
International Journal of Science and Engineering Applications

Volume 12-Issue 05, 41– 49, 2023, ISSN:- 2319 - 7560

DOI: 10.7753/IJSEA1205.1013

www.ijsea.com 41

A Case Study of Test Automation in Agile Software

Development

Dr. Dilshan De Silva

Department of Computer

Science and Software

Engineering

Institute of Information

Technology

Malabe, Sri Lanka

Chandrarathna M.G.D.P.M.B

Department of Computer

Science and Software

Engineering

Institute of Information

Technology

Malabe, Sri Lanka

M. P. Gunathilake

Department of Computer

Science and Software

Engineering

Institute of Information

Technology

Malabe, Sri Lanka

Bandara S.M.D.S

Department of Computer

Science and Software

Engineering

Institute of Information

Technology

Malabe, Sri Lanka

Sooriyabandara H.M.T.S

Department of Computer

Science and Software

Engineering

Institute of Information

Technology

Malabe, Sri Lanka

Thilakarathna S.A.Y.R

Department of Computer

Science and Software

Engineering

Institute of Information

Technology

Malabe, Sri Lanka

Abstract: Agile software development has revolutionized the industry by allowing developers to produce high-quality software in

shorter timeframes. However, testing continues to be an important part of software development to ensure that the product fulfills its

necessary quality requirements. Manual testing can be time-consuming and error-prone, resulting in software delivery delays. Test

automation, on the other hand, may significantly reduce testing time while enhancing the accuracy and consistency of results. The

paper examines the relationship between agile software development and testing, with a specific focus on web-based testing. It covers

the issues of web testing in an agile environment and examines how test automation can assist to overcome these challenges.

Furthermore, it compares manual testing with test automation and analyses the benefits and drawbacks of each approach, provides an

overview of popular test automation tools, such as Selenium and JMeter, and explains why they are the best options for automated

testing, and the paper highlights the benefits of web testing, including as increased software quality, reduced costs, and improved user

satisfaction.

Keywords: Agile software development; Test automation; Web-based testing; Selenium and JMeter; Case study

1. INTRODUCTION

Testing is an important part of software development because

it ensures that the product fulfills the appropriate quality

requirements. Agile software development and testing are

inexorably linked, and testing is a necessary step in the agile

development process.

As shown by [1], manual testing is utilized in traditional

software development to ensure that software satisfies the

necessary quality requirements. Manual testing can be time-

consuming and error-prone, resulting in software delivery

delays. Test automation is a method of testing that involves

the use of tools and scripts to automate the testing process.

Test automation reduces testing time while increasing the

accuracy and consistency of test results.

Web testing, which consists of testing web-based applications,

is a vital part of software testing. Because software is built in

shorter sprints, agile software development created new

challenges to web testing. Web testing must be performed

concurrently with software development in an agile

environment, and testing must be integrated into the

development process.

The use of tools and scripts to automate the testing of web-

based applications is known as web test automation. Selenium

[2] and JMeter [3] are two technologies that can be used to

automate web tests. Selenium is a popular open-source

technology for automating web browsers, and JMeter is a tool

for web application load and performance testing.

In Java development, creating a Maven [4] project in Eclipse

is usual practice. In Eclipse, a Maven project provides a

framework for automated testing, including dependency

management and build automation. To simplify dependency

management and streamline the testing process, develop a

Maven project in Eclipse for automated testing.

According to [5], web testing has various advantages,

including increased software quality, lower costs, and more

user satisfaction. Testing detects and removes errors early in

http://www.ijsea.com/

International Journal of Science and Engineering Applications

Volume 12-Issue 05, 41– 49, 2023, ISSN:- 2319 - 7560

DOI: 10.7753/IJSEA1205.1013

www.ijsea.com 42

the development process, lowering the cost of later defect

correction. Testing also guarantees that software fulfills

quality requirements and increases satisfaction for users.

