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Abstract: Autonomous electric vehicles (AEVs) hold great promise for the future of automotive engineering, but safety remains a 

significant challenge in their development and commercialization. Therefore, conducting a comprehensive analysis of AEV 

development and reported accidents is crucial. This paper reviews the levels of automation in AEVs, their disengagement frequencies, 

and on-road accident reports. According to the report, numerous manufacturers thoroughly tested AEVs across a distance of more than 

3.9 million miles between 2014 and 2022. Disengagement frequencies vary among manufacturers, and approximately 65% of accidents 

during this period occurred while AEVs were operating in autonomous mode. Notably, the majority of accidents (90%) were caused by 

other road users, with only a small fraction (∼8%) directly attributed to AEVs. Enhancing AEVs' ability to detect and mitigate safety 

risks from external sources has the potential to significantly improve their safety. This paper provides valuable insights into AEV safety 

by emphasizing the importance of comprehensively understanding AEV development and reported accidents. Through the analysis of 

disengagement and accident reports, the study highlights the prevalence of passive accidents caused by other road users. Future research 

should concentrate on enabling AEVs to effectively detect and respond to safety risks originating from external sources to enhance AEV 

safety. Overall, this analysis contributes to the ongoing efforts in AEV development and provides guidance for strategies aimed at 

improving their safety features. 

 

Keywords: autonomous electric vehicles; safety; accidents; road testing; autonomous mode; EVs; AEV; AV 

 

1. INTRODUCTION 
Autonomous driving technology has come to light as a possible 

option as society places more emphasis on minimizing traffic 

accidents, congestion, energy consumption, and pollutants. 

Autonomous electric vehicles (AEVs) equipped with advanced 

technologies can assist or operate independently, reducing the 

need for human intervention in vehicle control. The level of 

automation in AEVs determines whether control decisions are 

made by a human driver or an autonomous system based on the 

vehicle's capabilities and the surrounding environment. 

Implementing autonomous technology in transportation 

systems offers significant opportunities to address economic 

and environmental challenges. AEVs can enhance road safety 

by minimizing human errors that contribute to the majority of 

accidents. They also improve commuting by allowing 

occupants to engage in other activities and optimizing traffic 

paths and parking. AEVs promote mobility for individuals with 

disabilities, reduce the burden on mass transit, alleviate 

congestion, save fuel through efficient fleet management, and 

reduce stress for commuters. Additionally, they have the 

potential to save energy, decrease emissions, and positively 

impact pavement sustainability by minimizing crashes and 

optimizing vehicle operation [1]. 

The development of AEVs has been driven by the 

potential benefits of autonomous technology. Research has 

evolved from infrastructure-centered to vehicle-centered 

approaches, involving private companies like Google, Audi, 

Toyota, and Nissan. Road testing of AEV technologies has 

gained momentum, with features like lane-keeping, collision 

avoidance, and adaptive cruise control already implemented. 

However, safety concerns prevent the full commercialization 

of fully autonomous vehicles. Optimism about AEV safety  

 

varies across demographics and countries, and addressing 

safety risks and human factors in vehicle-human interaction is 

crucial. Regulations must adapt to technological progress [2]. 

A thorough understanding of automation levels, incidents, and 

on-road testing status is required to progress AEV technology. 

Conducting a thorough investigation into AEV-related 

accidents and predicting potential accidents as AEV 

technology advances is crucial. While significant efforts have 

been made in AEV technology development, a comprehensive 

statistical analysis of safety issues is lacking.  Understanding 

system failures and causes through critical analysis is essential 

for AEV design and development. This study aims to 

systematically analyze safety issues in autonomous technology 

for vehicles, providing valuable insights to stakeholders and 

advancing AEV technology. 

2. DEGREE OF AUTOMATION 
To minimize the impact of autonomous electric vehicles 

(AEVs) on traditional road users, such as vehicles, pedestrians, 

bicyclists, and construction workers, regulators need to 

establish a clear definition of AEVs. As mentioned earlier, the 

level of automation in AEVs is determined by factors like the 

complexity of the autonomous technology used, the range of 

environmental perception, and the involvement of human 

drivers or vehicle systems in making driving decisions. These 

factors directly impact the safety of AEVs [3]. This section 

provides a summary and comparison of different organizations' 

definitions of automation levels. The classic concept of 

automation levels specifies ten stages of automation based on 

the responsibilities of human operators and vehicle systems in 

the driving process. It was first put forth by Sheridan and 

Verplank in 1987 and then amended by Parasuraman et al. in 

2000. Level 1 denotes complete human decision and action-

making with no automation. Alternate decisions or action plans 

may be suggested by the system in Levels 2 to 4, but human 

supervisors must determine whether to follow them or not. As 
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of Level 5, the system can carry out decisions with a human 

operator's consent [1].  

