Modern Distance Teacher Training in Narrowing the Gap on the Dual Structure Basic Education

YanQi
University of the Cordilleras
Baguio City, Philippines, 2600

Mary Geraldine B. Gunaban
University of the Cordilleras
Baguio City, Philippines, 2600

Abstract

With the development of technology, distance education has become an important tool to achieve educational equity. This paper aims to analyze the impact mechanism of modern distance teacher training on narrowing the gap between urban and rural education of China, and put forward a new path to improve the basic education. The research takes the China Education Panel Survey (CEPS) as the data source for analysis and find that the gap between urban and rural basic education does exist, but the academic achievement gap reflected by students at different quantiles is different; Distance teacher training is conducive to improving urban and rural students with different academic performance levels, and it has a higher promotion effect on students with better academic performance in rural areas; Different distance teacher training methods have different effects on students' academic performance, and the effects on mathematics and English subjects are more significant than those on Chinese subjects. Finally, this paper put forward some suggestions for the improvement of modern distance teacher training from the aspects of organization and management, training content, so as to provide a valuable reference for the balanced development of urban and rural education.

Keywords: Distance training; Narrow the gap between urban and rural education; Basic education; Influence mechanism

1. INTRODUCTION

At the beginning of 2019, "China Education Modernization 2035" drew a blueprint for the development of smart campus, digital education resources and artificial intelligence teaching combination based on the development picture of education informatization, which fully reflected the implementation logic from the macro-level education informatization policy to the micro-level to narrow the gap between urban and rural education, and provided a feasible solution to solve the problem of rural education resources [1]. However, how to examine the comprehensive impact brought by the application of information technology based on the practical problems from the microscopic perspective has become a key proposition to be solved urgently at this stage.

At this stage, the academic circles have fully studied the influencing factors related to the differentiation of basic education. Some scholars have calculated the performance of urban and rural basic education in 29 provinces of China through DEA dynamic and static models, and made a prediction before actual intervention to evaluate the basic gap. The results show that this gap does exist, mainly in technological progress and scale efficiency, and the influencing factors involve economic development level, financial freedom, urbanization rate, and poverty level of residents (Yu Xinghou et al., 2019)[2]. Some scholars believe that this gap can be alleviated by improving the distribution of educational resources. Combining distance learning and teaching information technology, we can provide rural teachers with the same educational resources as urban teachers, so that both teachers and students can benefit from the shared educational resources and focus on improving their academic level and educational governance from two aspects: individual internal factors and external environmental factors (Danie, 2021)[3]. At present, there are many ways of distance teacher training, such as online open courses, social network collaborative learning and mobile distance training. These forms have great potential in promoting teachers' quality, improving the quality of learning content, supporting curriculum teaching and improving learning satisfaction. For
example, some scholars reported the enthusiasm and application of MOOC in rural areas (Mower, 2016)[4]. Some scholars have pointed out that mobile distance training has the potential to improve academic level, but there is no evidence that this measure can help narrow the gap between urban and rural basic education and provide equal educational opportunities for all (Syahida et al, 2022)[5].

Despite the surging interest in the role of ICT on reforming education, only limited attention has been given on the influence of modern distance teacher training and lack data support. Therefore, this paper uses CEPS data to explore the impact mechanism of on-site distance teacher training on narrowing this gap.

2. The research design and data sources

2.1 The data sources

The research data comes from the benchmark data of "China Education Panel Survey" (CEPS). This survey collected 19,487 students from 28 counties (districts), 112 schools and 438 classes nationwide, and collected information on family and school resources, teacher training status, students' academic achievements and basic characteristics, families and schools, which met the research needs.

2.2 The research methods

Uqr (unconditional quantile regression). In order to explore the influence mechanism of distance teacher training on students with different academic achievements, this paper adopts UQR regression analysis method to carry out research. UQR mainly uses RIF function to transform data, and divides students with different academic achievements into several points, so that we can analyze the differences in the influence of distance teacher training on students at different points. The main formula is as follows:
$\operatorname{RIF}\left(\mathrm{S}, Q_{\tau}\right)=Q_{\tau}+\frac{\tau-I \quad\left(\leqslant Q_{\tau}\right)}{F_{S}\left(Q_{\tau}\right)}$

In the formula, RIF is the reconcentration influence function of distribution statistics, S is academic achievement, Q is unconditional quantile, and I is indicative function.

3. The research results and statistics

According to the research hypothesis and CEPS baseline data, the data results are statistically analyzed, and three research questions are answered: the gap between urban and rural basic education; the influence of distance teacher training on narrowing the gap between urban and rural basic education; and the differential influence of different distance teacher training methods on narrowing the gap between urban and rural basic education.

3.1 The descriptive statistics of related variables

In the two samples of urban schools and rural schools, the frequency of distance teacher training in urban schools is significantly higher than that in rural schools, and the scores of three sciences are also significantly higher than that in rural schools, especially the gap in English academic performance. Compared with urban schools in academic and family levels, the proportion of only children in rural schools and the average educational years of parents are significantly lower, and the proportion of family financial difficulties is higher. At the school level, compared with urban schools, the proportion of teachers with bachelor's degree and teachers who graduated from normal schools is lower, and the proportion of top schools is even 0 .

