
International Journal of Science and Engineering Applications

Volume 12-Issue 10, 34 – 38, 2023, ISSN:- 2319 - 7560

DOI: 10.7753/IJSEA1210.1011

www.ijsea.com 34

A Two-Stage Process Discovery Algorithm Capable of

Identifying Duplicate Tasks

Xuan SU

School of Computer Science and Technology

Shandong University of Technology

Zibo, 255000, China

Abstract:Process Mining is a novel technology for discovering process-related information from business data, aiming to discover,

perform compliance checks, and improve business processes. The discovery of business processes is the first step in process mining. Due

to the inability of traditional algorithms to identify task instances with the same name but different execution semantics, i.e., duplicate

tasks, this paper proposes a new process discovery method. Its main principle is to leverage the feature of transition systems that can

track the pre- and post-execution states of tasks. This feature is used to distinguish tasks with the same name under different execution

states. Subsequently, it constructs a set of directed flow relations that describe the predecessor and successor relationships between tasks.

Then, it employs an inductive discovery algorithm, Inductive Miner, to transform the set of directed flow relations into a process tree for

identifying complex relationships between concurrent, choice, and other tasks, which are then transformed into a Petri net. Experimental

results demonstrate that this method not only identifies duplicate tasks but also reduces the number of implicit transitions in the model.

This significantly improves the accuracy of the discovered process model compared to the Inductive Miner.

Keywords: process mining; business process discovery; duplicate task identification; transition system

1. INTRODUCTION
Business process discovery is one of the most challenging

research areas within the field of Process Mining (PM)[1-3]. Its

primary goal is to construct a process model that reflects

real-world business processes based on event logs containing

actual business execution information. This model extends

beyond the control flow dimension, describing the sequence of

tasks, to also incorporate additional attributes related to task

execution. These attributes can encompass resources, time, roles,

and organizational aspects.

The term "duplicate tasks" refers to tasks with the same name

but different conditions or objectives during their execution

within a business process. In other words, these are instances of

the same task with varying contextual significance. Currently,

existing process discovery algorithms do not support the

identification of duplicate tasks[4-6].

To address this challenge, this study introduces the concept that

the context of duplicate tasks[7-9], including the sets of tasks

executed "before" and "after," task multisets, and task sequences,

is different. In other words, the context of duplicate tasks is

distinct. To achieve this distinction, a transition system is

introduced to identify the states before and after task execution.

In the transition system, tasks are represented as events, and the

states before and after task execution are represented using sets,

multisets, or sequences. Leveraging this characteristic, the study

extracts the order relationships between input transitions and

output transitions under the same state. This allows for the

construction of a set of directed flow relations that describe the

"predecessor" and "successor" relationships among duplicate

tasks.

Subsequently, the advantages of the inductive discovery

algorithm (Inductive Miner, IM)[10] are utilized to construct a

process tree based on this set of directed flow relations. This

enables the discovery of more complex task relationships within

the set of direct follow relations. Finally, the output is a Petri net

that can recognize duplicate tasks.

Experimental results demonstrate that this method significantly

improves precision compared to traditional IM algorithms. In

other words, it enhances the model's ability to accurately

describe event logs.

The remainder of this paper is organized as follows. Section 2

discusses the related work. Section 3 introduces background

knowledge. Section 4 introduces two-stage business process

discovery algorithm. Section 5 describes the tool

implementation. Section 6 describes the data set used in the

experiments, introduces the experiments and shows the results

of the evaluation. Finally, Section 7 draws conclusions and

points our future research scope.

2. RELATED WORK
In the domain of Process Mining (PM), there are primarily four

categories of business process discovery algorithms:

1. Direct Arithmetic Methods:

 The first category involves direct arithmetic methods that

analyze the sequential relationships between tasks. Examples of

this category include the Alpha series algorithms, as seen in

references [11-12].

2. Two-Stage Methods:

 The second category encompasses two-stage methods[13].

These methods construct a low-level model, such as a transition

system or hidden Markov model, and then transform it into a

high-level model capable of describing complex relationships

between tasks. An example is the Multi-phase mining algorithm.