Level 6 offers the human driver a restricted period of 

time to respond before taking autonomous action. Level 7 alerts 

the human supervisor following an automatic action, but Level 

8 only provides information upon request. Level 9 is concerned 

with the system determining whether to notify a human 

supervisor following an automatic action, whereas Level 10 

involves complete automation that ignores human variables. 

There are further resources where you may learn more about 

these ten levels of automation. The aviation engineering 

framework Pilot Authorization and Control of Tasks (PACT) 

includes six degrees of automation. According to this 

hypothesis, systems at Level 5 can run completely 

autonomously but can still be overridden by a human pilot 

because Level 0, which denotes no computer autonomy, is still 

feasible. Furthermore, depending on how human pilots and 

technologies interact operationally, the PACT framework 

proposes four aided modes. More information on these six 

levels can be found in the mentioned source [1, 4].  

The National Highway Traffic Safety Administration 

(NHTSA) of the United States has set up a hierarchical 

framework with five levels to classify automation in the field 

of car engineering. The numbers from 0 to 4 are used to name 

these stages. Level 0 cars don't have any kind of technology, so 

the driver is in charge of everything. Level 4 is the highest level 

of automation [5]. This is where self-driving cars can watch 

their surroundings and do all the important driving tasks on 

their own. Level 3 means that the car can drive itself some of 

the time, but the driver can still take control in certain 

situations. Most ongoing projects to build self-driving cars are 

in line with Level 3. The Society of Automotive Engineers 

(SAE) is the most trusted source for widely used meanings of 

terms related to automated driving. The SAE standards have 

been taken on by NHTSA, and they are regularly updated. SAE 

divides the levels of automation in cars into six groups based 

on how much human participation is needed by the automation 

system. These levels range from 0 (no automation) to 5 (full 

automation), with 0 being no automation and 5 being full 

automation. These rules are often used by regulators, 

lawmakers, and automakers in their work. 

The different levels of automation are based on how the 

automation system and human drivers work together to handle 

steering, throttle control, monitoring the environment, falling 

back to dynamic driving tasks (DDT), and the system's ability 

to switch between different autonomous driving modes. Levels 

0 to 2 depend on human workers to do some or all of the 

dynamic driving tasks (DDT), while Levels 3 to 5 show 

conditional automation, high automation, and full automation, 

respectively. These higher levels show that the system can 

handle all dynamic driving tasks (DDT) on its own while it is 

in action. The Society of Automotive Engineers (SAE) came 

up with a definition of car automation levels that is widely used 

[2, 3, 4, 5]. It is as follows: 

A. Level 0 (No Automation): All driving jobs are done by the 

human operator alone. 

B. Level 1 (Driver Assistance): The human driver is in charge 

of the car, but the automation system helps him or her 

drive. 

C. Level 2 (Partially Automated Driving): The vehicle has a 

combination of automated functions, but the driver is still 

in charge of keeping an eye on the surroundings and 

keeping control of the driving process. 

D. Level 3 (Conditional Driving Automation): The human 

driver must be ready to take charge of the vehicle if needed 

since the automation system can handle driving in some 

situations. 

E. Level 4 (High Driving Automation): The automation 

system can drive the car on its own in certain situations, 

but the human driver may still be able to take over if they 

want to. 

F. Level 5 (Full Driving Automation): The automation 

system can drive the car on its own in all situations, but 

the human driver can take over if they want to. 

Different groups' definitions of automation levels 

show that the roles of human drivers and vehicle systems can 

change in driving. This shows that safety concerns for partly 

autonomous, highly autonomous, and fully autonomous 

vehicles can vary a lot. When autonomous cars have different 

levels of automation, like none, some, or a lot, it's hard to make 

sure they're safe because people and machines have to work 

together. On the other hand, when AEVs are operating in fully 

autonomous states, the software and hardware must be very 

reliable. As cars add more self-driving technology, the 

complexity of the self-driving system grows. This makes it 

harder to keep the system stable, reliable, and safe. To figure 

out how safe AEVs are now and how safe they will be in the 

future, it is important to do theoretical studies of possible AEV 

mistakes [3, 5]. 