Table 1 Descriptive statistics of related variables

Variable dimensionVariable nameCity schoolRural schoolsMean differenceindependent variableDistance teacher training frequency25.60614.77110.835depend ent variableWeighted Chinese academic achievement48.44334.87113.572Wei ghted mathematics academic achievement41.77931.62810.151Wei ghted English academic performance49.40330.39519.008Cont rol variableStudent- gender0.5480.3690.179Student-Is it an only child?0.6520.2750.377Family- economic difficulties $18.20 \% 30.15 \% /$ Family- economic medium60.83\%53.50\%/Family- economic prosperity20.98\% $16.35 \% /$ Family- parent average years of education12.6009.4923.108Proportio n of school-undergraduate teachers0.8650.6490.216Proportion of school-teacher graduates0.8990.6670.232School- backward in ranking16.42\%29.91\%/School- ranked	Var iabl e na me	$\begin{gathered} \mathrm{Cit} \\ \mathrm{y} \\ \text { sch } \\ \text { ool } \end{gathered}$	Rural schoolsMean differenceindependent variableDistance teacher training frequency25.60614.77110.835depend ent variableWeighted Chinese academic achievement 48.44334 .87113 .572 Wei ghted mathematics academic achievement 41.77931 .62810 .151 Wei ghted English academic performance49.40330.39519.008Cont rol variableStudent-gender0.5480.3690.179Student-Is it an only child?0.6520.2750.377Familyeconomic difficulties $18.20 \% 30.15 \% /$ Familyeconomic medium60.83\%53.50\%/Familyeconomic prosperity $20.98 \% 16.35 \% /$ Familyparent average years of education 12.6009.4923.108Proportio n of school-undergraduate teachers0.8650.6490.216Proportion of school-teacher graduates0.8990.6670.232Schoolbackward in ranking $16.42 \% 29.91 \% /$ Schoolranked medium54.16\%70.09\%/Schools-Top ranked $29.42 \% 0.00 \% /$ Source: The benchmark data of China Education Tracking Survey (CEPS) project;	Mean differenceindependent variableDistance teacher training frequency25.60614.77110.835depend ent variableWeighted Chinese academic achievement 48.44334 .87113 .572 Wei ghted mathematics academic achievement41.77931.62810.151Wei ghted English academic performance49.40330.39519.008Cont rol variableStudent-gender0.5480.3690.179Student-Is it an only child?0.6520.2750.377Familyeconomic difficulties $18.20 \% 30.15 \% /$ Familyeconomic medium60.83\%53.50\%/Familyeconomic prosperity $20.98 \% 16.35 \% /$ Familyparent average years of education12.6009.4923.108Proportio n of school-undergraduate teachers 0.8650 .6490 .216 Proportion of school-teacher graduates0.8990.6670.232Schoolbackward in ranking $16.42 \% 29.91 \% /$ Schoolranked medium54.16\%70.09\%/Schools-Top ranked $29.42 \% 0.00 \% /$ Source: The benchmark data of China Education Tracking Survey (CEPS) project;
independent variableDistance teacher training frequency25.60614.77110.835depend ent variableWeighted Chinese academic achievement 48.44334 .87113 .572 Wei ghted mathematics academic achievement41.77931.62810.151Wei ghted English academic performance49.40330.39519.008Cont rol variableStudent-gender0.5480.3690.179Student-Is it an only child?0.6520.2750.377Family-	Dis tan ce tea che r trai nin g fre que ncy	$\begin{aligned} & 25 . \\ & 606 \end{aligned}$	14.77110.835dependent variableWeighted Chinese academic achievement 48.44334 .87113 .572 Wei ghted mathematics academic achievement 41.77931 .62810 .151 Wei ghted English academic performance49.40330.39519.008Cont rol variableStudent-gender0.5480.3690.179Student-Is it an only child?0.6520.2750.377Familyeconomic difficulties $18.20 \% 30.15 \% /$ Familyeconomic	10.835dependent variableWeighted Chinese academic achievement 48.44334 .87113 .572 Wei ghted mathematics academic achievement 41.77931 .62810 .151 Wei ghted English academic performance49.40330.39519.008Cont rol variableStudent-gender0.5480.3690.179Student-Is it an only child?0.6520.2750.377Familyeconomic difficulties $18.20 \% 30.15 \% /$ Familyeconomic

economic
difficulties $18.20 \% 30.15 \% /$ Familyeconomic
medium60.83\%53.50\%/Familyeconomic
prosperity $20.98 \% 16.35 \% /$ Familyparent average years of education12.6009.4923.108Proportio n of school-undergraduate teachers 0.8650 .6490 .216 Proportion of school-teacher
graduates0.8990.6670.232Schoolbackward in ranking16.42\%29.91\%/Schoolranked
medium54.16\%70.09\%/Schools-Top ranked $29.42 \% 0.00 \% /$ Source: The benchmark data of China Education Tracking Survey (CEPS) project;
dependent variableWeighted Chinese academic
achievement48.44334.87113.572Wei ghted mathematics academic achievement41.77931.62810.151Wei ghted English academic performance49.40330.39519.008Cont rol variableStudent-
gender0.5480.3690.179Student-Is it an only
child?0.6520.2750.377Familyeconomic
difficulties $18.20 \% 30.15 \% /$ Familyeconomic
medium60.83\% $53.50 \% /$ Familyeconomic
prosperity $20.98 \% 16.35 \% /$ Familyparent average years of education12.6009.4923.108Proportio n of school-undergraduate teachers 0.8650 .6490 .216 Proportion of school-teacher graduates0.8990.6670.232Schoolbackward in ranking $16.42 \% 29.91 \% /$ Schoolranked
medium $54.16 \% 70.09 \% /$ Schools-Top ranked $29.42 \% 0.00 \% /$ Source: The benchmark data of China Education Tracking Survey (CEPS) project;
medium60.83\%53.50\%/Familyeconomic
prosperity $20.98 \% 16.35 \% /$ Familyparent average years of education12.6009.4923.108Proportio
n of school-undergraduate
teachers 0.8650 .6490 .216 Proportion of school-teacher
graduates0.8990.6670.232Schoolbackward in
ranking $16.42 \% 29.91 \% /$ Schoolranked
medium $54.16 \% 70.09 \% /$ Schools-Top
ranked $29.42 \% 0.00 \% /$ Source: The
benchmark data of China Education
Tracking Survey (CEPS) project;

34.87113.572Weighted mathematics academic

achievement41.77931.62810.151Wei ghted English academic
performance49.40330.39519.008Cont rol variableStudent-
gender0.5480.3690.179Student-Is it an only
child?0.6520.2750.377Familyeconomic
difficulties $18.20 \% 30.15 \% /$ Familyeconomic
medium60.83\%53.50\%/Familyeconomic
48.
de mic
ach
iev
em ent
prosperity $20.98 \% 16.35 \% / F a m i l y-$ parent average years of
education12.6009.4923.108Proportio
n of school-undergraduate
teachers 0.8650 .6490 .216 Proportion of school-teacher
graduates0.8990.6670.232Schoolbackward in
ranking16.42\% $29.91 \% /$ Schoolranked
medium $54.16 \% 70.09 \% /$ Schools-Top ranked $29.42 \% 0.00 \% /$ Source: The
benchmark data of China Education
Tracking Survey (CEPS) project;
31.62810.151Weighted English academic
performance49.40330.39519.008Cont rol variableStudent-
gender0.5480.3690.179Student-Is it an only
child?0.6520.2750.377Familyeconomic
difficulties $18.20 \% 30.15 \% /$ Familyeconomic
medium60.83\%53.50\%/Familyeconomic prosperity20.98\% $16.35 \% /$ Familyparent average years of
education12.6009.4923.108Proportio
n of school-undergraduate
teachers0.8650.6490.216Proportion of school-teacher
graduates0.8990.6670.232School-
medium60.83\%53.50\%/Familyeconomic
prosperity $20.98 \% 16.35 \% /$ Familyparent average years of education12.6009.4923.108Proportio n of school-undergraduate
teachers 0.8650 .6490 .216 Proportion of school-teacher
graduates0.8990.6670.232Schoolbackward in
ranking16.42\%29.91\%/Schoolranked
medium54.16\%70.09\%/Schools-Top ranked $29.42 \% 0.00 \% /$ Source: The
benchmark data of China Education Tracking Survey (CEPS) project;

