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Abstract:Process Mining is a novel technology for discovering process-related information from business data, aiming to discover, 

perform compliance checks, and improve business processes. The discovery of business processes is the first step in process mining. Due 

to the inability of traditional algorithms to identify task instances with the same name but different execution semantics, i.e., duplicate 

tasks, this paper proposes a new process discovery method. Its main principle is to leverage the feature of transition systems that can 

track the pre- and post-execution states of tasks. This feature is used to distinguish tasks with the same name under different execution 

states. Subsequently, it constructs a set of directed flow relations that describe the predecessor and successor relationships between tasks. 

Then, it employs an inductive discovery algorithm, Inductive Miner, to transform the set of directed flow relations into a process tree for 

identifying complex relationships between concurrent, choice, and other tasks, which are then transformed into a Petri net. Experimental 

results demonstrate that this method not only identifies duplicate tasks but also reduces the number of implicit transitions in the model. 

This significantly improves the accuracy of the discovered process model compared to the Inductive Miner. 
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1. INTRODUCTION 
Business process discovery is one of the most challenging 

research areas within the field of Process Mining (PM)[1-3]. Its 

primary goal is to construct a process model that reflects 

real-world business processes based on event logs containing 

actual business execution information. This model extends 

beyond the control flow dimension, describing the sequence of 

tasks, to also incorporate additional attributes related to task 

execution. These attributes can encompass resources, time, roles, 

and organizational aspects. 

The term "duplicate tasks" refers to tasks with the same name 

but different conditions or objectives during their execution 

within a business process. In other words, these are instances of 

the same task with varying contextual significance. Currently, 

existing process discovery algorithms do not support the 

identification of duplicate tasks[4-6]. 

To address this challenge, this study introduces the concept that 

the context of duplicate tasks[7-9], including the sets of tasks 

executed "before" and "after," task multisets, and task sequences, 

is different. In other words, the context of duplicate tasks is 

distinct. To achieve this distinction, a transition system is 

introduced to identify the states before and after task execution. 

In the transition system, tasks are represented as events, and the 

states before and after task execution are represented using sets, 

multisets, or sequences. Leveraging this characteristic, the study 

extracts the order relationships between input transitions and 

output transitions under the same state. This allows for the 

construction of a set of directed flow relations that describe the 

"predecessor" and "successor" relationships among duplicate 

tasks. 

Subsequently, the advantages of the inductive discovery 

algorithm (Inductive Miner, IM)[10] are utilized to construct a 

process tree based on this set of directed flow relations. This 

enables the discovery of more complex task relationships within 

the set of direct follow relations. Finally, the output is a Petri net 

that can recognize duplicate tasks. 

Experimental results demonstrate that this method significantly 

improves precision compared to traditional IM algorithms. In 

other words, it enhances the model's ability to accurately 

describe event logs. 

The remainder of this paper is organized as follows. Section 2 

discusses the related work. Section 3 introduces background 

knowledge. Section 4 introduces two-stage business process 

discovery algorithm. Section 5 describes the tool 

implementation. Section 6 describes the data set used in the 

experiments, introduces the experiments and shows the results 

of the evaluation. Finally, Section 7 draws conclusions and 

points our future research scope.  

2. RELATED WORK 
In the domain of Process Mining (PM), there are primarily four 

categories of business process discovery algorithms: 

1. Direct Arithmetic Methods: 

   The first category involves direct arithmetic methods that 

analyze the sequential relationships between tasks. Examples of 

this category include the Alpha series algorithms, as seen in 

references [11-12]. 

2. Two-Stage Methods: 

   The second category encompasses two-stage methods[13]. 

These methods construct a low-level model, such as a transition 

system or hidden Markov model, and then transform it into a 

high-level model capable of describing complex relationships 

between tasks. An example is the Multi-phase mining algorithm. 

3. Intelligent Computing Methods: 

   The third category employs intelligent computing methods, 

utilizing machine learning, deep learning[17], reinforcement 

learning, genetic algorithms, and continuous iterations to fit a 

process model that aligns with the event log. An instance is the 

Genetic Miner algorithm. 
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4. Local Methods: 

   The fourth category, known as local methods, focuses on 

discovering rules and frequent patterns between tasks and task 

sets rather than covering a complete process from start to finish. 

