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Abstract: With the rapid development of artificial intelligence, maritime technology is continuously advancing, and unmanned surface 

vessels (USV) are gaining significant attention as emerging waterborne transportation vehicles. Environmental monitoring during the 

navigation of USV is a critical component. This paper employs multiple millimeter-wave radars and utilizes a multi-hypothesis 

tracking algorithm to successfully achieve data association, data fusion, and target tracking for millimeter-wave radar data. Finally, the 

proposed method is validated through real ship experiments, providing a solid theoretical foundation for autonomous navigation of 

USV in the future. 
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1.Introduction 
With the flourishing development of global economic 

globalization, maritime transportation plays a pivotal role in 

this process. Not only is the variety of vessels steadily 

increasing, but their numbers are also on a gradual rise, 

rendering maritime traffic increasingly complex. However, 

this trend is accompanied by a surge in maritime accidents, 

resulting in substantial economic losses and human casualties. 

Statistical data indicates that nearly 50% of maritime 

accidents are attributable to ship collisions. 

n this context, with the continuous advancement of sensor 

technology and intelligent control technology, unmanned 

surface vehicle (USV) unmanned ship system technology has 

become a hot topic at present[1]. USV are capable of 

performing a variety of traditional maritime tasks, including 

maritime management, hydrological monitoring, underwater 

testing, and maritime search and rescue operations[2][3]. As 

they do not require onboard operators, USV are particularly 

well-suited for executing unconventional missions, especially 

in hazardous waters, without the need to consider human-

related psychological and physiological factors. Leveraging 

advanced control systems, communication systems, and 

monitoring equipment, USV can conduct continuous, round-

the-clock surveillance of specific water areas, such as polluted 

waters or ship accident scenes. Furthermore, USV offer 

advantages such as high safety, ease of operation, modularity 

of monitoring equipment, and intelligence. They can execute 

maximum tasks with minimal energy consumption, making 

them highly promising, especially in light of the rapid 

advancements in big data, cloud computing, neural networks, 

artificial intelligence, and modern control engineering. 

However, achieving autonomous navigation on water for USV 

hinges on the swift and efficient autonomous path planning, 

which primarily depends on their precise environmental 

perception. Environmental perception serves as the 

cornerstone of this capability. Traditional methods rely on 

single sensors for data acquisition, each having its advantages 

and limitations, thereby falling short of meeting the 

comprehensive environmental data requirements for USV. 

In previous research endeavors, RUIZ and colleagues[4] 

attempted to employ a five-line vertical scanning laser radar 

for environmental and obstacle detection. They initially 

preprocessed radar data, performed image segmentation based 

on jump points, and then utilized Kalman filtering to predict 

the positions of known obstacles. Finally, a clustering method 

was employed to unify fragments of the same obstacle, 

although it lacked effective differentiation between static and 

dynamic obstacles. Furthermore, Qiu Yiming[5] conducted 

research on surface target perception based on visible light, 

focusing on the "Huster-68" unmanned vessel. This study 

involved the processing of surface video to obtain information 

on water boundaries, surface target positions, and their motion 

speeds. In a similar vein, PENG Y and colleagues[6] proposed 

an obstacle detection algorithm and avoidance method based 

on 2D laser radar. They utilized filtering and clustering 

algorithms for point cloud data processing to extract obstacle 

positions. Additionally, Song H[7] introduced a collision 

avoidance system designed for safe navigation of unmanned 

vessels in dynamic environments. This system comprised a 
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fuzzy controller based on laser radar sensors for obstacle 

detection. 

But these approaches have their limitations. Therefore, this 

paper proposes an innovative method for monitoring the 

navigation environment of unmanned ships based on 

millimeter wave radar. The method uses three millimeter-

wave radars, each of which covers a detection range of 120 

degrees, and realizes 360-degree all-round monitoring of the 

ship through appropriate Angle arrangement, thus ensuring 

the safe navigation of the unmanned ship. These three 

millimeter-wave radars realize target correlation and tracking 

through multi-target tracking algorithm, providing an efficient 

and reliable solution for environmental monitoring of 

unmanned ships. The experiment proves that this system has 

important reference value in the practical application of 

unmanned ships, and provides solid theoretical support for the 

autonomous navigation of unmanned ships in the future. 

2.Method 

2.1 Millimeter Wave Radar Coordinate 

Conversion 
According to the user manual of millimeter wave radar, the 

geometric center of the most prominent part of the front of the 

millimeter wave radar is the origin of the coordinate system of 

the millimeter wave radar sensor. Three millimeter wave 

radars are used in this system, which are radar No. 1, Radar 

No. 2 and radar No. 3. The installation positions of the three 

radars are shown in Figure 1: 

 

Figure 1. Millimeter wave radar installation 

The x axis and y axis of the coordinate system of radar 

No. 1 are converted into the coordinate system of the ship, 

and the right hand coordinate system rule is also used to make 

the coordinate system of the millimeter wave radar coincide 

with the coordinate system of the ship. 