3. CATEGORIES OF ERRORS IN 

AUTONOMOUS ELECTRIC VEHICLES  
As the utilization of autonomous techniques increases, the 

likelihood of encountering various error types rises. Inadequate 

handling of these errors can give rise to substantial safety 

implications. Undertaking a systematic analysis of errors and 

accidents associated with autonomous electric vehicle (AEV) 

technology is imperative to gain insights into the current state 

of AEV safety. It is important to note that the reported 

incidence of accidents involving AEVs is considerably lower 

than that of traditional vehicles. However, this discrepancy 

does not inherently imply that current AEVs are inherently 

safer than human-controlled vehicles. Since AEV technology 

is still in its nascent stages of commercialization, and complete 

autonomous driving capabilities remain distant, conducting 

additional road tests and developing comprehensive accident 

databases are necessary to achieve a more comprehensive 

understanding of safety trends [6]. 

AEV safety hinges on the dependability of the AEV's 

architecture, encompassing its hardware and software 

components. However, the architecture of AEVs is intricately 

linked to the level of automation, thereby resulting in potential 

variations in AEV safety profiles at different stages of 

automation. Furthermore, even within the same level of 

automation, discrepancies in AEV architecture can be observed 

across different studies. Figure 1 depicts the overarching 

architecture and key constituents of AEVs. Typically, an AEV 

consists of a sensor-based perception system, an algorithm-

based decision system, an actuator-based actuation system, and 

interconnected systems [7, 8]. In an ideal scenario, all these 

components should operate effectively to ensure AEV safety. 

3.1 Accidents Directly Caused by AEVs 
The occurrence of accidents involving autonomous electric 

vehicles (AEVs) is intricately connected to the occurrence of 

errors at different levels of automation. These errors can be 
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systematically classified based on the aforementioned 

architectural framework [5, 7]. 

3.1.1. Perception Inaccuracy 
Collecting data from multiple sensing devices is essential for 

the perception layer to comprehensively understand the 

environment and make real-time judgments. The development 

of autonomous electric vehicles (AEVs) relies heavily on the 

sophistication, reliability, utility, and complexity of sensor 

technologies. AEVs utilize various technologies, such as 

LIDAR sensors, cameras, radars, ultrasonic sensors, touch 

sensors, and GPS, to perceive and interpret their surroundings. 

Additional information on different sensor systems can be 

found in other sources [5, 9]. It is crucial to note that a lack of 

awareness regarding road conditions, the location and 

movements of other vehicles, traffic signs, and potential 

hazards can lead to safety challenges. 

Figure 2 illustrates the evolution of sensor 

technologies used in automotive systems over time [5]. This 

statistic stems from the previously stated sources. 

Proprioceptive sensors such as wheel sensors, inertial sensors, 

and odometry were widely used in vehicle systems in the latter 

half of the twentieth century to improve vehicle dynamics 

stability and enable functionalities such as traction control, 

antilock braking, electronic stability control, antiskid control, 

and electronic stability programs. In the early twenty-first 

century, exteroceptive sensors such as sonar, radar, LIDAR, 

vision sensors, infrared sensors, and GPS became more 

common. By providing navigation help, parking assistance, 

adaptive cruise control, lane departure warnings, and night 

vision capabilities, these sensors sought to improve driver 

information, alarms, and comfort [10]. 

 

 

In the past decade, sensor networks have been 

integrated into both roadways and vehicles within modern 

transportation systems, enabling automatic and collaborative 

driving [5]. This breakthrough paves the way for advanced 

autonomous capabilities like collision avoidance and 

minimization. Ultimately, it leads to fully automated driving, 

eliminating the need for human drivers. Perceived data can also 

be obtained through interactions with AEVs, associated 

infrastructure, other vehicles, the internet, and cloud platforms, 

depending on the level of vehicle automation. Autonomous 

electric vehicles (AEVs) are prone to perception errors due to 

concerns related to their hardware, software, and 

communication systems [11].  

The perception system heavily relies on sensing 

technology, and faulty sensors or equipment can result in 

incorrect perception. A sensor failure or degradation can lead 

to significant misinterpretations, confusion in the decision-

making process, and hazardous driving situations. Therefore, 

ensuring the dependability and fault tolerance of sensor 

technology is crucial [5]. Additionally, perception errors can 

occur when software faults deliver inaccurate information to 

the decision and action levels, potentially resulting in mission 

failure or safety issues. 