3. Intelligent Computing Methods:

 The third category employs intelligent computing methods,

utilizing machine learning, deep learning[17], reinforcement

learning, genetic algorithms, and continuous iterations to fit a

process model that aligns with the event log. An instance is the

Genetic Miner algorithm.

http://www.ijsea.com/

International Journal of Science and Engineering Applications

Volume 12-Issue 10, 34 – 38, 2023, ISSN:- 2319 - 7560

DOI: 10.7753/IJSEA1210.1011

www.ijsea.com 35

4. Local Methods:

 The fourth category, known as local methods, focuses on

discovering rules and frequent patterns between tasks and task

sets rather than covering a complete process from start to finish.

An example is the Declare model discovery method based on

temporal logic language.

A transition system is a specific type of Finite State Machine

(FSM). Its minimal components consist of the state before

transition triggering, the transition itself, and the state after

transition triggering. Each transition system defaults to the

premise that any event can trigger a transition. After an event is

triggered, a new state must be generated, and any state originates

from the same initial state. Various characteristics of transition

systems include subsets of different types of states being

subsumed into different domains (regions), providing a method

for synthesizing Petri nets.

Inductive Miner (IM) algorithm emerged in 2013 and is currently

the only algorithm capable of making the discovered model

perfectly match the event log. Therefore, it is often used as part of

the business process discovery architecture. For instance, it

discovers hierarchical business processes and can also discover

cross-organizational business processes. The main principle of

IM involves analyzing the sequential relationships between tasks

and task sets to construct a process tree. This tree is then

transformed into a Petri net. The process tree is a

block-structured workflow net, where the leaf nodes represent

tasks, and parent nodes are operators describing relationships

between sub-trees. While IM ensures fitness of the model, it

forces the model to record behaviors not present in the event log,

sacrificing precision. Additionally, it cannot distinguish

duplicate tasks, which is a significant factor leading to irrelevant

behavior in the model.

To address these drawbacks, this paper introduces the use of

transition systems to track task execution states. By

distinguishing duplicate tasks based on the differing execution

statuses of tasks with the same name, and leveraging the IM

algorithm, the paper aims to enhance precision while ensuring

fitness.

3. BACKGROUND KNOWLEDGE
Definition 1: Event. An event is the smallest element composing

log data, representing an instance of a task's execution in a

business system. It is denoted as e = (a, cid, resource, start, end,

other), where A is a set of activity names, and 'a' represents the

activity executed in the event. 'cid' denotes the unique identifier

of the running instance, 'resource' indicates the resources

required for the event's execution, and 'start' and 'end' represent

the start and end times of the event's execution. Additionally,

events can have more detailed attributes in different scenarios,

such as education or healthcare, where event attributes may vary.

'Other' refers to additional properties. Let N be the set of events

containing attribute sets.

Definition 2: Classifier. If there exists n ∈ N, for any event e in

the set, #n(e) represents the value of its attribute n. Let UC be the

set of cases, UA be the set of tasks, UL be the set of lifecycles,

and UT be the set of timestamps. It is assumed that for any event

e, it contains the following attributes: #case(e) ∈ UC,

representing the case to which event e belongs (each event

belongs to one case only); #act(e) ∈ UA, representing the activity

name of event e; #trans(e) ∈ UL, containing lifecycle-related

information for event e; #time(e) ∈ UT, indicating the timestamp

when event e occurred.

Definition 3: Trace, Case, Event Log. A trace is a finite

sequence of events. Let * be the set of all finite event sequences

defined over a set, and a case is a finite sequence of events *,

denoted as =<e1, e2, e3, ..., e||>, satisfying the conditions that

each event can occur only once, i.e., for 1 ≤ j < k ≤ ||, (j)(k), and

every event in a case has the same case identifier, i.e., e1, e2,

#case(e1) = #case(e2).

An event log is a collection of finite event sequences, defined as

L*. Here, L = {1, 2, ..., |L|}.

Definition 3: Multiset. A multiset is a collection in which

elements can appear multiple times. Let m = [p3, q2] be a

multiset defined over the set S = {p, q}, where m ⊆ B(S), m(p) =

3, and m(q) = 2 represent the number of occurrences of elements.

B(S) denotes the universal set of multisets over S. Multisets are

used not only to track the execution status of tasks but also for

modeling event logs. A trace appearing in different cases can be

represented using multisets.