When coordinate conversion is performed on the No. 2 

and No. 3 Millimeter wave radars, the radar coordinate system 

needs to be rotated to a suitable position, and the coordinate 

conversion diagram is shown in Figure 2: 
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Figure 2. Coordinate system transformation diagram 

The ship's coordinate system is established with the 

installation position as the center, and the coordinate system 

used by the millimeter wave radar for data measurement is 

also a rectangular coordinate system with the triangular center 

of gravity of the three millimeter wave radars as the origin, 

and the measurement results that the coordinate system of the 

millimeter wave radar needs to move 8 cm in the negative 

direction of the y axis. In Figure 2, the x-y coordinate system 

is the ship coordinate system, and x1-y1 is the millimeter 

wave radar coordinate system. 

When the millimeter wave radar obtains data, the data of the 

target point is the distance in x direction, the distance in y 

direction, the relative acceleration in x direction, and the 

relative acceleration in y direction. 

When the point p(x11, y11) is converted from the x1-y1 

cartesian coordinate system to the x-y cartesian coordinate 

system, the coordinates of the converted point are p(x11z, 

y11z). When α is positive, the conversion formula is formula 

(1): 

 
x11z (y11-0.08) cos( )+x11sin( )

y11z = x11cos( )-(y11-0.08) sin( )

a a

a a

= 


 (1) 

When α is negative, the conversion formula is formula (2) : 

 
x11z (y11-0.08) cos( )-x11sin( )

y11z = x11cos( )+(y11-0.08) sin( )

a a

a a

= 


 (2) 

2.2 Millimeter wave radar multi-target 

correlation and tracking 
 

The task of multi-object detection and tracking primarily 

involves detecting targets in complex and noisy environments 

while continuously estimating the motion parameters of these 

detected targets. In the context of ship navigation, a vessel's 

awareness of its surrounding environment is of paramount 

importance. This includes the detection of obstacles and the 

determination of operational parameters of other vessels, all 

of which occur within the operating range of the ship. 

Accurately determining the relative positions, headings, and 

speeds of other vessels in relation to one's own ship is crucial 

for collision prevention and ensuring safe navigation, 

especially in conditions of limited visibility. During ship 

navigation, functions such as collision warnings, collision 

avoidance, and route planning heavily rely on the 

effectiveness of environmental monitoring. 
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In the field of target tracking, there are typically several 

stages, including point acquisition, data association, tracking 

filtering, and track management. Figure 3 illustrates the target 

tracking process. 
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association 
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Start of track
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Figure 3. Target tracking flow chart 

Multiple Hypothesis Tracking (MHT) is an advanced 

algorithm used to solve complex target tracking problems. It 

was first proposed by D.B. eid at the end of 1980s[8]. The 

algorithm mainly includes: cluster formation, hypothesis 

generation, probability calculation of each hypothesis and 

hypothesis reduction. Under ideal conditions, MHT is 

considered to be the optimal method for dealing with data 

interconnection[9]. 

(1) Hypothesis generation 

Suppose the interconnection hypothesis set at time t is Jt, then 

from Jt-1 and the latest measurement set, the Jt set is obtained, 

as follows: 

  S(t)= ( ), 1, 2,...,n tS t n N=  (3) 

The first ( )nS t  is obtained by the interconnection of 
t-1J , and 

then extended by 
2 ( )S t  to all sets to form a new hypothesis. 

Where { (1), (2),..., ( )}tS S S S t=  represents cumulative 

measurements from the beginning to the current moment. 

There are three possible state definitions for each hypothesis: 

① the goal is an existing goal. ② This goal is a new goal. ③ 

The target is false alarm. Each target can be connected to at 

most one current time measurement, and that measurement 

must fall into its confirmation region. 

(2) Calculation of probability 

k

iP  is the probability of hypothesis 
k

iJ , t( | )t t

i iP J S= . 

Among them, 
t

iJ  can be regarded as the joint hypothesis of 

t-1S  and the correlation hypothesis 
h of the current 

number data measurement. According to literature [8], it can be 

obtained: 

 

1

t 1

1 1

1

1
( | ) ( ( ) | , , )

c

                     ( | )

t t t

i i g h t

t t

h g t g

P J S P S t J S

P J S P

−

−

− −

−

= = 

  ，

 (4) 

Where c is the normalization factor, as follows: 

 
1

1

1

( ( ) | , , ) ( )
tN

t

g h t

n

P S t J Z f n−

−

=

 =  (5) 

If the n measure comes from false alarm or noise, f(n)=1/v; If 

the measurement comes from the target, 

ˆ( ) ( ( ); ( | 1), ( ))n n nf n M S t S t t D t= − , the compliance 

expectation is ˆ( | 1)S t t −  and the variance is the information 

covariance matrix ( )nD t . 