13.572Weighted mathematics academic

achievement41.77931.62810.151Wei
ghted English academic
performance49.40330.39519.008Cont rol variableStudent-
gender0.5480.3690.179Student-Is it an only
child?0.6520.2750.377Familyeconomic
difficulties $18.20 \% 30.15 \% /$ Familyeconomic
medium60.83\%53.50\%/Familyeconomic
prosperity20.98\% $16.35 \% /$ Familyparent average years of
education12.6009.4923.108Proportio n of school-undergraduate
teachers 0.8650 .6490 .216 Proportion of school-teacher
graduates0.8990.6670.232Schoolbackward in
ranking $16.42 \% 29.91 \% /$ Schoolranked
medium54.16\%70.09\%/Schools-Top ranked $29.42 \% 0.00 \% /$ Source: The benchmark data of China Education Tracking Survey (CEPS) project;
10.151Weighted English academic
performance49.40330.39519.008Cont rol variableStudent-
gender0.5480.3690.179Student-Is it an only
child?0.6520.2750.377Familyeconomic
difficulties18.20\%30.15\%/Familyeconomic
medium60.83\%53.50\%/Familyeconomic
prosperity $20.98 \% 16.35 \% /$ Familyparent average years of education12.6009.4923.108Proportio n of school-undergraduate teachers 0.8650 .6490 .216 Proportion of school-teacher
graduates0.8990.6670.232Schoolbackward in

$$
\begin{gathered}
\text { ranking } 16.42 \% 29.91 \% / \text { School- } \\
\text { ranked } \\
\text { medium } 54.16 \% 70.09 \% / \text { Schools-Top } \\
\text { ranked29.42\%0.00\%/Source: The } \\
\text { benchmark data of China Education } \\
\text { Tracking Survey (CEPS) project; }
\end{gathered}
$$

30.15\%/Family-economic medium60.83\%53.50\%/Familyeconomic
prosperity $20.98 \% 16.35 \% /$ Familyparent average years of education12.6009.4923.108Proportio
n of school-undergraduate
teachers 0.8650 .6490 .216 Proportion
of school-teacher
graduates0.8990.6670.232Schoolbackward in ranking $16.42 \% 29.91 \% /$ Schoolranked
medium54.16\%70.09\%/Schools-Top
ranked $29.42 \% 0.00 \% /$ Source: The
benchmark data of China Education Tracking Survey (CEPS) project;
$53.50 \% /$ Family-economic
prosperity $20.98 \% 16.35 \% /$ Family-
parent average years of
education12.6009.4923.108Proportio
n of school-undergraduate
teachers0.8650.6490.216Proportion
of school-teacher
graduates0.8990.6670.232School-
backward in
ranking $16.42 \% 29.91 \% /$ Schoolranked
medium $54.16 \% 70.09 \% /$ Schools-Top
ranked $29.42 \% 0.00 \% /$ Source: The
benchmark data of China Education Tracking Survey (CEPS) project;
16.35% /Family-parent average years of
education 12.6009.4923.108Proportio
n of school-undergraduate
teachers0.8650.6490.216Proportion of school-teacher
graduates0.8990.6670.232School-
backward in
ranking $16.42 \% 29.91 \% /$ Schoolranked
medium $54.16 \% 70.09 \% /$ Schools-Top
ranked $29.42 \% 0.00 \% /$ Source: The
benchmark data of China Education
Tracking Survey (CEPS) project;
9.4923.108Proportion of schoolundergraduate
teachers0.8650.6490.216Proportion of school-teacher
graduates0.8990.6670.232Schoolbackward in
ranking $16.42 \% 29.91 \% /$ Schoolranked
medium $54.16 \% 70.09 \% /$ Schools-Top ranked $29.42 \% 0.00 \% /$ Source: The
benchmark data of China Education
Tracking Survey (CEPS) project;
ranking16.42\%29.91\%/Schoolranked
medium54.16\%70.09\%/Schools-Top ranked $29.42 \% 0.00 \% /$ Source: The
benchmark data of China Education Tracking Survey (CEPS) project;
/Family-economic
medium60.83\%53.50\%/Familyeconomic
prosperity $20.98 \% 16.35 \% /$ Familyparent average years of education12.6009.4923.108Proportio n of school-undergraduate
teachers 0.8650 .6490 .216 Proportion
of school-teacher
graduates0.8990.6670.232Schoolbackward in
ranking $16.42 \% 29.91 \% /$ Schoolranked
medium54.16\%70.09\%/Schools-Top
ranked $29.42 \% 0.00 \% /$ Source: The
benchmark data of China Education
Tracking Survey (CEPS) project;
/Family-economic
prosperity20.98\% $16.35 \% /$ /Familyparent average years of
education12.6009.4923.108Proportio n of school-undergraduate
teachers 0.8650 .6490 .216 Proportion
of school-teacher
graduates0.8990.6670.232School-
backward in
ranking $16.42 \% 29.91 \% /$ Schoolranked
medium54.16\%70.09\%/Schools-Top ranked $29.42 \% 0.00 \% /$ Source: The
benchmark data of China Education
Tracking Survey (CEPS) project;
/Family-parent average years of education12.6009.4923.108Proportio n of school-undergraduate
teachers 0.8650 .6490 .216 Proportion
of school-teacher
graduates0.8990.6670.232Schoolbackward in
ranking $16.42 \% 29.91 \% /$ Schoolranked
medium54.16\%70.09\%/Schools-Top ranked $29.42 \% 0.00 \% /$ Source: The benchmark data of China Education
Tracking Survey (CEPS) project;
3.108Proportion of schoolundergraduate
teachers 0.8650 .6490 .216 Proportion of school-teacher
graduates0.8990.6670.232Schoolbackward in
ranking $16.42 \% 29.91 \% /$ Schoolranked
medium54.16\%70.09\%/Schools-Top ranked $29.42 \% 0.00 \% /$ Source: The benchmark data of China Education Tracking Survey (CEPS) project;