As AEVs become more automated, communication 

errors become increasingly dangerous. These issues can arise 

from AEVs communicating with the internet, other vehicles on 

the road, and infrastructure [5, 7]. Communication plays a vital 

role in today's transportation system [6] by facilitating the 

coordination of all road users, including cars, pedestrians, 

cyclists, and construction workers, to ensure road safety, which 

is crucial for AEVs. Communication methods encompass 

gestures, facial expressions, and in-car electronics. However, 

the interpretation of these communications can vary based on 

cultural norms, context, and individual experiences, posing 

challenges for AEV technology [5, 6, 8]. 

3.1.2. Decision Inaccuracy 
The decision layer plays an essential role in examining the 

processed data from the perception layer, formulating 

decisions, and generating the necessary information for the 

action layer [5].  

 

 

 

Situational awareness acts as an input for the decision-making 

system, facilitating both short-term and long-term planning. 

Short-term planning entails tasks such as generating paths, 

evading obstacles, and managing incidents and maneuvers, 

while long-term planning encompasses mission and route 

planning [12]. 

Figure 1: Illustrative Architecture for AEV System 
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Inaccuracies in decision-making primarily arise from factors 

linked to the system or human involvement. A competent AEV 

system should intervene or notify the driver only when 

necessary, upholding a minimal false alarm rate while ensuring 

acceptable safety performance. With advancements in AEV 

technology, the false alarm rate can be significantly decreased, 

maintaining accuracy levels that fulfill safety requirements. 

However, if the algorithm fails to detect all risks effectively and 

efficiently, it may jeopardize the safety of AEVs. It is 

noteworthy that when drivers are engrossed in secondary tasks, 

there might be a brief delay before they can respond and regain 

control of the automated vehicle, introducing uncertainties to 

the secure control of AEVs. Unfortunately, AEV technology is 

not yet entirely dependable, necessitating human drivers to 

assume control of the driving process and oversee and monitor 

the driving tasks when the AEV system fails or its performance 

is restricted. Nevertheless, this transition in the role of human 

drivers in AEV driving can result in inattentiveness, diminished 

situational awareness, and a deterioration in manual driving 

abilities [5, 7, 13]. Accordingly, the design of AEVs with a 

human-centered perspective should address the safe and 

effective re-engagement of the driver when autonomous 

systems encounter failures. 

 

3.1.3. Action Inaccuracy 
Upon receiving instructions from the decision layer, the action 

controller undertakes further control of the steering wheel, 

throttle, or brake in the case of a conventional engine [14]. This 

control enables changes in direction, acceleration, or 

deceleration. The actuators also monitor feedback variables, 

utilizing this information to generate new decisions for 

actuation. Similar to conventional driving systems, 

inaccuracies in action can arise from actuator failure or 

malfunctions in the powertrain, control system, heat 

management system, or exhaust system. These inaccuracies 

can pose safety risks. However, a human driver is capable of 

recognizing such safety issues while driving and responding 

promptly by pulling over.  

The challenge for a fully automated driving system 

lies in how the vehicle learns and responds to these infrequent 

yet critical malfunctions in major vehicular components. 

Consequently, the reconstruction of accidents involving 

traditional vehicles is also of significance [5]. 

3.2 Accidents Due to Other Road Users 
Based on the reported incidents involving autonomous electric 

vehicles (AEVs) by the United States Department of Motor 

Vehicles [2, 5, 7], the majority of these incidents are ascribed 

to other entities on public roadways. These entities, such as 

motor vehicles, cyclists, and pedestrians (some of whom may 

be agitated or under the influence), frequently exhibit 

anomalous behavior that presents challenges even for human 

drivers. It is imperative to thoroughly investigate how 

advanced AEVs will react in these perilous scenarios, and it is 

anticipated that this technology will substantially diminish fatal 

accidents on roadways. However, autonomous technology is 

not yet fully matured to cope with highly intricate situations 

until specific pivotal concerns are resolved. These concerns 

encompass the effective identification and anticipation of 

hazardous behaviors stemming from other road users, as well 

as the accurate decision-making by the autonomous system. 

The proficient detection of hazards caused by other road users 

is pivotal for AEVs to actively make determinations and avert 

potential accidents. AEVs must ascertain whether they must 

undertake actions that might deviate from traffic regulations to 

prevent severe or injurious accidents. 