The various locators are available in Selenium WebDriver for

identifying web page elements. Class name, CSS selector, ID,

name, link text, partial link text, element name, and XPath are

among these locators. Each of these locators has its

advantages and disadvantages, and the selection of the most

suitable locator is dependent on the specific characteristics of

the web page and the element being identified. The difficulties

that come with selecting the right locator. Dynamic web

pages, multiple elements with similar properties, hidden

elements, frames, browser compatibility, timeouts, and

maintenance are among the challenges. To overcome these

challenges, it is essential to have a solid comprehension of

web page structure.

The purpose of this paper is to study the relationship between

agile software development and testing, to discuss the role of

test automation in ensuring software quality; to compare

traditional testing with test automation and analyze the

benefits and drawbacks of both approaches; and to investigate

how web testing occurs in an agile environment, including the

successes and failures. The article will review popular test

automation tools and explain why best Selenium and JMeter

are for automated testing, in addition to the benefits and

features of web testing. As part of an investigation into how

web testing occurs in an agile environment and the benefits of

test automation, it demonstrates how to test a login page using

test automation tools such as Selenium and JMeter.

2. RELATED WORK

Automated software testing has been a popular area of study

for many years, and there is an important corpus of literature

on the subject. This section describes a few significant works

related to the current work on web testing automation in agile

software development.

The paper "Benefits and limitations of automated Software

Testing: Systematic literature review and practitioner survey"

by T. Tretmans et al. (2013) provides an exhaustive review of

the advantages and disadvantages of automated software

testing. To determine the current state of automated testing,

the authors analyzed a large number of research articles and

surveyed practitioners. According to [5], it provides an

overview of the benefits and drawbacks of automated testing.

"Agile Testing: A Practical Guide for Testers and Agile

Teams" by Lisa Crispin and Janet Gregory explores the

principles and practices of agile testing and as demonstrated

in [6], explains how testing can be integrated into agile

development processes. The book provides valuable

information on how agile testing functions and the various

practices that can be implemented to ensure successful testing

in an agile environment. It describes how agile teams and

testers can collaborate to ensure that quality is built into the

product at every stage of agile development.

According to [7], the book "Maven: The Definitive Guide"

explains the importance and benefit of using the Maven build

automation tool in software development projects. Maven is a

popular tool for managing project dependencies, as well as

creating, testing, and packaging Java-based applications. This

book is a beneficial resource for gaining an understanding of

the features and capabilities of Maven, as well as how it can

be utilized effectively in software development projects.

Testim.io's article "Test Automation vs. Manual Testing"

compares the benefits and drawbacks of test automation and

manual testing. As shown by [8], it discusses the advantages

and cons of both test automation and manual testing, which

will be essential factors when determining how to approach

testing. It also provides information regarding the limitations

of test automation, which can be used to determine which

categories of testing to automate and which types to perform

manually.

As demonstrated in [9], "A Study of Automated Software

Testing Automation Tools and Frameworks" by P. Bansal et

al. (2019), the authors examine a variety of automated

software testing tools and frameworks. They have compared

the capabilities and features of various tools and provided

suggestions for selecting the most suitable tool for a given

task.

The article "Analysis and Design of Selenium WebDriver

Automation Testing Framework" by N. Singh and V. Kumar

(2015) provides a comprehensive analysis of Selenium

WebDriver, a widely used tool for automating web testing.

The authors discuss the features of Selenium WebDriver and

offer guidelines for designing an effective framework for

testing.[10] and also highlights the importance of test

automation in ensuring software quality and the advantages of

using Selenium WebDriver in agile software development.

In "A Study on Functioning of Selenium Automation Testing

Structure" by M. S. Mohammed and R. G. Rasool (2017), the

authors of [11] discuss Selenium WebDriver's operation in

depth. In addition, they have compared Selenium WebDriver

to various testing tools and frameworks. This article offers a

comprehensive understanding of Selenium WebDriver.

As demonstrated by previous research (A case study of test

automation in agile software development" by E. Knauss et al,

2014) provides a case study of test automation in agile

software development. The authors examine the difficulties

and advantages of test automation in an agile development

environment.