It is assumed that NDT, NFT and NNT represents the number of 

current measurement data belonging to existing tracks, the 

number of false alarms, and the number from new targets 

respectively. According to reference[10], the second item in the 

formula can be obtained as follows: 

11

1

! !
( | , ) (1 )

                           ( ) ( )

b b

FT NT

t FT NT
h g t Db Db

bt

N FT N NT

N N
P J S P P

N

P V P V

 

 

−−

− =  −



  (6) 

Put formula (6) into formula (4) to get the formula for 

calculating the hypothesis probability: 

1

1 1

! !1 ˆ{ ( ); ( | 1), ( )}

        (1 ) ( ) ( )

t

FT NT

b b

FT NT

N
N Nt FT NT

i n n n

nt

t

Db Db N FT N NT g

b

N N
P V S t S t t D t

c N

P P P V P V P
   

− −

−

− −

=  −

−  





 (7) 

(3) Hypothetical reduction 

Hypothesis generation is a primary factor affecting the 

complexity of the Multiple Hypothesis Tracking (MHT) 

algorithm. Therefore, simplifying and pruning hypotheses 

have become crucial directions for algorithm improvement. 

Typically, methods like low-probability hypothesis removal 

and hypothesis merging are employed for hypothesis 

simplification and pruning. This study adopts the K-best 

optimal hypothesis generation and N-scan pruning methods to 

facilitate the engineering implementation of the MHT 

algorithm. 

The K-best optimal hypothesis generation method is a 

technique that enumerates K hypotheses with the highest 

confidence without exhaustively considering all possible 

scenarios. It constructs a cluster-based assignment matrix, 

with measurements as rows and tracks, new tracks, and false 

alarms as columns. Elements in the assignment matrix 

represent the negative logarithm of the likelihood probability 

between measurements and tracks or the negative logarithm of 

the probability that a measurement comes from a new track or 

a false alarm. Based on this assignment matrix, we employ the 

algorithm proposed by Murty [11]. Initially, a queue containing 

all possible assignments is constructed, and then the 

Hungarian algorithm is used to find the best linear assignment 

in each iteration. Subsequently, this best assignment is 

removed from the assignment queue, and the process 

continues to find the next best assignment. This loop is 

repeated K times to identify K hypotheses with the highest 

confidence and probability. 

The N-scan pruning method is a technique that controls the 

number of hypotheses by restricting the depth of the track 

tree[12]. When the depth of the track tree exceeds N, the N-

scan pruning method searches for the leaf node with the 

highest confidence in the current track tree. It retains the 

branch with the root node where the highest-confidence leaf 

node resides while eliminating the other branches. 
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In summary, hypothesis generation significantly impacts the 

complexity of the MHT algorithm, making hypothesis 

simplification and pruning key directions for algorithm 

enhancement. This study employs the K-best optimal 

hypothesis generation and N-scan pruning                                                                                                                                                                    

methods to advance the engineering implementation of the 

MHT algorithm. 

3.Experiment 

3.1 Pool experiment 
Before conducting experiments in this study, an artificial 

water tank (as shown in Figure 4) was set up to assess the 

environmental detection capabilities of the millimeter-wave 

radar. 

 

Figure 4 Artificial water tank 

 

Figure 5  Millimeter-wave radar environmental detection 

experiment 

In the artificial water tank, experiments were conducted using 

multiple millimeter-wave radars for object recognition and 

tracking, as depicted in Figure 5. The system provided 

detection results for the buoys placed throughout the entire 

autonomous navigation process of the unmanned surface 

vehicle, as shown in the figure. 

The relative position diagram of the unmanned ship and 

obstacles is shown in Figure 6, which shows the relative 

position of obstacles relative to the coordinate system of the 

unmanned ship during navigation. 
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Figure 6 Map of the relative position of unmanned ships and 

obstacles 

Figure 7 shows the relative distance between an unmanned 

boat and an obstacle detected during navigation. 
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Figure 7 Relative distance between unmanned ships and 

obstacles 

As shown in Figure 8, the relative velocity between the 

unmanned boat and the detected obstacle during navigation 
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Figure 8 Relative speed between unmanned ships and 

obstacles 

4.Conclusion 
This paper discusses the current state of environmental 

perception in unmanned surface vessels (USV). Addressing 

the shortcomings of existing approaches, a navigation 

monitoring system for intelligent ships is proposed, which 

relies on millimeter-wave radar technology. The system is 

constructed using three millimeter-wave radars. In this 

system, the radars are initially installed at specific angles, and 

the data collected by these radars undergoes processing using 

a multi-hypothesis tracking algorithm. This processing 
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includes data  of a system for monitoring the navigation 

environment of intelligent small vessels using millimeter-

wave radar. The reliability and accuracy of this system are 

validated through real ship experiments. However, it's worth 

noting that during actual navigation, the size of the waves can 

affect millimeter-wave radar navigation monitoring. 

Therefore, future research will focus on mitigating 

interference caused by water surface ripples to continually 

optimize the construction of this control platform. 
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