An example is the Declare model discovery method based on 

temporal logic language. 

A transition system is a specific type of Finite State Machine 

(FSM). Its minimal components consist of the state before 

transition triggering, the transition itself, and the state after 

transition triggering. Each transition system defaults to the 

premise that any event can trigger a transition. After an event is 

triggered, a new state must be generated, and any state originates 

from the same initial state. Various characteristics of transition 

systems include subsets of different types of states being 

subsumed into different domains (regions), providing a method 

for synthesizing Petri nets. 

Inductive Miner (IM) algorithm emerged in 2013 and is currently 

the only algorithm capable of making the discovered model 

perfectly match the event log. Therefore, it is often used as part of 

the business process discovery architecture. For instance, it 

discovers hierarchical business processes and can also discover 

cross-organizational business processes. The main principle of 

IM involves analyzing the sequential relationships between tasks 

and task sets to construct a process tree. This tree is then 

transformed into a Petri net. The process tree is a 

block-structured workflow net, where the leaf nodes represent 

tasks, and parent nodes are operators describing relationships 

between sub-trees. While IM ensures fitness of the model, it 

forces the model to record behaviors not present in the event log, 

sacrificing precision. Additionally, it cannot distinguish 

duplicate tasks, which is a significant factor leading to irrelevant 

behavior in the model. 

To address these drawbacks, this paper introduces the use of 

transition systems to track task execution states. By 

distinguishing duplicate tasks based on the differing execution 

statuses of tasks with the same name, and leveraging the IM 

algorithm, the paper aims to enhance precision while ensuring 

fitness. 

3. BACKGROUND KNOWLEDGE 
Definition 1: Event. An event is the smallest element composing 

log data, representing an instance of a task's execution in a 

business system. It is denoted as e = (a, cid, resource, start, end, 

other), where A is a set of activity names, and 'a' represents the 

activity executed in the event. 'cid' denotes the unique identifier 

of the running instance, 'resource' indicates the resources 

required for the event's execution, and 'start' and 'end' represent 

the start and end times of the event's execution. Additionally, 

events can have more detailed attributes in different scenarios, 

such as education or healthcare, where event attributes may vary. 

'Other' refers to additional properties. Let N be the set of events 

containing attribute sets. 

Definition 2: Classifier. If there exists n ∈ N, for any event e in 

the set, #n(e) represents the value of its attribute n. Let UC be the 

set of cases, UA be the set of tasks, UL be the set of lifecycles, 

and UT be the set of timestamps. It is assumed that for any event 

e, it contains the following attributes: #case(e) ∈ UC, 

representing the case to which event e belongs (each event 

belongs to one case only); #act(e) ∈ UA, representing the activity 

name of event e; #trans(e) ∈ UL, containing lifecycle-related 

information for event e; #time(e) ∈ UT, indicating the timestamp 

when event e occurred. 

Definition 3: Trace, Case, Event Log. A trace is a finite 

sequence of events. Let * be the set of all finite event sequences 

defined over a set, and a case is a finite sequence of events *, 

denoted as =<e1, e2, e3, ..., e||>, satisfying the conditions that 

each event can occur only once, i.e., for 1 ≤ j < k ≤ ||, (j)(k), and 

every event in a case has the same case identifier, i.e., e1, e2, 

#case(e1) = #case(e2).  

An event log is a collection of finite event sequences, defined as 

L*. Here, L = {1, 2, ..., |L|}. 

Definition 3: Multiset. A multiset is a collection in which 

elements can appear multiple times. Let m = [p3, q2] be a 

multiset defined over the set S = {p, q}, where m ⊆ B(S), m(p) = 

3, and m(q) = 2 represent the number of occurrences of elements. 

B(S) denotes the universal set of multisets over S. Multisets are 

used not only to track the execution status of tasks but also for 

modeling event logs. A trace appearing in different cases can be 

represented using multisets. 