on1			
2.6			
009			
. 49			
23.			
108			
Pro			
por			
tio			
n		0.6490 .216 Proportion of school-	0.216Proportion of school-teacher
of		teacher	graduates0.8990.6670.232School-
sch ool	0.8	graduates0.8990.6670.232School- backward in	backward in
,	650	ranking16.42\%29.91\%/School-	ranking $16.42 \% 29.91 \% /$ School-
und	. 64	ranked	ranked
erg	90.	medium54.16\%70.09\%/Schools-Top	medium54.16\%70.09\%/Schools-Top
rad	216	ranked $29.42 \% 0.00 \% /$ Source: The	ranked $29.42 \% 0.00 \% /$ Source: The benchmark data of China Education
uat		benchmark data of China Education Tracking Survey (CEPS) project;	Tracking Survey (CEPS) project;
tea			
che			
rs0.			
865			
Pro			
por			
tio			
n		0.6670.232School-backward in	0.232School-backward in
of	0.8	ranking $16.42 \% 29.91 \% /$ School-	ranking $16.42 \% 29.91 \% /$ School-
sch	$\begin{aligned} & 0.8 \\ & 990 \end{aligned}$	ranked	ranked
ool	66	medium $54.16 \% 70.09 \% /$ Schools-Top	medium54.16\%70.09\%/Schools-Top
	$\begin{aligned} & .66 \\ & 70 \end{aligned}$	ranked $29.42 \% 0.00 \% /$ Source: The	ranked $29.42 \% 0.00 \% /$ Source: The
tea	$\begin{aligned} & 70 . \\ & 232 \end{aligned}$	benchmark data of China Education	benchmark data of China Education
che	232	Tracking Survey (CEPS) project;	Tracking Survey (CEPS) project;
r			
gra			
dua			
tes			
Sch			
ool			
bac			
kw		29.91\%/School-ranked	/School-ranked
ard	$\begin{aligned} & 16 . \\ & 42 \end{aligned}$	medium54.16\%70.09\%/Schools-Top	medium54.16\%70.09\%/Schools-Top
in	\%2	ranked $29.42 \% 0.00 \% /$ Source: The	ranked $29.42 \% 0.00 \% /$ Source: The
ran	9.9	benchmark data of China Education	benchmark data of China Education
kin	$\begin{aligned} & 9.9 \\ & 1 \% \end{aligned}$	Tracking Survey (CEPS) project;	Tracking Survey (CEPS) project;
. 42			
\%2			
9.9			
1\%			
Sch			
ool			
-			
ran	$54 .$	70.09\%/Schools-Top	/Schools-Top
ked	16	ranked $29.42 \% 0.00 \% /$ Source: The	ranked $29.42 \% 0.00 \% /$ Source: The
med	\%7	benchmark data of China Education	benchmark data of China Education
diu	0.0	Tracking Survey (CEPS) project;	Tracking Survey (CEPS) project;
m5			
4.1			
6\%			
Sch 29.			
ool	42	0.00\%/Source: The benchmark data	
S-	\%0	of China Education Tracking Survey	China Education Tracking Survey
To	. 00	(CEPS) project;	(CEPS) project;
p	\%/		
ran			

Source: The benchmark data of China Education Tracking Survey (CEPS) project;
Note: Student-sex (male -1, female-0); Student-Is it an only child (Yes -1, No -0)

3.2 The gap between urban and rural basic education

This paper explains the gap between urban and rural students at different points through the distribution of their academic achievements. Descriptive statistical results show that compared with urban students, rural students' weighted academic achievements in Chinese, mathematics and English lag behind urban students as a whole, which is similar to previous research results.

3.3 The impact of distance teacher training on narrowing the gap between urban and rural basic education

In this paper, UQR regression analysis is used to measure the influence mechanism of distance teacher training on the academic achievement gap between urban and rural students at different points, as shown in Table 2.

Table 2 UQR measurement results of distance teacher training in narrowing the gap between urban and rural basic education
subjectUrban
studentsRural
studentquantile;
fractileQ30Q60Q9
0Q30Q60Q90Chin
ese0.164*0.443**0
$.533 * 0.859 * * * 0.14$
$4 * 0.445 * *$ mathem
atics0.173**0.314
$* * 0.520 * * 0.126 * 0$.
$424 * * 0.597 *$ Engli
sh0.291**0.544*0.
$437 * 0.749 * * 0.580$
$* * 0.982 *$ Source:
The benchmark
data of China
Education
Tracking Survey
(CEPS) project;
Note: $*$ means
$\mathrm{P}<0.1 ; * *$ means
$\mathrm{P}<0.05 ; * * *$
means P<0.01.
quantile; fractileQ30Q60Q9 0Q30Q60Q90Chin ese $0.164 * 0.443 * * 0$ $.533 * 0.859 * * * 0.14$ $4 * 0.445 * *$ mathem atics0.173**0.314 **0.520**0.126*0. $424 * * 0.597 *$ Engli $\operatorname{sh} 0.291 * * 0.544 * 0$. 437*0.749**0.580
**0.982*Source:
The benchmark data of China Education
Tracking Survey (CEPS) project; Note: * means
$\mathrm{P}<0.1$; * * means $\mathrm{P}<0.05 ; * * *$ means $\mathrm{P}<0.01$.

Urban studentsRural studentquantile;

 fractileQ30Q60Q90Q30Q60Q90Chinese0.164*0.443* *0.533*0.859***0.144*0.445**mathematics $0.173^{* *} 0$. $314 * * 0.520^{* *} 0.126^{*} 0.424 * * 0.597 *$ English $0.291 * * 0.5$ $44 * 0.437 * 0.749 * * 0.580 * * 0.982 *$ Source: The benchmark data of China Education Tracking Survey(CEPS) project; Note: * means $\mathrm{P}<0.1$; ** means $\mathrm{P}<0.05 ; * * *$ means $\mathrm{P}<0.01$.

Rural studentquantile; fractileQ30Q60Q90Q30Q60Q90Chinese0.164*0.443 **0.533*0.859***0.144*0.445**mathematics $0.173 *$ *0.314**0.520**0.126*0.424**0.597*English0.291* $* 0.544 * 0.437 * 0.749 * * 0.580 * * 0.982 *$ Source: The benchmark data of China Education Tracking Survey (CEPS) project; Note: * means $\mathrm{P}<0.1 ; * *$ means $\mathrm{P}<0.05 ; * * *$ means $\mathrm{P}<0.01$.