Definition 4: Petri Net. A Petri net is used to represent the

evolution of processes and can capture the control flow

relationships between entities. It consists of a triple N = (P, T, F),

where T represents a finite set of transitions, P represents a set of

places, and F ⊆ (P × T) ∪ (T × P) is the set of arcs representing

control flow in the Petri net. A marking (M) of a Petri net (N, M)

is a multiset of tokens, where tokens are represented by black

dots. M ⊆ B(P) indicates a multiset defined on places,

representing the tokens held in the places. τ is an implicit

transition introduced to ensure modeling correctness and can

represent the silent execution of tasks.

b

c

a d

p1

p2

p3

p4

Start End

c
τp5 p6

Figure. 1 The Petri net

Definition 5: Firing Rule. The firing rule describes the

conditions under which transitions in a Petri net can occur. For x

∈ P ∪ T, •x = {y | y ∈ P ∪ T ∧ (y, x) ∈ F} is the pre-set of x, and x•

= {y | y ∈ P ∪ T ∧ (x, y) ∈ F} is the post-set of x. A transition t in

a Petri net N with a marking m satisfies the following condition:

for any place p ∈ •t: m(p) ≥ 1. In such cases, transition t is

enabled, can fire, and produces a new marking, denoted as (N,

m)[t→(N, m'). If all input places of a transition contain sufficient

tokens, the transition is enabled, can fire, and consumes one

token from each input place, producing new tokens in the output

places. In Figure 1, assuming the initial marking is a multiset

[start4], after firing 'a,' it leads to [start3, p1, p2], 'a' is still

enabled, and after firing 'a' again, it results in [start2, p12, p22],

and so on. 'b' and 'c' become enabled simultaneously.

4. TWO-STAGE BUSINESS PROCESS

DISCOVERY ALGORITHM
The algorithm proposed in this article essentially transforms the

transition system into a collection of direct follow relations. It

then applies the inductive miner algorithm to discover a model.

The steps of Inductive Miner is shown in Figure 2.

http://www.ijsea.com/

International Journal of Science and Engineering Applications

Volume 12-Issue 10, 34 – 38, 2023, ISSN:- 2319 - 7560

DOI: 10.7753/IJSEA1210.1011

www.ijsea.com 36

step1.sequence({a},{b, c, d, e, f})

step2.exclusive({b, c},{d, e, f})

step3.parallel({b},{c})

step4.loop({d, e},{f})

a

b c

c

d e f

<a,c,b>,
<a,b,c>,
 <a,d,e>,
<a,d,e,f,d,e>

Log

b

c
a

c

c d e c

c

f

→

↺∧

×a

b c

d e

f→

(c) Process tree

 M = →(a, ×(∧(b,c), ↺ (→(d,e) , f)))

(b)DFG

(d) Petri net

Phase 1

Phase 2

Phase 3

(a)Event log

Figure. 2 The steps of Inductive Miner

Following the rules of the inductive miner algorithm, the process

tree is further transformed into a Petri net. Additionally, let

L={[1=<A,B,C,D>, 2=<A,B,C,A,D>]}.The primary principle of

this method in the article involves traversing each trace in the

event log, simulating the execution of the trace, and tracking the

past and future states of each task within the trace. It assumes that

the starting point of each trace's execution in the transition

system is an empty set, denoted as `start`. Each task is

represented as an event ̀ e`. If, after executing the current task, the

"future" state of the current event already exists in the transition

system, the algorithm proceeds to the next task. If it does not

exist, a new state is added to the transition system.The transition

system generated from L is shown in Figure 3

{ } {A} B {A,B} {A,B,C}C D {A,B,C,D}A

A[] [A] B [A,B] [A,B,C]C D [A,B,C,D]

[A
2
,B,C]

A

[A
2
,B,C,D]D

< > <A> B <A,B> <A,B,C>C D <A,B,C,D>A

<A,B,C,A>

A

<A,B,C,A,D>D

(c) TS based on sequence state

(b) TS based on multiset state

(a) TS based on set state

Figure. 3 The transition system generated from event log L

Because the collection of direct follow relations serves as the

input for the inductive mining algorithm to discover the process

tree, the transformation of the transition system into a collection

of direct follow relations is the most crucial part of the two-stage

discovery algorithm in this article. The main implementation

principle involves two steps, firstly, traversing the set of

transitions to assign different numbers to events or tasks with the

same names in different transitions. This is done to distinguish

events with the same name but different pre and post-execution

states. Secondly, Traversing the set of states in the transition

system, where the input events for a state become the

predecessors of the direct follow relations, and the output events

become the successors.Finally, the execution example of the

two-stage discovery algorithm is shown in Figure 4.