These works provide insightful details about the advantages

and disadvantages of automated software testing, how to test

effectively in an agile environment, what testing tools and

frameworks are available, and how to use test automation

effectively in an agile development environment.

http://www.ijsea.com/

International Journal of Science and Engineering Applications

Volume 12-Issue 05, 41– 49, 2023, ISSN:- 2319 - 7560

DOI: 10.7753/IJSEA1205.1013

www.ijsea.com 43

3. METHODOLOGY

3.1 Selenium Architecture

Figure 1. Selenium Architecture

As shown in Figure 1, Selenium supports multiple

programming languages like Java, Python, Ruby, C#, and

JavaScript. This client library provided by Selenium helps to

write the code in any of these. Then any of the languages

convert to JSON format and transferred to the Selenium web

driver [15] through the JSON wire protocol over HTTP. That

browser driver in turn launches the script actions to the real

browser.

3.2 Setup Maven and Selenium WebDriver

in Eclipse IDE

3.2.1 Install Java and configure the Java path

3.2.2 Install Eclipse IDE

3.2.3 Install Maven in Eclipse

3.2.4 Create a new Maven project: When creating a new

Maven project in Eclipse IDE [13], select "Maven Project"

from the list of project types. Then, select an archetype, which

is a project template that defines the basic structure and

contents of the project. Once selected an archetype, enter a

Group Id and Artifact Id for the project. The Group Id is

typically a unique identifier for the organization or group that

is creating the project, while the Artifact Id is the name of the

project.

3.2.5 Define the dependencies in the pom.xml

Figure 2. Code snippet of the pom.xml file

In Figure 2, the selenium-java dependency contains the Java

bindings for Selenium WebDriver, while the

webdrivermanager dependency simplifies the management of

WebDriver binaries for different browsers.

3.2.6 Create a new Java class and run the Selenium

WebDriver test

Figure 3. Creating a Java class for the Selenium WebDriver test

According to Figure 3, run the Selenium WebDriver test After

creating a new Java class. Import the relevant Selenium

WebDriver API classes into the Java class. In the class's main

method, write the Selenium WebDriver code.

http://www.ijsea.com/

International Journal of Science and Engineering Applications

Volume 12-Issue 05, 41– 49, 2023, ISSN:- 2319 - 7560

DOI: 10.7753/IJSEA1205.1013

www.ijsea.com 44

3.3 Testing a Login Page

To automate testing on the login page, the test case plan was prepared as shown in Table 1.

Table 1. Test cases for automation test plan

Test

case ID

Positive/

Negative

criteria

Test case Test step Test data Expected result

TC-001 Positive Verify whether login

is successful by

entering the valid

credentials

1. Go to the URL

2. Enter the valid credentials in the

username and password field

3. Click the ‘LOGIN’ button

Username:

“standard_user”

Password:

“secret_sauce”

The user should be

able to log in to the

website

TC-002 Negative Verify whether the

form can be submitted

without filling in any

field

1. Go to the URL

2. Click the ‘LOGIN’ button

None Display an error

message

TC-003 Negative Verify whether the

form can be submitted

when entering the

incorrect password

1. Go to the URL

2. Enter values for the mandatory

fields with an incorrect password

3. Click the ‘LOGIN’ button

Username:

“standard_user”

Password:

“sec%386@e”

Display an error

message

3.3.1 TC-002: Test automation script to check whether

the user can log in to the website by providing valid

credentials into the login form

Figure 4. Test automation script to test login form with valid

credentials

According to Figure 4, this script logs into the Sauce Demo

web application using valid credentials and checks if the login

was successful. Using the WebDriver's findElement and

sendKeys methods, an XPath expression [7] to find the login

button, and an if statement to compare the expected and actual

URLs. This is an example of how Selenium can be used for

automated functional testing of web applications.

3.3.2 TC-002:Test automation script for testing

whether the login form's null field validation is

functioning properly

Figure 5. Test automation script to test login form with empty data

Figure 5, test automation script that is designed to test

whether the login form's null field validation is functioning

properly. By sending an empty string to the username and

password fields, checking if the validation mechanism of the

login form is working as expected and if the appropriate error

message is displayed when the user tries to submit an empty

form.

http://www.ijsea.com/

International Journal of Science and Engineering Applications

Volume 12-Issue 05, 41– 49, 2023, ISSN:- 2319 - 7560

DOI: 10.7753/IJSEA1205.1013

www.ijsea.com 45

3.3.3 TC-003:Test automation script to check whether

the user can log in to the website by providing invalid

credentials into the login form

Figure 6. Test automation script to test login form with an invalid

password

According to Figure 6, the code segment tests whether the

login form on a website is rejecting invalid credentials as

expected. By providing invalid credentials into the password

field using the sendKeys method, the script is likely checking

if the login form is working as expected and rejecting the

login attempt, and if the appropriate error message is

displayed when the user tries to log in with incorrect

credentials.