Q30Q60Q90Q3 0Q60Q90Chines e0.164*0.443**	Q60Q90Q30Q6 0Q90Chinese0. $164 * 0.443 * * 0.5$ $33 * 0.859 * * * 0.1$ $44 * 0.445 * *$ mat hematics0.173* *0.314**0.520* *0.126*0.424**	Q90Q30Q60Q9 0Chinese0.164*	$\begin{array}{r} 26 * 0.424 * * 0.5 \\ 97 * \text { English } 0.29 \\ 1 * * 0.544 * 0.43 \\ 7 * 0.749 * * 0.58 \\ 0 * * 0.982 * \text { Sour } \\ \text { ce: The } \\ \text { benchmark data } \\ \text { of China } \\ \text { Education } \\ \text { Tracking } \\ \text { Survey (CEPS) } \\ \text { project; Note: } * \\ \text { means } \mathrm{P}<0.1 ; * \\ * \text { means } \\ \mathrm{P}<0.05 ; * * * \\ \text { means } \mathrm{P}<0.01 . \end{array}$	$\begin{gathered} \text { Q60Q90Chines } \\ \text { e0.164*0.443* } \\ * 0.533 * 0.859^{*} \\ * * 0.144^{*} 0.445 \\ * * \text { mathematics } \end{gathered}$	$\begin{array}{r} 24 * * 0.597 * E n \\ \text { glish } 0.291 * * 0 . \\ 544 * 0.437 * 0.7 \\ 49 * * 0.580 * * 0 . \\ 982 * \text { Source: } \\ \text { The benchmark } \\ \text { data of China } \\ \text { Education } \\ \text { Tracking } \\ \text { Survey (CEPS) } \\ \text { project; Note: } * \\ \text { means } \mathrm{P}<0.1 ; * \\ * \text { means } \\ \mathrm{P}<0.05 ; * * * \\ \text { means } \mathrm{P}<0.01 . \end{array}$
$\begin{aligned} & \hline 0.164 * 0.443 * * 0 \\ & .533 * 0.859 * * * 0 \\ & .144 * 0.445 * * \mathrm{ma} \end{aligned}$	$\begin{aligned} & \hline 0.443 * * 0.533 * 0 \\ & .859 * * * 0.144 * 0 \\ & .445 * * \text { mathema } \end{aligned}$	$0.533 * 0.859 * * *$	$\begin{aligned} & \hline 0.859 * * * 0.144 \\ & * 0.445 * * \text { mathe } \end{aligned}$ matics0.173**0	0.144*0.445**	$\begin{aligned} & 0.445 * * \text { mathe } \\ & \text { matics } 0.173 * * \end{aligned}$

Source: The benchmark data of China Education Tracking Survey (CEPS) project; Note: * means $\mathrm{P}<0.1 ; * * \operatorname{means} \mathrm{P}<0.05 ; * * *$
means $\mathrm{P}<0.01$.

From Table 2, it can be seen that students' academic achievements are distributed in three quantiles, namely Q30, Q60 and Q90, which can all be improved through distance teacher training, and with the improvement of quantiles, the promotion of distance teacher training to students' academic achievements is gradually enhanced. In other words, distance teacher training can improve students' academic performance, but it does not mean that the gap between urban and rural education can be narrowed under the same distance training frequency. In addition, distance teacher training has a stronger promotion effect on students with good academic performance, but not on students with poor academic performance.

3.4 The differentiated effects of different distance teacher training methods on narrowing the gap between urban and rural basic education

This paper sorts out different distance teacher training methods, and divides them into three categories: open courses, social networks and mobile internet, and reveals the explanatory power of different distance teacher training methods in narrowing the gap between urban and rural basic education, as shown in Table 3.

Table 3 UQR measurement results of different distance teacher training methods to narrow the gap between urban and rural basic education

				value1.624*	value1.624*		
Mobile	estimated					1.5051 .874	
Internetesti	value2.0701					**Explanat	1.874**Exp
mated	.8731.5962.					ory	power20.23
value2.0701	1931.5051.					power20.23	$\% 15.54 \% 23$
.8731.5962.	874**Expla					\% $15.54 \% 23$.02\%10.07
1931.5051.	natory					.02\%10.07	\%9.24\%5.1
874**Expla	power20.23					\%9.24\%5.1	1\% mathem
natory	\%15.54\%23					1\%mathem	aticsOpen
power20.23	. $02 \% 10.07$					aticsOpen	courseestim
\%15.54\%23	\%9.24\%5.1					courseestim	ated
. $02 \% 10.07$	1\%mathem					ated	value1.424*
\%9.24\%5.1	aticsOpen					value 1.424*	$\begin{aligned} & \text { valuel.424* } \\ & * 2.858 * * 2 . \end{aligned}$
1% mathem	courseestim					*2.858**2.	$211 * * 1.865$
aticsOpen	ated					$211 * * 1.865$	**2.518**2
courseestim	value1.424*					**2.518**2	$.46 * * \mathrm{Expl}$
ated value1.424*	$\begin{aligned} & * 2.858 * * 2 \\ & 211 * * 1.865 \end{aligned}$					$.466 * * \operatorname{Expl}$	anatory
*2.858**2.	**2.518**2					power 10.22	power10.22
211**1.865	.466**Expl					\%18.61\%20	\%18.61\%20
2.5182	anatory					. $50 \% 15.71$. $50 \% 15.71$
.466**Expl	power10.22					\%17.05\%25	\%17.05\%25
anatory	\% $18.61 \% 20$. 93% Social	
power10.22	. $50 \% 15.71$					networkesti	$\begin{aligned} & \text { etworke } \\ & \text { mated } \end{aligned}$
\%18.61\%20	\%17.05\%25					mated	mate 2.435*
.50\%15.71	. 93% Social					value2.435*	*1.944*0.9
\%17.05\%25	networkesti					*1.944*0.9	96***1.797
. 93% Social	mated					$96 * * * 1.797$	** $1.078 * * 2$
networkesti	value2.435*					** 1.078**2	* $125 *$ Expla
mated	*1.944*0.9					.125*Expla	. 125 *Expla
value2.435*	96***1.797					natory	
*1.944*0.9	**1.078**2					power15.48	power15.48
96***1.797	.125*Expla					\%17.92\% 20	\%17.92\% 980
** 1.078**2	natory	2.0701 .873	1.8731 .596	1.5962193	21931.505	.98\%16.80	\%15.97\% 12
.125*Expla	power15.48	2.0701 .873	1.8731 .596	1.5962 .193	2.1931 .505	\%15.97\%12	\%15.97\%12
natory	\%17.92\%20					.10\%Mobil	
power15.48	.98\%16.80					e	Internetesti
\%17.92\% 20	\% $15.97 \% 12$					Internetesti	mated
. $98 \% 16.80$.10\%Mobil					mated	valuel.615*
\%15.97\%12						value 1.615*	$\begin{aligned} & \text { valuel.615* } \\ & \text { *1.224*2.3 } \end{aligned}$
.10\%Mobil	Internetesti					*1.224*2.3	21**2.198*
e	mated					$21 * * 2.198 *$	*1.540**0
Internetesti	value1.615*					*1.540**0.	$941^{* *} \text { Expla }$
mated	*1.224*2.3					941**Expla	natory
value1.615*	21**2.198*					natory	
*1.224*2.3	*1.540**0.					power14.74	power 14.74
21**2.198*	941**Expla					\%20.33\% 10	.18\%21.89
*1.540**0.	natory					.18\%21.89	\% $25.35 \% 18$
941**Expla	power14.74					\%25.35\%18	. 88% Englis
natory	\%20.33\%10					. 88% Englis	.88\%Englis hOpen
power14.74	.18\%21.89					hOpen	courseestim
\%20.33\%10	\%25.35\%18					courseestim	ated
.18\%21.89	. 88% Englis					ated	value2.484*
\%25.35\%18	hOpen					value2.484*	*1.685*1.1
. 88% Englis	courseestim					*1.685*1.1	$24 * 1.613 * 1$
hOpen	ated					24*1.613*1	. $969 * 1.430$
courseestim	value2.484*					. $969 * 1.430$	
ated	*1.685*1.1					***Explana	***Explana
value 2.484*	$24 * 1.613 * 1$					tory	${ }_{\text {tory }}$
*1.685*1.1	. $969 * 1.430$					power 12.50	power 12.50
24*1.613*1	***Explana					\%20.31\%18	28\%1914
.969*1.430	tory					.28\%19.14	. $\% 381.56 \% 34$
***Explana	power12.50					\%31.56\%34	. 86% Social
tory	\%20.31\%18					. 86% Social	networkesti
power12.50	. $28 \% 19.14$					networkesti	
\%20.31\%18	\%31.56\%34					mated	mated $62{ }^{*}$
.28\%19.14	. 86% Social					value1.624*	