Definition 4: Petri Net. A Petri net is used to represent the 

evolution of processes and can capture the control flow 

relationships between entities. It consists of a triple N = (P, T, F), 

where T represents a finite set of transitions, P represents a set of 

places, and F ⊆ (P × T) ∪ (T × P) is the set of arcs representing 

control flow in the Petri net. A marking (M) of a Petri net (N, M) 

is a multiset of tokens, where tokens are represented by black 

dots. M ⊆ B(P) indicates a multiset defined on places, 

representing the tokens held in the places. τ is an implicit 

transition introduced to ensure modeling correctness and can 

represent the silent execution of tasks. 
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Figure. 1  The Petri net 

Definition 5: Firing Rule. The firing rule describes the 

conditions under which transitions in a Petri net can occur. For x 

∈ P ∪ T, •x = {y | y ∈ P ∪ T ∧ (y, x) ∈ F} is the pre-set of x, and x• 

= {y | y ∈ P ∪ T ∧ (x, y) ∈ F} is the post-set of x. A transition t in 

a Petri net N with a marking m satisfies the following condition: 

for any place p ∈ •t: m(p) ≥ 1. In such cases, transition t is 

enabled, can fire, and produces a new marking, denoted as (N, 

m)[t→(N, m'). If all input places of a transition contain sufficient 

tokens, the transition is enabled, can fire, and consumes one 

token from each input place, producing new tokens in the output 

places. In Figure 1, assuming the initial marking is a multiset 

[start4], after firing 'a,' it leads to [start3, p1, p2], 'a' is still 

enabled, and after firing 'a' again, it results in [start2, p12, p22], 

and so on. 'b' and 'c' become enabled simultaneously. 

4. TWO-STAGE BUSINESS PROCESS 

DISCOVERY ALGORITHM 
The algorithm proposed in this article essentially transforms the 

transition system into a collection of direct follow relations. It 

then applies the inductive miner algorithm to discover a model. 

The steps of Inductive Miner is shown in Figure 2. 
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step1.sequence({a},{b, c, d, e, f})

step2.exclusive({b, c},{d, e, f}) 

step3.parallel({b},{c})

step4.loop({d, e},{f})

a
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 M = →(a, ×(∧(b,c), ↺ (→(d,e) , f )))

(b)DFG

(d) Petri net

Phase 1

Phase 2

Phase 3

(a)Event log

 

Figure. 2  The steps of Inductive Miner 

Following the rules of the inductive miner algorithm, the process 

tree is further transformed into a Petri net. Additionally, let 

L={[1=<A,B,C,D>, 2=<A,B,C,A,D>]}.The primary principle of 

this method in the article involves traversing each trace in the 

event log, simulating the execution of the trace, and tracking the 

past and future states of each task within the trace. It assumes that 

the starting point of each trace's execution in the transition 

system is an empty set, denoted as `start`. Each task is 

represented as an event ̀ e`. If, after executing the current task, the 

"future" state of the current event already exists in the transition 

system, the algorithm proceeds to the next task. If it does not 

exist, a new state is added to the transition system.The transition 

system generated from L is shown in Figure 3 

{ } {A} B {A,B} {A,B,C}C D {A,B,C,D}A

A[] [A] B [A,B] [A,B,C]C D [A,B,C,D]

[A
2
,B,C]

A

[A
2
,B,C,D]D

< > <A> B <A,B> <A,B,C>C D <A,B,C,D>A

<A,B,C,A>

A

<A,B,C,A,D>D

(c)  TS based on sequence state

(b) TS based on multiset state

(a) TS based on set state

 

Figure. 3  The transition system generated from event log L 

Because the collection of direct follow relations serves as the 

input for the inductive mining algorithm to discover the process 

tree, the transformation of the transition system into a collection 

of direct follow relations is the most crucial part of the two-stage 

discovery algorithm in this article. The main implementation 

principle involves two steps, firstly, traversing the set of 

transitions to assign different numbers to events or tasks with the 

same names in different transitions. This is done to distinguish 

events with the same name but different pre and post-execution 

states. Secondly, Traversing the set of states in the transition 

system, where the input events for a state become the 

predecessors of the direct follow relations, and the output events 

become the successors.Finally, the execution example of the 

two-stage discovery algorithm is shown in Figure 4. 