3.4 Non-functional testing using JMeter

Figure 7. Create a thread group for a new test plan

In JMeter [14], create a new test plan and add the necessary

elements, such as Thread Group, HTTP Request, and Listener.

As shown in Figure 7, in the Thread Group element, specify

the number of threads (virtual users), ramp-up time, and loop

count.

Figure 8. Create an HTTP Request

According to Figure 8, in the HTTP Request element, enter

the URL of the website or application under test, and select

the appropriate method, such as GET or POST.

Figure 9. Execute a JMeter test using the command-line interface

As shown in Figure 9, here is what each of the options in

the command does:

• -n: This option tells JMeter to run the test in non-GUI

mode.

• -t: This option is used to specify the path to the JMX file

that contains the test plan.

• -l: This option is used to specify the path where you want

to save the results of the test execution.

4. RESULTS

The testing process was carried out using both functional and

non-functional testing techniques with test automation.

Functional testing was performed using Selenium, while

JMeter was used for non-functional testing. The results of the

testing process are presented in this section, demonstrating

that the application meets the functional and non-functional

requirements.

4.1.1 Result of the functional testing
Under the TC-001 test case id plan shown in Figure 4 of the

test automation plan, Selenium WebDriver will conduct a

login test on the website https://www.saucedemo.com/. The

program launches the Chrome browser, navigates to the login

page, inputs a valid username and password, and clicks the

login button. The program then compares the current URL to

the expected URL of the inventory page. As the actual result,

the user successfully login to the website and at the end of the

test terminal printed "Login successful" as shown in Figure

10.

http://www.ijsea.com/

International Journal of Science and Engineering Applications

Volume 12-Issue 05, 41– 49, 2023, ISSN:- 2319 - 7560

DOI: 10.7753/IJSEA1205.1013

www.ijsea.com 46

Figure 10. Eclipse terminal output for TC-001 test case

After the test script in Figure 5, of TC-002 execution made all

mandatory fields null and clicked on the login button, then as

the actual result, the form displayed an error message

"Username is required" according to Figure 11, at the end of

the test terminal printed "Login unsuccessful".

Figure 11. Eclipse terminal output for TC-002 test case

According to the TC-003 test script in Figure 6, inputs a valid

username with an invalid password, and click the login

button. As the actual result, the terminal print “Login

unsuccessful” and Figure 12 is the screenshot of the terminal

output.

Figure 12. Eclipse terminal output for TC-003 test case

4.1.2 Results of the non-functional Testing

Figure 13. Performance test results in a table using JMeter

With the CSV file open, start analyzing the data to identify

any performance issues. Some common metrics to look for

include response time, throughput, error rate, and transaction

rate. Based on the analysis of the CSV file, can identify any

performance issues, such as slow response times or high error

rates. This information helps to make changes to the

application or system to improve performance.

According to the information provided in Figure 13, the

website appears to be performing properly. There are

differences between the response times of various requests.

For example, the first request for Ebay_Home required

1429ms, while the second request for the same page required

only 247ms. There was also some variation in the

GlobalDealz requests, with the first request taking 1065ms

and the second request taking 251ms.

There may be a few minor performance issues that could be

addressed, but the website appears to be functioning properly

overall. To gain a deeper comprehension of the website's

performance, it would be useful to collect more data over a

longer period.

Figure 14. Load testing results using JMeter

http://www.ijsea.com/

International Journal of Science and Engineering Applications

Volume 12-Issue 05, 41– 49, 2023, ISSN:- 2319 - 7560

DOI: 10.7753/IJSEA1205.1013

www.ijsea.com 47

Based on the provided load testing results in Figure 14, it can be

determined that the website performs well under the test

conditions. The error percentage for both pages is zero, indicating

that no errors or failures occurred during the testing period. This

website can manage 53.1 requests per minute, which is a

respectable performance.