$\% 31.56 \% 34$
$.86 \%$ Social
networkesti
mated
value1.624*
networkesti mated value1.624* Explanatory power20.23 \%15.54\%23 . $02 \% 10.07$ \%9.24\%5.1 1% mathem aticsOpen courseestim ated value1.424* *2.858**2. 211**1.865 **2.518**2 .466**Expl anatory power 10.22 \% $18.61 \% 20$. $50 \% 15.71$ \% 17.05\%25 .93\%Social networkesti mated value2.435* *1.944*0.9 96***1.797 ** 1.078 **2 . 125 *Expla natory
power15.48 \% 17.92\% 20 $.98 \% 16.80$ \% $15.97 \% 12$.10\%Mobil $\stackrel{\mathrm{e}}{\mathrm{e}} \mathrm{I}$ mated value1.615*
*1.224*2.3
$21 * * 2.198 *$
*1.540**0.
941**Expla natory
power14.74
\%20.33\%10
.18\%21.89
$\% 25.35 \% 18$
.88\%Englis hOpen courseestim ated value2.484*
*1.685*1.1
24*1.613*1
.969*1.430
***Explana tory
power12.50 $\% 20.31 \% 18$
. $28 \% 19.14$
\%31.56\%34
.86\%Social networkesti mated value1.624*
20.23\% 15.5 4\%23.02\%
0.07\%9.24
\%5.11\%mat
hematicsOp
en
courseestim ated
value1.424*
*2.858**2.
$211 * * 1.865$
2.5182
.466**Expl anatory
power10.22
\% $18.61 \% 20$
. $50 \% 15.71$
\%17.05\%25
.93\%Social
networkesti mated
value2.435*
*1.944*0.9
96***1.797
1.0782
. 125 *Expla natory
power15.48
\% $17.92 \% 20$
$.98 \% 16.80$
\% $15.97 \% 12 \quad 15.54 \% 23.0$
.10\%Mobil $2 \% 10.07 \% 9$
e
Internetesti
mated
value1.615*
*1.224*2.3
21**2.198*
*1.540**0.
941**Expla
natory
power 14.74
\%20.33\% 10
. $18 \% 21.89$
\%25.35\%18
.88\%Englis hOpen
courseestim ated
value2.484*
*1.685*1.1
24*1.613*1
.969*1.430
***Explana
tory
power 12.50
\%20.31\%18
. $28 \% 19.14$
\%31.56\%34
$.86 \%$ Social
networkesti
mated
value 1.624*