L={[<A,B,C,D>, <A,B,C,A,D>]}

A0 B C D

A1

A[] [A] B [A,B] [A,B,C]C D [A,B,C,D]

[A
2
,B,C]

A

[A
2
,B,C,D]D

A0 B C D

A1

 
Figure. 4  Execution example of the two-stage algorithm 

5. TOOL IMPLEMENTATION  
In this experiment, we use a laptop with a 2.70 GHz CPU, 

Windows 10 Professional, Java SE 1.8.0_281 (64-bit) , Python 

3.7.6 (64-bit) and allocate 12 GB of RAM. In addition, the 

drawing software Origin 2021 Pro version is used to show the 

experimental results. 

The open source process mining tool platform ProM provides a 

fully pluggable experimental environment for process mining. It 

can be extended by adding plugins and currently contains more 

than 1600 plugins. The tool and all plugins are open source. Set 

coverage sampling approach proposed in this paper has been 

implemented in ProM platform as plugin, which called 

Two-stage process discovery algorithm capable of identifying 

duplicate tasks. The snapshot of this tool is shown in Figures 5. It 

takes an original event log as input and outputs a model. 

 

Figure. 5  The instance of ProM plugin 

6. EXPERIMENTAL EVALUATION  

6.1 Experimental data sets 
The data used in this article is sourced from reference [16]. In this 

chapter, online learning of "Microprocessor System Design" is 

used as a case study. To ensure user anonymity and privacy 

protection, the data has been appropriately formatted and 

cleaned. The original logs contained data records from the client 

system every second.This article selected relevant attributes and 

presented the data in a format suitable for process mining. The 

data attributes include chapters, student identifiers, and 

identifiers for each exercise practice. Each CSV file corresponds 

to a specific chapter or a specific student, and each file contains 

several exercise practices for that session. Each exercise practice 
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includes specific learning behaviors, and the performance data 

comprises two CSV files: final grades obtained from the 

end-of-course exams and stage grades obtained from student 

homework assessments in each class.An overview of the cleaned 

event log is shown in Table 1. The "id" column represents a 

unique numerical identifier for a student participating in the 

online course. 

Table 1. Online learning event log overview 

Event log Trace number Event number Event types number 

Session1 77 71836 28 

Session2 82 83014 38 

Session3 87 60412 48 

 

6.2 Experiment results 
The fitness[14] results of both the algorithm in this chapter 

and the IM algorithm are 1, so no further records are made. 

The precision[15] comparison results are shown in Table 2. It 

can be observed that the algorithm proposed in this paper 

significantly improves the precision of the model while 

ensuring model quality. This ensures the use of a reliable 

process model for future process analysis. Additionally, it 

enhances the efficiency of model analysis, providing 

decision-makers with more valuable and accurate information. 

Table 2. The algorithm evaluate results 

Event log IM Two-stage TS state type 

 

session1 

 

0.32 

0.39 set 

0.42 multi-set 

0.42 sequence 

 

session2 

 

0.25 

0.54 set 

0.52 multi-set 

0.49 sequence 

 

session3 

 

0.47 

0.61 set 

0.58 multi-set 

0.62 sequence 

 

7. CONCLUSIONS 
This article introduces a novel process discovery method, the 

main principle of which is to leverage the capability of 

tracking the pre and post-execution states of tasks using 

transition systems. This feature helps distinguish tasks with 

the same name under different execution states. Consequently, 

it constructs a collection of directed flow relationships to 

describe the predecessor and successor relationships between 

tasks. Subsequently, it employs the inductive mining 

algorithm (Inductive Miner, IM) to transform the collection of 

directed flow relationships into a process tree. This process 

tree is used to identify complex relationships between tasks, 

such as concurrency and choice, and then further transform 

them into a Petri net.Experimental results demonstrate that 

this method not only identifies duplicate tasks but also 

reduces the inclusion of implicit transitions in the model, 

resulting in significantly improved accuracy compared to the 

Inductive Miner algorithm. In the future, further optimization 

of the identification of duplicate tasks within the transition 

system from a contextual perspective could lead to even more 

accurate process models. 
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