The website's received data rate is also not particularly high, but its

sent data rate is quite low, showing that the website is not

transferring a lot of data to the client side. Finally, the average

bytes per request is roughly 323392, indicating that the website

does not transfer a large amount of data per request.

5. DISCUSSION

Testing is an essential component of the software development

lifecycle in Agile software development. Manual testing and

automated testing are both essential to ensuring the integrity of the

software product. In many instances, automated testing is preferred

to manual testing. Table 2 illustrates some explanations for this.

Table 2. Comparison between manual testing Vs automated

testing

Manual Testing Automation Testing

Test cases are executed

manually.

Test cases are executed with

the help of tools.

Reliability is less. Reliability is more.

Humans can make mistakes

and hence accuracy is less.

The machine hardly makes

mistakes

Using manual testing, it could

be difficult to test the

application on different

Operating systems.

With the help of Automation

testing, we can easily test the

application on different

Operating systems.

Sometimes it becomes

difficult to execute all the test

cases and it impacts test

coverage.

In Automation testing, we can

achieve the test coverage

target.

In this testing, have to make

reports on your own.

Here tool will generate a test

case execution report. TestNG

is the framework that will

automatically generate a

report.

Web testing presents some challenges and limitations, including

the need for cross-browser compatibility testing, the complexity of

testing dynamic web pages, and the difficulty of simulating

authentic user behavior. In addition, web applications are

susceptible to security flaws, which necessitate specialized testing

strategies. In addition, web testing often includes testing for

multiple layers, such as the front-end, back-end, and middleware,

which can be resource- and time-intensive.

Table 3 provides a summary of the challenges and suggested

solutions in writing test cases covering all website functionalities

according to Table 1

Table 3. Challenges and suggestions in writing test cases

Challenges /

Limitations

Solution

Time-consuming,

delaying the

development

process

Separate test cases into smaller groups

and write them in iterations. Prioritize

and complete first the most important

software test cases.

Difficulty in

maintaining test

cases as the

software evolves

Review and update the test cases

regularly, preferably after each sprint.

Utilise testing automation tools that can

update test cases automatically in

response to software updates.

Lack of test

coverage,

overlooking some

scenarios

Prioritize the test cases using a risk-based

approach. Focus on the scenarios that are

most important for the software and

ensure that each sprint's acceptance

criteria are covered by the test cases.

Insufficient

feedback on

software quality

insufficient feedback regarding software

quality Adopt an approach to testing in

which test cases are frequently executed

throughout the development cycle. This

can provide immediate feedback on the

quality of the software and enable early

detection of defects during the

development cycle.

Due to browser compatibility issues, it can be difficult to run

Selenium WebDriver tests on different browsers. Each browser has

its peculiarities, which can result in unsuccessful tests or

unexpected results. In addition, different browsers offer different

levels of WebDriver support, which can impact the functionality of

tests. To overcome these challenges, Maven is a build automation

tool used for Java projects, including Selenium WebDriver tests.

Maven provides several advantages over performing tests directly,

such as simplified dependency management, enhanced project

structure, and faster build processes. Overall, using Maven for

Selenium WebDriver tests improves the testing process's efficiency

and reliability.

If running Selenium WebDriver tests on different browsers, need to install the corresponding browser drivers for each browser as shown in

Figures 15 and 16.

Figure 15. Run tests on the Microsoft Edge browser

Figure 16. Run tests on the Firefox browser

http://www.ijsea.com/

International Journal of Science and Engineering Applications

Volume 12-Issue 05, 41– 49, 2023, ISSN:- 2319 - 7560

DOI: 10.7753/IJSEA1205.1013

www.ijsea.com 48

Table 4. Web automation testing tools

Name of tool Languages Operating system Type Language

supported

Browser supports

Selenium Java Cross-platform Software testing

framework for web

application

Domain-specific

language

All major browser

Apache JMeter Java Windows, Linux, Mac

OS X, and other Unix-

based systems

Open-source, Java-based,

performance testing tool

Java JMeter can be used to

test web applications

running on any web

browser

Test Complete Java Microsoft Windows Test Automation Tool VBScript, Jscript,

C++, Delphi

Script, c#Script.