23.02\% 10.0	10.07\%9.24	$9.24 \% 5.11$	
\%9.24\%5.	\% 5.11\%mat	\%mathemat icsOpen courseestim ated	5.11% math ematicsOpe n
\%mathe ticsOpen	hematicsOp		
ticsOpen			courseestim
ated	ated		
ue1.424*	value1.424*	value1.4	value1.424*
.858	*2.858**2	*2.858**2.	*2.858*
211**1.865	211**1.865	11**1.865	211**1.865
2.5182	**2.518**2	$2.518 * * 2$	**2.518**2
$\begin{gathered} .466 * * \operatorname{Expl} \\ \text { anatory } \end{gathered}$	$\begin{gathered} .466^{* * E x p l} \\ \text { anatory } \end{gathered}$	$\begin{gathered} .466 * * \operatorname{Expl} \\ \text { anatory } \end{gathered}$	$.466^{* *} \operatorname{Expl}$ anatory
power10.22	power10.22	power10.2	power10.22
\%18.61\%20	\%18.61\%20	\%18.61\%20	\%18.61\%20
\%1	50\%15	50\%15.71	.50\%15.71
\%17.05\%25	\%17.05\%25	\%17.05\%25	\%17.05\%25
.93\%Social	. 93% Social	. 93% Social	. 93% So
networkesti	networkes		tworkesti
mated	mated		mated
value 2.435 *	value2.435*	value2.435*	lue2.435*
1.944*0.9	*1.944*0.9	**1797	
96***1.797	96***1.797	96***1.797	
1.0782	**1.078**2		
.125*Expla natory	$.125 * \text { Expla }$ natory	natory	natory
power15.48	power15.48		power15.48
\%17.92\% 20	\%17.92\%20	,	98\%1680
98\%16.80	. $98 \% 16.80$. $\% 15.97 \% 12$	
\% $15.97 \% 12$	\%15.97\%12	\%15.97\% 12	2
$\begin{gathered} .10 \% \text { Mobil } \\ \mathrm{e} \end{gathered}$.10\%Mobil	$1 \% \mathrm{M}$	$7 \mathrm{M}$
Internetesti mated	Internetesti	Internetesti mated mated	Internetesti mated
value1.615*	value1.	value1.615*	value1.615*
*1.224*2.3	*1	1.224*2.3	*1.224*2.3
21**2.198*	21**2.198*	21**2.198*	21**2.198*
$1.540 * * 0$.	*1.540**0.	*1.540**0.	*1.540*
		941**Expla	941**Expla
natory	natory	natory	natory
power14.74	power14.74	power14.74	power14.74
\%20.33\%10	\% $20.33 \% 10$	\%20.33\%10	\%20.33\%10
\%21.89	18\%21	18\%21.89	.18\%21.89
5\%18	\%25.35\%	\%25.35\%18	\%25.35\%18
	88\%Englis	.88\%Englis	.88\%Englis
.88\%Englis	.88\%Englis	hOpen	hOpen
Open	Open	courseestim	courseestim
courseestim ated	courseestim ated	ated	ated
alue2.484*	value2.484*	value2.484*	value2.484*
$1.685 * 1.1$	*1.685*1.1	*1.685*1.1	*1.685*1.1
24*1.613*1	24*1.613*1	1.613	24*1.613*1
.969*1.430	.969*1.430	.969*1.430	.969*1.430
***Explana tory power12.50	***Explana tory power12.50	***Explana tory power12.50	$\begin{aligned} & \text { ***Explana } \\ & \text { tory } \\ & \text { power } 12.50 \end{aligned}$
\%20.31\%18	\%20.31\%18	\%20.31\%18	\%20.31\%18
28\%19.14	.28\%19.14	\%19.14	.28\%19.14
\%31.56\%34	\%31.56\%34	\%31.56\%34	\%31.56\%34
\%Soci	. 86% Soc	cial	. 86% Social
networkesti	networkesti	networke	mated
value1.624*	value1.624*	value1.624*	value 1.624*

hOpen	ated	value2.484*	*1.685*1.1	24*1.613*1		.969*1.430	***Explana
courseestim	value2.484*	*1.685*1.1	$24 * 1.613 * 1$. $969 * 1.430$		***Explana	tory
ated	*1.685*1.1	$24^{*} 1.613 * 1$. $969 * 1.430$	***Explana		tory	power12.50
value2.484*	24*1.613*1	.969*1.430	***Explana	tory		power12.50	\%20.31\%18
*1.685*1.1	.969*1.430	***Explana	tory	power12.50		\%20.31\%18	.28\%19.14
24*1.613*1	***Explana	tory	power12.50	\%20.31\%18		.28\%19.14	\%31.56\%34
.969*1.430	tory	power12.50	\%20.31\%18	.28\%19.14		\%31.56\%34	. 86% Social
***Explana	power12.50	\%20.31\%18	.28\%19.14	\%31.56\%34		. 86% Social	networkesti
tory	\%20.31\%18	.28\%19.14	\%31.56\%34	. 86% Social		networkesti	mated
power12.50	. $28 \% 19.14$	\%31.56\%34	. 86% Social	networkesti		mated	value1.624*
\%20.31\%18	\%31.56\%34	. 86% Social	networkesti	mated		value1.624*	
. $28 \% 19.14$. 86% Social	networkesti	mated	value1.624*			
\%31.56\%34	networkesti	mated	value1.624*				
. 86% Social	mated	value1.624*					
networkesti	value1.624*						
mated	Explanatory						
value1.624*	power15.48	15.48\%17.9	17.92\%20.9	20.98\%16.8			
	\%17.92\% 20	2\%20.98\%1	$8 \% 16.80 \% 1$	0\%15.97\%1		15.97\%12.1	12.10\%Mo
	. $98 \% 16.80$	6.80\%15.97	$5.97 \% 12.10$	2.10\%Mobi		0% Mobile	bile
	\%15.97\% 12	\%12.10\%M	\%Mobile	le		Internetesti	Internetesti
	.10\%Mobil e	obile Internetesti	Internetesti mated	Internetesti mated		$\begin{gathered} \text { mated } \\ \text { value1.615* } \end{gathered}$	$\begin{gathered} \text { mated } \\ \text { value1.615* } \end{gathered}$
	Internetesti	mated	value1.615*	value1.615*		*1.224*2.3	*1.224*2.3
		$\text { * } 1224 * 23$	*1.224*2.3	*1.224*2.3		21**2.198*	21**2.198*
	*1.224*2.3	$1.224 * 2.3$	$21 * * 2.198 *$	21**2.198*		*1.540**0.	*1.540**0.
	21**2.198*	*1.540**0.	*1.540**0.	*1.540**0.		941**Expla	941**Expla
	*1.540**0.		941**Expla	941**Expla		natory	natory
			natory	natory		power14.74	power14.74
			power 14.74	power14.74		\%20.33\%10	\%20.33\%10
	natory	power14.74	\%20.33\%10	\%20.33\%10		.18\%21.89	.18\%21.89
		20.33\%10	. $18 \% 21.89$.18\%21.89		\%25.35\%18	\%25.35\%18
	\%20.33\%10	.18\%21.89	\% $25.35 \% 18$	\%25.35\%18		. 88% Englis	. 88% Englis
	.18\%21.89	\%25.35\%18	$.88 \% \text { Englis }$.88\%Englis	16.80\%15.9	hOpen	hOpen
	\%25.35\%18	. 88% Englis	hOpen	hOpen	7\%12.10\%	courseestim	courseestim
	. 88% Englis	hOpen		courseestim		ated	ated
	hOpen	courseestim	ated	ated		value2.484*	value2.484*
	courseestim	ated	value2.484*	value2.484*		* $1.685 * 1.1$	* $1.685 * 1.1$
	ated	value 2.484	*1.685*1.1	*1.685*1.1		24*1.613*1	24*1.613*1
	value2.484*	*1.685*1.1	24*1.613*1	24*1.613*1		. $969 * 1.430$. $969 * 1.430$
	*1.685*1.1	$24^{*} 1.613 * 1$.969*1.430	.969*1.430			***Explana
	24*1.613*1	.969*1.430		***Explana		Explana	Explana
	.969*1.430	***Explana	tory	tory		power 12.50	power12.50
	***Explana	tory	power12.50	power12.50		\%20.31\%18	\%20.31\%18
	tory	power 12.50	\%20.31\%18	\%20.31\%18		.28\%19.14	.28\%19.14
	power12.50	\%20.31\%18	.28\%19.14	.28\%19.14		\%31.56\%34	\%31.56\%34
	\%20.31\%18	.28\%19.14	$\% 31.56 \% 34$	\%31.56\%34		. 86% Social	. 86% Social
	.28\%19.14	\%31.56\%34	86% Social	86% Social		networkesti	networkesti
	\%31.56\%34	. 86% Social	networkesti	networkesti		mated	mated
	$.86 \% \text { Social }$	networkesti	mated	mated		value1.624*	value1.624*
	networkesti		value1.624*	value1.624*			
	value1.624*	value1.624*					
Mobile	estimated			$2.321 * * 2.1$	$2.198 * * 1.5$	1.540**0.9	0.941**Exp
Internetesti	value1.615*			98**1.540*	40**0.941*	41**Explan	lanatory
mated	*1.224*2.3			*0.941**Ex	*Explanator	atory	power14.74
value1.615*	21**2.198*			planatory	y	power14.74	\%20.33\%10
*1.224*2.3	*1.540**0.			power14.74	power14.74	\%20.33\%10	.18\%21.89
21**2.198*	941**Expla			\%20.33\%10	\%20.33\%10	. $18 \% 21.89$	\%25.35\%18
*1.540**0.	natory			.18\%21.89	.18\%21.89	\%25.35\%18	.88\%Englis
941**Expla	power14.74	$24 * 2.321 * *$	$\begin{aligned} & 1.224 * 2.32 \\ & 1 * * 2.198 * * \end{aligned}$	\%25.35\%18	\%25.35\%18	.88\%Englis	hOpen
natory	\%20.33\%10	24.321 *	$1 \cdot 2.198 *$. 88% Englis	. 88% Englis	hOpen	courseestim
power14.74	.18\%21.89			hOpen	hOpen	courseestim	ated
\%20.33\%10	\%25.35\%18			courseestim	courseestim	ated	value2.484*
.18\%21.89	. 88% Englis			ated	ated	value2.484*	*1.685*1.1
\%25.35\%18	hOpen			value2.484*	value2.484*	*1.685*1.1	$24 * 1.613 * 1$
. 88% Englis	courseestim			*1.685*1.1	*1.685*1.1	24*1.613*1	. $969 * 1.430$
hOpen	ated			24*1.613*1	$24 * 1.613 * 1$.969*1.430	***Explana