 

 

4. TESTING AND REPORTING 

ACCIDENTS (ON-ROAD ANALYSIS) 
This section focuses on analyzing publicly available data 

related to AEV testing, particularly disengagement and 

accident reports. The objective is to directly assess the safety 

performance of AEVs. The section explores two key data 

sources: the California Department of Motor Vehicles (USA) 

and the Beijing Innovation Center for Mobility Intelligent 

(China) [5].  

4.1 DMV – State of California 
On-road testing safety issues, like disengagements and actual-

life incidents, have been documented by the state's Division of 

Motor Vehicles [5, 8]. This section focuses on the department's 

disengagement and collision reports up to April 2019, with an 

analysis of 621 disengagement reports from 2014 to 2018. 

Figure 3 displays the cumulative mileage as well as the mileage 

and disengagement split in California on-road AEV testing, as 

provided by the Department of Motor Vehicles. 

Figure 2: Past & Future Development of AEV Technology 
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According to a study analyzing 621 disengagement 

reports (refer to Figure 3(a)), autonomous electric vehicles 

(AEVs) in California have collectively traveled 3.7 million 

miles. Google leads the manufacturers in terms of autonomous 

driving mileage with 73%, followed by GM Cruise at 13%, 

Baidu at 4%, Apple at 2%, and other manufacturers at 8% (see 

Figure 3(b)).  

 

 

 

 

 

Apple at 2%, and other manufacturers at 8% (see Figure 3(b)). 

A total of 159,870 instances of disengagement were 

documented, with Apple accounting for 48%, Uber accounting 

for 44%, Bosch accounting for 2%, and Mercedes-Benz 

accounting for 1%. Disengagement events are classified by 

Apple into two types: software disengagements and manual 

takeovers [5]. 

Figure 3: (a) Accumulated Distance Traveled, (b) Distribution of Mileage, and (c) Breakdown of Disengagements Across Different 

Manufacturers 
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Instead of depending only on automatic systems, AEV 

operators have the option of taking manual control of the 

vehicles when necessary [5]. Figure 3: Statistical analysis was 

performed on data from the California Department of Motor 

Vehicles between September 2014 and November 2018; data 

from Waymo and Google have been pooled and labeled as 

Google in this figure. These incidents can occur as a result of 

difficult driving conditions, such as emergency vehicles, 

construction zones, or unexpected objects on the road. 

Disengagements in software, on the other hand, are caused by 

issues recognized in perception, motion planning, controls, and 

communications. 

If the sensors, for example, are unable to detect and 

track an object in the immediate vicinity, human drivers must 

take over control of the car. Disengagement events can also 

occur as a result of the decision layer's inability to generate a 

motion plan, or as a result of the actuator's delays and incorrect 

responses. It is important to keep in mind that different 

manufacturers may interpret disengagement events differently, 

which implies that reported disengagement events for some 

organizations may not be full [5, 8]. Figure 4 shows the link 

between the number of disengagements per mile and the total 

number of miles for different makers. Manual takeovers 

happen anywhere from 2 x 10- 4 to 3 times per mile, depending 

on the maker. This big difference is mostly caused by 

differences in the amount of development of autonomous 

technology. But it's also possible that the way disengagements 

are described at this early stage of on-road testing leads to 

differences in how often they happen [5]. Regulators can 

develop terminologies for disengagement events that take into 

aspects like perception errors, judgment errors, action errors, 

system flaws, and other critical factors. These definitions will 

be extensively distributed.  

 

Based on Department of Motor Vehicles 

information, figure 5 depicts the breakdown of AEV crashes in 

California from 2014 to 2018. Due to a statistical analysis of 

128 collision reports, 46% were triggered by GM Cruise, 22% 

by Waymo, 17% by Google, and 5% by Zoox. Waymo began 

in 2009 as the Google Self-Driving Car Project. Most of the 

128 crashes that were reported during this time, or 63.3%  

happened when the car was being driven by a person instead of 

by themselves. This shows that driverless technology in AEVs 

needs to be tested more thoroughly on the road before it can be 

used everywhere. It's interesting to note that most accidents 

(93.7% of them) were caused by third parties like walkers, 

cyclists, motorcyclists, and regular cars, while only a small 

number (about 6.3%) were caused by the AEVs themselves [5, 

15,].  

 

This shows how important it is to study how to operate AEVs 

in the future to cut down on passive crashes and make safety 

much better. Figure 6 shows the connection between reported 

events and the total number of AEVs tested in California. 