IE, Firefox, Google

Chrome

FitNesse Java Cross-platform Test Automation Tool C++, Python,

Ruby, Delphi, c#,

etc

Platform independent

HP Load

Runner

C Microsoft Windows &

Linux (load generator

only)

Load Testing Tool VB, VBScript,

Java, JavaScript,

c#

Any browser

TestNG Java Windows, Linux, MAC Testing Framework Java also

includes more

object-oriented

feature

IE, Firefox, chrome

TOSCA C#, java,

VB6

Microsoft Windows Test Automation Delphi, .NET

including WPF,

java swing/SWT/

AWT Visual

Basic

IE, Firefox

Silktest 4Test

Scripting

Language

Microsoft Windows Test Automation Java, 4Test, VB,

c#, VB.net

IE, Firefox

HP-QTP VB Script Microsoft Windows Test Automation VBScript IE 6,7,8,10, Firefox

3.0, and later

Among the automation tools shown in Table 4, the Selenium

and Apache JMeter tools have reasons to choose;

Selenium is a well-known open-source automation tool used

to evaluate the performance of web applications. It supports

multiple programming languages, including Java, Python, and

C#, and provides a set of tools for automating web browsers

across multiple platforms as shown in Figure 1. Selenium

enables testers to develop reliable automated scripts and run

them across multiple browsers and operating systems, making

it an ideal tool for functional testing [17].

On the other hand, JMeter is a powerful open-source tool used

for non-functional web application testing. It is primarily used

for web application load, stress, and performance testing.

JMeter can simulate a large number of concurrent users,

network bandwidth, and other parameters to assess an

application's performance under various conditions. In

addition, it can generate various reports and graphs that help

identify performance bottlenecks and optimization

opportunities.

Table 5. Locators in selenium web driver

Locator Description

class name Locates elements whose class name

contains the search value (compound class

names are not permitted)

CSS selector Locates elements matching a CSS selector

id Locates elements whose ID attribute

matches the search value

name Locates elements whose NAME attribute

matches the search value

link text Locates anchor elements whose visible

text matches the search value

partial link text Locates anchor elements whose visible

text contains the search value. If multiple

elements are matching, only the first one

will be selected.

tag name Locates elements whose tag name matches

the search value

xpath Locates elements matching an XPath

expression

Table 5 shows that in Selenium WebDriver, locators are used

to identify web page elements. Locators are essentially a

method for the WebDriver to "locate" an element that can be

http://www.ijsea.com/

International Journal of Science and Engineering Applications

Volume 12-Issue 05, 41– 49, 2023, ISSN:- 2319 - 7560

DOI: 10.7753/IJSEA1205.1013

www.ijsea.com 49

interacted with, such as a button or text field. Not every

locator will work in all situations. Use a locator that uniquely

identifies the element to interact with and test the code to

ensure that locators [16] are accurate and reliable.

There are some challenges to be faced while choosing a

locator, dynamic web pages, multiple elements, hidden

elements, frames, browser compatibility, timeouts, and

maintenance can make it difficult to choose the appropriate

locators in Selenium WebDriver. Each locator has its

limitations and difficulties, including unreliability,

complexity, and inefficiency. To overcome these difficulties,

it is essential to have an in-depth knowledge of the web page's

structure, to implement appropriate locator strategies, and to

review and update locators as necessary. A combination of

locators may be required for efficient and reliable test

automation.

6. ACKNOWLEDGMENT

We would like to express our gratitude to all those who have

contributed to the successful completion of this research

paper.

Firstly, we would like to thank Dr. Dilshan De Silva and M. P.

Gunathilake from the Department of Computer Science and

Software Engineering at the Institute of Information

Technology in Malabe, Sri Lanka, for their guidance and

support throughout the research process.

We would also like to extend our appreciation to our fellow

group members for their valuable contributions, cooperation,

and teamwork.