L={[<A,B,C,D>, <A,B,C,A,D>]}

A0 B C D

A1

A[] [A] B [A,B] [A,B,C]C D [A,B,C,D]

[A
2
,B,C]

A

[A
2
,B,C,D]D

A0 B C D

A1

Figure. 4 Execution example of the two-stage algorithm

5. TOOL IMPLEMENTATION
In this experiment, we use a laptop with a 2.70 GHz CPU,

Windows 10 Professional, Java SE 1.8.0_281 (64-bit) , Python

3.7.6 (64-bit) and allocate 12 GB of RAM. In addition, the

drawing software Origin 2021 Pro version is used to show the

experimental results.

The open source process mining tool platform ProM provides a

fully pluggable experimental environment for process mining. It

can be extended by adding plugins and currently contains more

than 1600 plugins. The tool and all plugins are open source. Set

coverage sampling approach proposed in this paper has been

implemented in ProM platform as plugin, which called

Two-stage process discovery algorithm capable of identifying

duplicate tasks. The snapshot of this tool is shown in Figures 5. It

takes an original event log as input and outputs a model.

Figure. 5 The instance of ProM plugin

6. EXPERIMENTAL EVALUATION

6.1 Experimental data sets
The data used in this article is sourced from reference [16]. In this

chapter, online learning of "Microprocessor System Design" is

used as a case study. To ensure user anonymity and privacy

protection, the data has been appropriately formatted and

cleaned. The original logs contained data records from the client

system every second.This article selected relevant attributes and

presented the data in a format suitable for process mining. The

data attributes include chapters, student identifiers, and

identifiers for each exercise practice. Each CSV file corresponds

to a specific chapter or a specific student, and each file contains

several exercise practices for that session. Each exercise practice

http://www.ijsea.com/

International Journal of Science and Engineering Applications

Volume 12-Issue 10, 34 – 38, 2023, ISSN:- 2319 - 7560

DOI: 10.7753/IJSEA1210.1011

www.ijsea.com 37

includes specific learning behaviors, and the performance data

comprises two CSV files: final grades obtained from the

end-of-course exams and stage grades obtained from student

homework assessments in each class.An overview of the cleaned

event log is shown in Table 1. The "id" column represents a

unique numerical identifier for a student participating in the

online course.

Table 1. Online learning event log overview

Event log Trace number Event number Event types number

Session1 77 71836 28

Session2 82 83014 38

Session3 87 60412 48

6.2 Experiment results
The fitness[14] results of both the algorithm in this chapter

and the IM algorithm are 1, so no further records are made.

The precision[15] comparison results are shown in Table 2. It

can be observed that the algorithm proposed in this paper

significantly improves the precision of the model while

ensuring model quality. This ensures the use of a reliable

process model for future process analysis. Additionally, it

enhances the efficiency of model analysis, providing

decision-makers with more valuable and accurate information.

Table 2. The algorithm evaluate results

Event log IM Two-stage TS state type

session1

0.32

0.39 set

0.42 multi-set

0.42 sequence

session2

0.25

0.54 set

0.52 multi-set

0.49 sequence

session3

0.47

0.61 set

0.58 multi-set

0.62 sequence

7. CONCLUSIONS
This article introduces a novel process discovery method, the

main principle of which is to leverage the capability of

tracking the pre and post-execution states of tasks using

transition systems. This feature helps distinguish tasks with

the same name under different execution states. Consequently,

it constructs a collection of directed flow relationships to

describe the predecessor and successor relationships between

tasks. Subsequently, it employs the inductive mining

algorithm (Inductive Miner, IM) to transform the collection of

directed flow relationships into a process tree. This process

tree is used to identify complex relationships between tasks,

such as concurrency and choice, and then further transform

them into a Petri net.Experimental results demonstrate that

this method not only identifies duplicate tasks but also

reduces the inclusion of implicit transitions in the model,

resulting in significantly improved accuracy compared to the

Inductive Miner algorithm. In the future, further optimization

of the identification of duplicate tasks within the transition

system from a contextual perspective could lead to even more

accurate process models.