Before 2017, the number of crashes that could be reported went 

up by 1.7 x 10-5 per mile. 

Figure 5: Distribution of AEV Accident Reports 

Figure 4: Disengagement occurrences plotted against autonomous miles based on reported data provided by different manufacturers 
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This was based on the total testing mileage. However, from 

2017 to 2018, this rate tripled to 4.9 × 10(-5) accidents per mile. 

This change can be attributed to the utilization of advanced, 

albeit still developing, technology in recent AEV tests, as well 

as the growing number of concurrently tested AEVs in 

California. The data presented in this figure are reported by the 

manufacturers as of April 2019.  

4.2 Mobility Innovation Center for 

Intelligent (Beijing) 
In 2018, the Beijing Invention Institute for Intelligent Mobility 

released an analysis on the evaluation of AEVs in urban areas 

with restricted space and focused populations [27]. By the end 

of December 2018, self-driving cars had covered a total 

distance of 153,565 kilometers, equivalent to 95,420 miles 

(refer to Figure 7(a)). Baidu comprised 90.8% of the 

manufacturers examined, ahead of Pony.ai (6.6%), NIO 

(2.7%), and Daimler AG (0.6%) [5, 16]. There have been no 

instances of disengagement or incidents as of yet. But it would 

be very helpful for people to have access to information about 

accidents. This openness could help all automakers get people 

to buy cars with automatic technology and give customers more 

faith in AEVs. 

5. CHALLENGES & OPPORTUNITIES 
The progress of AEV technology brings forth a multitude of 

advantages, such as improving transportation safety, reducing 

traffic congestion, liberating humans from driving 

responsibilities, and generating positive economic and 

environmental effects [4, 5]. Consequently, there is a rising 

interest in advanced AEV technology within academic and 

industrial spheres, offering diverse prospects for AEV 

advancement. Nevertheless, the extensive implementation of 

AEVs requires substantial experimental efforts to address 

challenges associated with software, hardware, vehicle 

systems, infrastructure, and interactions with other road users. 

5.1 CHALLENGES 
A big problem for AEVs to become widely used is that people 

are worried about their safety. To get more people to use AEVs, 

it's important to deal with the following problems [5]: 

5.1.1. Reducing Perception Inaccuracy 
Inaccuracies in perception make it hard to find, locate, and 

classify things in the surroundings. Also, making sure AEVs 

are safe depends on how well they can see and understand 

human actions like posture, voice, and movement [17]. 

5.1.2. Reducing Decision Inaccuracy 
Creating a method for making decisions that is reliable, strong, 

and efficient is important if you want to respond to your 

environment quickly and accurately [18]. To do this, you need 

to test your hardware and apps thoroughly and carefully. Also, 

it is still hard to figure out the right thing to do in complicated 

situations. For instance, when faced with the dilemma of 

choosing between causing harm to pedestrians or preventing 

fatal accidents resulting from sudden system failures or 

mechanical breakdowns, making decisions becomes 

exceptionally challenging. 

5.1.3. Reducing Action Inaccuracy 
Establishing a dependable and stable communication link 

between the actuators and decision systems is essential to 

ensure the safety of autonomous electric vehicles (AEVs). This 

allows the actuators to accurately receive and execute 

commands from both human operators and automated systems, 

contributing to the overall safety and efficiency of AEVs.  

Figure 6: Relationship between Cumulative Accidents and 

Cumulative Autonomous Miles 

Figure 7(a): Cumulative Distance 

Figure 7(b): Comprehensive Analysis of the Distribution of 

Mileage Contributions among Different Manufacturers 
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5.1.4. Cyber-Security Attack 
As autonomous electric vehicles (AEVs) continue to advance, 

their reliance on wireless connectivity will increasingly extend 

to interactions with road infrastructure, satellites, and other 

vehicles, forming what is often referred to as a "vehicular 

cloud." This is because autonomous technology is getting 

better. It is of utmost importance to prioritize the 

implementation of strong cybersecurity measures to address 

one of the primary concerns related to AEVs [5, 8]. 