means	* means	* means	$\mathrm{P}<0.01$.
$\mathrm{P}<0.05 ; * *$	$\mathrm{P}<0.01$.	$\mathrm{P}<0.01$.	
* means			
$\mathrm{P}<0.01$.			

Source: The benchmark data of China Education Tracking Survey (CEPS) project; Note: * means P<0.1; * * means $\mathrm{P}<0.05$; * * * means $\mathrm{P}<0.01$.

From Table 3, it can be seen that the frequency of distance training for rural teachers is significantly lower than that of urban teachers, and the efficiency of transforming students' academic performance into improvement is not as good as that of urban students. Specifically, there are significant differences in the effects of different distance training methods on the academic performance of urban and rural students, and this difference is also heterogeneous in different disciplines and different points. For example, in the Q90 scores of urban students, the explanation of open courses, social networks and mobile internet for the improvement of students' academic performance in mathematics and English is significantly higher than that for the improvement of Chinese academic performance.

4. CONCLUSIONS

First, the gap between urban and rural basic education does exist, but the academic achievement gap reflected by students at different quantiles is different. First of all, urban students' scores in Chinese, mathematics and English at any score point are significantly higher than their corresponding rural students; Secondly, the gap between urban and rural students' academic performance has gradually widened with the increase of the scores; Finally, the academic gap between urban and rural students is heterogeneous in different disciplines, that is, the academic performance of English is generally greater than that of Chinese and mathematics. It can be concluded that the academic achievement gap between urban and rural students is particularly prominent among those with better academic achievements, and it is mostly reflected in English subjects.

Secondly, distance teacher training is beneficial to improve urban and rural students with different academic performance levels, and it has a higher promotion effect on students with better academic performance in rural areas, rather than those with poor academic performance in rural areas. On the one hand, the influence of distance teacher training on the gap between urban and rural students is consistent, and the same training frequency is helpful to improve students' academic performance; On the other hand, in the academic performance of rural students, the positive effect of distance teacher training on students in Q90 is significantly higher than that of students in Q30 and Q60, that is, distance teacher training can not bring significant positive effects to rural students with lower academic performance. It can be concluded that distance teacher training can promote the academic performance of urban and rural students, and the effect on urban students is significantly higher than that on rural students at the same training frequency, so it cannot be
directly explained that distance teacher training can narrow the gap between urban and rural education, and further research is needed to verify this conclusion.

Thirdly, the effects of different distance teacher training methods on students' academic performance are different, and the effects on mathematics and English subjects are more significant than those on Chinese subjects. First of all, according to the different characteristics of urban and rural student groups, we should adopt differentiated distance teacher training methods, so as to achieve better results; Secondly, for teachers of different disciplines, we should also adopt differentiated distance teacher training methods. On the whole, the training effect of open courses is significantly higher than that of social networks and mobile internet; Finally, at different points, different distance teacher training methods have different explanations for improving students' academic performance, so different training methods should be adopted according to students' academic level. From this, we can draw a conclusion: when developing distance teacher training, we should dynamically apply open courses, social networks and mobile internet training methods according to students' academic level and different subject categories.

5. REFERENCES

[1] Gu Mingyuan, Teng Jun. China's Education Modernization 2035 and the realization of global Sustainable Development education goals [J]. Comparative Education Research, 2019,41 (05): 3-9 + 35.
[2] Yu Xinghou, Chu Yong, Xiong Xing, Wang Yamei. Where is the lower performance of basic education in rural areas than in urban areas in China? _- The new evidence based on the two-stage DEA-truncated analysis [J]. Modern Education Management, 2019 (07): 14-21.
[3] Young Daniel,Real Francis J,Sahay Rashmi D,Zackoff Matthew. Remote Virtual Reality Teaching: Closing an Educational Gap During a Global Pandemic [J]. Hospital pediatrics,2021,11(10).
[4] DeeDee Mower. Deviance to Diminish Educational Disparity[J]. Social Philosophy Today,2016,32.
[5] Mohtar Syahida, Jomhari Nazean, Mustafa Mumtaz Begum, Yusoff Zulkifli Mohd. Mobile learning: research context, methodologies and future works towards middle-aged adults - a systematic literature review. [J]. Multimedia tools and applications,2022.