8. ACKNOWLEDGMENTS
This paper is supported by the Taishan Scholars Program of

Shandong Province (No.ts20190936, tsqn201909109), the

Natural Science Excellent Youth Foundation of Shandong

Province (ZR2021YQ45), and the Youth Innovation Science

and Technology Team Foundation of Shandong Higher School

(No.2021KJ031).

REFERENCES

[1] VAN DER AALST W.M.P. Process Mining: Discovery,

Conformance and Enhancement of Business

Processes[M]. Springer Publishing Company,

Incorporated, 2011.

[2] DOGAN G .Process mining: data science in

action[J].Computing reviews, 2017, 58(6):337-337.

[3] LIU Cong, DUAN Hua, ZENG Qingtian, et al. Towards

comprehensive support for privacy preservation

cross-organization business process mining[J]. IEEE

Transactions on Services Computing,

2019,12(4):639-653.

[??] PEDRO J D S , CORTADELLA J. Discovering Duplicate

Tasks in Transition Systems for the Simplifification of

Process Models[J].Transition Systems for the

Simplification of Process Models. 2017:108-124.

[??] LU Xixi, FAHLAND D., VAN DER BIGGELAAR F., et

al. Handling duplicated tasks in process discovery by

refining event labels. International Conference on

Business Process Management, vol, 9850. Springer,

2016:90-107.

[6] VáZQUEZ BARREIROS B., MUCIENTES M., LAMA

M.. Enhancing discovered processes with duplicate tasks.

Information Sciences, vol. 373, 2016:369-387.

[7] VANDEN BROUCKE S. K., DE WEERDT J.. Fodina: a

robust and flexible heuristic process discovery technique.

Decision Support systems, vol. 100, 2017:109-118,.

[??] DUAN Chenchen, WEI Qingjie. Process Mining of

Duplicate Tasks: A Systematic Literature Review. 2020

IEEE International Conference on Artificial Intelligence

and Computer Applications (ICAICA), 2020, 778-784.

[??] ZHANG Yuheng. Research on Conformance Checking

Method for Duplicate Tasks in Process[D],Master Thesis,

Chongqing University of Posts and

Telecommunications,2022,

[10] LEEMANS S J J, FAHLAND D, VAN DER AALST

W.M.P.. Discovering block-structured process models

from event logs-a constructive approach[C]. International

conference on applications and theory of Petri nets and

concurrency. 2013: 311-329.

[VAN DER AALST W.M.P., WEIJTERS T,

MARUSTER L. Workflow mining: Discovering process

models from event logs[J]. IEEE transactions on

knowledge and data engineering, 2004, 16(9): 1128-1142.

http://www.ijsea.com/

International Journal of Science and Engineering Applications

Volume 12-Issue 10, 34 – 38, 2023, ISSN:- 2319 - 7560

DOI: 10.7753/IJSEA1210.1011

www.ijsea.com 38

[WEN Lijie, WANG Jianhua, VAN DER AALST

W.M.P., et al. A novel approach for process mining based

on event types[J]. Journal of Intelligent Information

Systems, 2009,32(2): 163-190.

[13] VAN der Aalst, W.M.P. ; RUBIN, V. ; Verbeek, H.M.W.

et al. / Process Mining: A Two-Step Approach to Balance

Between Underfitting and Overfitting. BPMcenter.org,

2008. 40 p. (BPM Center Report; No. BPM-08-01).

[ADRIANSYAH A., B. F. VAN DONGEN,VAN

DER AALST W.M.P.. Conformance Checking using

Cost-Based Fitness Analysis.IEEE International

Enterprise Distributed Object Computing

Conference.2011:55-64.

[WEERDT J, BACKER , VANTHIENEN J,

BAESENS B. A robust F-measure for evaluating

discovered process models. Washington, D. C., USA:

IEEE ,2011: 148–155.

[VAHDAT M. A learning analytics approach to

correlate the academic achievements of students with

interaction data from an educational simulator[M]//LUCA

O, DAVIDE A.Design for teaching and learning in a

networked world: Discovery Science. Berlin: Springer

International Publishing, 2015:352-366.

[BANNERT M, REIMANN P, SONNENBERG C.

Process mining techniques for analysing patterns and

strategies in students' self-regulated learning[J].

Metacognition & Learning, 2014(8):161-185.

http://www.ijsea.com/