5.1.5. Communication with Regular 

Transportation System 
When AEVs and regular cars share public roads in cities, it can 

be hard for them to get along with other road users, like walkers 

and drivers of regular cars [18]. It becomes hard for these road 

users to tell what kinds of vehicles they are dealing with. The 

ambiguity surrounding AEVs can create feelings of stress for 

pedestrians and influence their decision-making, particularly 

when AEV drivers are preoccupied and fail to establish eye 

contact [5]. Rodrguez Palmeiro et al. propose the utilization of 

comprehensive behavioral assessments, such as eye-tracking, 

to gain further insights into pedestrians' reactions toward AEV 

technology [4]. 

5.1.6. Customer Acceptance 
The broad implementation of AEVs encounters notable 

challenges, including safety considerations, cost implications, 

and public concerns [8, 9, 10]. Among these factors, safety 

emerges as the most crucial aspect due to its significant 

influence on public perception and acceptance of the emerging 

AEV technology. 

5.2 OPPORTUNITIES 
One argument supporting the development of AEV technology 

is that although some traditional job opportunities may be 

eliminated, the overall impact will result in the creation of more 

jobs. Extensive testing in diverse domains, including software, 

hardware, vehicle components, vehicle systems, sensing 

devices, and communication systems, is essential to drive the 

progress of AEVs [19, 20, 21]. By implementing AEV 

technology, human operators can be liberated from the driving 

process, leading to improved time management and increased 

efficiency in various aspects of life, including work, leisure 

activities, and education. Furthermore, the adoption of AEV 

technology brings about lifestyle changes, affecting areas like 

driving training and driver's license testing. This not only 

fosters progress within the AEV-related industry but also 

extends its benefits to non-AEV sectors [22, 23, 24]. 

AEV techniques can change the way people usually get 

around. The need for drivers to not have to drive has created an 

intelligent vehicle grid [25]. The foundation of this system is 

built upon sensor platforms that gather data from the 

surrounding environment, including information from other 

drivers and road signs [26]. These signals are then transmitted 

to drivers and infrastructure to assist in ensuring safe 

navigation, reducing pollution, improving gas mileage, and 

enhancing traffic control [27, 28]. A study conducted by Stern 

et al. involved an experiment on a ring road, where both 

autonomous and human-driven cars were present [29]. The 

results demonstrated that a single AEV could effectively 

regulate the traffic flow of at least 20 human-driven cars, 

leading to significant improvements in vehicle speed standard 

deviation, excessive braking, and fuel economy [30]. Liu and 

Song looked into two kinds of lanes for AEVs: lanes just for 

AEVs and lanes for AEVs that charge a fee [31]. Only 

autonomous cars can use dedicated AEV lanes, but human-

driven vehicles can use AEV/toll lanes if they pay extra fees. 

Their models show that using both types of lanes can make the 

system work better. Gerla et al. looked at the Internet of 

Vehicles, which includes the ability to communicate, store 

information, be smart, and learn on its own [5, 10]. Their work 

suggests that the communication between vehicles and the 

Internet will substantially transform public transportation, 

making it more efficient and environmentally friendly. 

Consequently, traditional transportation systems must be 

adapted to accommodate AEVs [5]. 

Driving simulators have gotten a lot of attention because they 

can simulate automatic driving and accidents in virtual reality 

settings. Using driving simulators, researchers can learn a lot 

about how people drive, requests to take over, car-following 

moves, and other human factors [5]. This method reduces the 

risks of putting drivers in dangerous situations while giving 

them the chance to look at how decisions are made and what 

happens as a result. 

6. CONCLUSION 
Fully autonomous electric vehicles (AEVs) enable operators to 

engage in non-driving tasks, providing benefits to individuals 

and communities. However, the successful commercialization 

of AEVs faces significant technical challenges due to safety 

concerns. This comprehensive review article compares 

automation levels defined by various organizations, with 

widespread adoption of the Society of Automotive Engineers 

(SAE) standards. The article also conducts a theoretical 

analysis of accident types based on typical AEV architectures, 

encompassing perception, decision, and action systems. 

Statistical analysis of publicly available on-road AEV 

disengagement and accident reports in California reveals over 

3.7 million miles of testing conducted by different 

manufacturers between 2014 and 2018. Disengagement 

frequencies range from 2 × 10(-4) to 3 disengagements per mile, 

varying among manufacturers. Among the 128 reported 

accidents, approximately 63.3% occurred during the 

autonomous mode, with only around 6.7% directly attributed to 

AEVs, while 94.7% were caused by pedestrians, cyclists, 

motorcycles, and conventional vehicles [5, 7]. These findings 

emphasize the need to address safety risks posed by other road 

users and make informed decisions to prevent fatal accidents. 
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