Lastly, we would like to acknowledge the support provided by

our respective families and friends during this research

endeavor.

Thank you all for your valuable contributions and support.

7. CONCLUSION

Software testing is essential for ensuring the quality of

software, particularly in agile software development. Test

automation is an efficient method that reduces testing time

and enhances test results' accuracy and consistency. Web

testing is a crucial component of software testing that

necessitates concurrent testing throughout software

development in an agile environment. Selenium and JMeter

are popular web test automation tools. Developing a Maven

project for automated testing in Eclipse simplifies dependency

management and speeds up the testing process. Testing has

many advantages, including enhanced software quality, lower

costs, and greater user satisfaction. Future research could

investigate the use of other test automation tools and their

advantages and disadvantages in agile web testing.

8. REFERENCES

[1] Softwaretestinghelp. (2021, August 14). Manual Testing

Vs Automation Testing: Which One Should You Use?

[Blog post].

[2] Author/Source: Selenium. (n.d.). Selenium

documentation. Selenium.

[3] Reference: Apache JMeter. (n.d.). Test Plan.

[4] Apache Maven. (n.d.). Creating a Project.

[5] T. Tretmans et al. (2013). "Benefits and limitations of

automated software testing: Systematic literature review

and practitioner survey." Information and Software

Technology, 55(1), 125-141.

[6] Lisa Crispin and Janet Gregory. (2009). "Agile Testing:

A Practical Guide for Testers and Agile Teams."

Addison-Wesley Professional.

[7] Sonatype, Inc. (2015). "Maven: The Definitive Guide."

O'Reilly Media.

[8] Testim.io. (2021). "Test Automation vs. Manual

Testing." Retrieved.

[9] P. Bansal et al. (2019). "A Study of Automated Software

Testing Automation Tools and Frameworks."

International Journal of Advanced Research in Computer

Science, 10(4), 218-223.

[10] J. Balaji and S. Arumugam, "Analysis and Design of

Selenium WebDriver Automation Testing Framework,"

in International Journal of Computer Applications, vol.

114, no. 1, pp. 25-31, March 2015, doi: 10.5120/20014-

2072.

[11] M. S. Mohammed and R. G. Rasool. (2017). "A Study on

Functioning of Selenium Automation Testing Structure."

International Journal of Advanced Research in Computer

Science and Software Engineering, 7(5), 537-542.

[12] E. Knauss et al. (2014). "A case study of test automation

in agile software development." Empirical Software

Engineering, 19(6), 1834-1864.

[13] Oracle. (n.d.). Eclipse and Java for Total Beginners.

[14] Apache JMeter. (n.d.). Getting Started - Running Apache

JMeter.

[15] Selenium. (n.d.). WebDriver. Retrieved April 20, 2023.

[16] Selenium. (n.d.). Locating elements. Retrieved April 20,

2023.

[17] Singh, A., & Singh, B. (2014). Comparison of
Automated Testing Tools: Selenium, Quick Test
Professional, and Test Complete. International Journal of
Computer Science and Information Technologies, 5(1),
119-123.

