately, error reports are 

written in natural language, so each word in the report is 

converted to a vector using one of the words embed methods 

known as "word2vec methods." Moreover, try to get the best 

results by using efficient methods to automatically handle the 

source code and convert the code from source to vectors 

quickly and accurately. Thus, the improved DeepLoc method 

used a semantic similarity technique known as "Global 

Vector." This approach is used in Spacy12's GloVe Common 

Crawl model to calculate semantic similarity for processing 

source code. 

4. PROPOSED MODEL  

Our proposed bug localization model utilized the Word2vec 

embedding techniques to process the bug report; and GloVec 

word embedding techniques will also be used to process the 

source code. as shown in the Figure 3.  
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Figure 3: The Overall Structure of Our proposed bug 

localization model 

5. RESULTS AND DISCUSSION  

In this paper, the output of running the Our proposed bug 

localization model that GloVe technology was used to 

process the source code, while Word2Vec technology was 

used to process the bug report to check the effects on 

DeepLoc's performance in terms of the evaluation matrix: 

accuracy, MRR, and MAP. The dataset consists of two parts: 

AspectJ, which represents large projects, and SWT, which 

represents small projects. 

PART1: RESULTS OF SWT 

comparing the results of the Our proposed bug localization 

model to several complex bug localization models such as  

DeepLocator and DeepLoc, based on the same data set (SWT) 

as illustrated in Table 1. 

Table 1. The Overall Performance of Scenario one and 

the Previous Studies on SWT  

Graphics Our Model DeepLoc DeepLocator 

Accuracy@1 0.65 0.39 0.36 

Accuracy@5 0.81 0.66 0.60 

Accuracy@1

0 
0.88 0.77 

0.75 

MAP 0.60 0.40 0.39 

MRR 0.72 0.49 0.48 

As shown in Table1, the results of our proposed bug 

localization model which show the best performance among 

all previous studies in terms of all evaluation matrix criteria. 

However, our proposed bug localization model gains 0.65 in 

Accuracy@1, Therefore, this paper found that the first 

scenario is effective with small projects, as illustrated in 

Figure 4. 

 

Figure 4:  The Performance Comparison of Scenario 1 and 

the previous studies on WST 

PART2: RESULTS OF ASPECTJ 

Comparing the results of our proposed bug localization model 

to several complex bug localization models such as DeepLoc 

and DeepLocator, based on the same data set (AspectJ) as 

illustrated in Table 2. 

Table 2. The Overall Performance of Scenario one and 

the Previous Studies on AspectJ 

Graphics Our Model DeepLoc DeepLocator 

Accuracy@1 0.17 0.45 0.40 

Accuracy@5 0.36 0.71 0.66 

Accuracy@1

0 
0.52 0.80 0.78 

MAP 0.17 0.42 0.34 

MRR 0.27 0.51 0.49 



International Journal of Science and Engineering Applications 

Volume 12-Issue 01, 108 – 111, 2023, ISSN:- 2319 - 7560 

DOI: 10.7753/IJSEA1201.1035 

111 

As shown in Table 2, the results of our proposed bug 

localization model on the AspectJ dataset were lower than all 

other models in terms of all evaluation matrix criteria. 

Therefore, this paper found that the first scenario is not 

suitable for large projects, as shown in Figure 5. 

 

Figure 5: The Performance Comparison of Scenario 1 and 

the Previous Studies on AspectJ 

6. CONCLUSION AND FUTURE WORK 
In this paper, an approach that benefits software engineers is 

improved by finding the wrong part in the source code to 

easily correct the error later on. This has adopted the use of 

different word embedding methods, text analysis, and 

semantic similarity. This study was performed on the 

DeepLoc model, which is a deep learning-based model that 

consists of a neural network with word embedding 

techniques. Current approaches to error localization focus on 

similarities between reports and source code or relationships 

between term weights. However, most of these methods 

ignore semantic information in error reports and source files. 

Since there is a lexical difference between error reporting and 

source code in particular, the proposed approach bridges the 

semantic gap using embedding techniques. Keywords to 

remember when writing bug reports and source code In 

addition, compare the proposed approach with different state-

of-the-art methods (DeepLocator, HyLoc, LR + WE, and Bug 

Locator), and then implement the approach in the AspectJ and 

SWT dataset projects, which contain a lot of error reports and 

source code files. The experimental results showed that the 

best performance obtained through the proposed approach 

was with the SWT data set. 

Where the value of MAP and MRR is greater than all previous 

methods except for the textual properties model, whose 

values are slightly greater than the proposed approach. In the 

future, it intends to improve the performance of DeepLoc by 

adding a Doc2Vec technique to handle bug reports. 
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