http://www.ijsea.com/
https://www.softwaretestinghelp.com/manual-testing-vs-automation-testing/
https://www.softwaretestinghelp.com/manual-testing-vs-automation-testing/
https://www.softwaretestinghelp.com/manual-testing-vs-automation-testing/
https://www.selenium.dev/documentation/
https://www.selenium.dev/documentation/
https://jmeter.apache.org/usermanual/build-web-test-plan.html
https://maven.apache.org/guides/getting-started/maven-in-five-minutes.html#create-a-project
https://www.researchgate.net/publication/261392355_Benefits_and_limitations_of_automated_software_testing_Systematic_literature_review_and_practitioner_survey
https://www.researchgate.net/publication/261392355_Benefits_and_limitations_of_automated_software_testing_Systematic_literature_review_and_practitioner_survey
https://www.researchgate.net/publication/261392355_Benefits_and_limitations_of_automated_software_testing_Systematic_literature_review_and_practitioner_survey
https://www.researchgate.net/publication/261392355_Benefits_and_limitations_of_automated_software_testing_Systematic_literature_review_and_practitioner_survey
https://learning.oreilly.com/library/view/agile-testing-a/9780321616944/bk01-toc.html
https://learning.oreilly.com/library/view/agile-testing-a/9780321616944/bk01-toc.html
https://learning.oreilly.com/library/view/agile-testing-a/9780321616944/bk01-toc.html
https://learning.oreilly.com/library/view/maven-the-definitive/9780596517335/pr03.html#section-whatIsMaven
https://learning.oreilly.com/library/view/maven-the-definitive/9780596517335/pr03.html#section-whatIsMaven
https://www.testim.io/blog/test-automation-vs-manual-testing/
https://www.testim.io/blog/test-automation-vs-manual-testing/
https://www.researchgate.net/publication/338282426_A_Study_of_Automated_Software_Testing_Automation_Tools_and_Frameworks
https://www.researchgate.net/publication/338282426_A_Study_of_Automated_Software_Testing_Automation_Tools_and_Frameworks
https://www.researchgate.net/publication/338282426_A_Study_of_Automated_Software_Testing_Automation_Tools_and_Frameworks
https://www.researchgate.net/publication/338282426_A_Study_of_Automated_Software_Testing_Automation_Tools_and_Frameworks
https://www.researchgate.net/publication/276437851_Analysis_and_Design_of_Selenium_WebDriver_Automation_Testing_Framework
https://www.researchgate.net/publication/276437851_Analysis_and_Design_of_Selenium_WebDriver_Automation_Testing_Framework
https://www.researchgate.net/publication/276437851_Analysis_and_Design_of_Selenium_WebDriver_Automation_Testing_Framework
https://www.researchgate.net/publication/276437851_Analysis_and_Design_of_Selenium_WebDriver_Automation_Testing_Framework
https://www.researchgate.net/publication/276437851_Analysis_and_Design_of_Selenium_WebDriver_Automation_Testing_Framework
https://www.researchgate.net/publication/318930970_A_Study_on_Functioning_of_Selenium_Automation_Testing_Structure
https://www.researchgate.net/publication/318930970_A_Study_on_Functioning_of_Selenium_Automation_Testing_Structure
https://www.researchgate.net/publication/318930970_A_Study_on_Functioning_of_Selenium_Automation_Testing_Structure
https://www.researchgate.net/publication/318930970_A_Study_on_Functioning_of_Selenium_Automation_Testing_Structure
https://www.researchgate.net/publication/281630920_Agile_Development_in_Automotive_Software_Development_Challenges_and_Opportunities
https://www.researchgate.net/publication/281630920_Agile_Development_in_Automotive_Software_Development_Challenges_and_Opportunities
https://www.researchgate.net/publication/281630920_Agile_Development_in_Automotive_Software_Development_Challenges_and_Opportunities
https://www3.ntu.edu.sg/home/ehchua/programming/howto/EclipseJava_HowTo.html
https://jmeter.apache.org/usermanual/get-started.html#non_gui
https://jmeter.apache.org/usermanual/get-started.html#non_gui
https://www.selenium.dev/documentation/webdriver/
../AppData/Local/Temp/Temp1_GRP-45%20(1).zip/GRP-45/Selenium.%20(n.d.).%20Locating%20elements.%20Retrieved%20April%2020,%202023,%20from%20https:/www.selenium.dev/documentation/webdriver/elements/locators/
../AppData/Local/Temp/Temp1_GRP-45%20(1).zip/GRP-45/Selenium.%20(n.d.).%20Locating%20elements.%20Retrieved%20April%2020,%202023,%20from%20https:/www.selenium.dev/documentation/webdriver/elements/locators/
https://ijcsit.com/docs/Volume%205/vol5issue01/ijcsit20140501196.pdf
https://ijcsit.com/docs/Volume%205/vol5issue01/ijcsit20140501196.pdf
https://ijcsit.com/docs/Volume%205/vol5issue01/ijcsit20140501196.pdf
https://ijcsit.com/docs/Volume%205/vol5issue01/ijcsit20140501196.pdf
https://ijcsit.com/docs/Volume%205/vol5issue01/ijcsit20140501196.pdf

