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Abstract: To improve the accuracy of surface defect detection on steel while maintaining detection speed, this study proposes an 

enhanced RT-DETR detection model called FTD-DETR. First, images were obtained from a publicly available steel surface defect 

dataset, and data were partitioned and augmented, resulting in a steel surface defect dataset containing 2,000 images. The ResNet18 

model, known for its low computational complexity and high detection accuracy, was chosen as the backbone feature extraction 

network. Then, a Faster-EMA module was introduced to update the basic blocks in ResNet18, enhancing the feature extraction speed 

of the model and improving inter-layer feature interaction. Finally, the AIFI module of RT-DETR was replaced with a Transformer 

with Deformable Attention encoder structure. This multi-head self-attention mechanism combined with dynamic attention further 

increases feature representation while reducing computational complexity. Experimental results show that FTD-DETR achieves a 

precision of 83.6%, recall of 67.7%, and mean average precision (mAP) of 79.3%. Compared to the baseline model RT-DETR, FTD-

DETR significantly reduces parameters, floating-point operations, and memory usage while maintaining high accuracy. It features low 

complexity, high accuracy, and fast detection speed, providing technical support for steel surface defect detection. 
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1. INTRODUCTION 
Steel, as a widely used material in fields such as mechanical 

manufacturing, construction engineering, and transportation, is 

highly valued for its high strength, durability, and broad range 

of applications. Therefore, surface defect detection in steel is an 

important quality control task [1]. China, as one of the largest 

steel producers in the world, manufactures a wide variety of 

steel products, which are extensively used in mechanical 

manufacturing, construction engineering, and transportation. 

Steel is highly regarded for its strength, durability, and 

versatility. However, surface defects in steel are diverse and 

vary depending on different production processes and 

environments. During steel processing, surface defect detection 

is a key step in ensuring product quality, directly impacting 

customer choice and the competitiveness of products in the 

market. In various production environments, steel surfaces are 

prone to defects such as scratches and dents, which can affect 

their performance [2].However, especially in large-scale 

production, manual inspection often fails to identify all defects 

in a timely manner. Additionally, due to a lack of effective 

detection knowledge, some problems go unnoticed [3] . Thus, 

there is a need for a method that can automatically detect steel 

surface defects and provide early warnings. Traditional methods 

for detecting steel surface defects mainly rely on manual 

inspection, but due to the complexity of the production 

environment and the variability in lighting and surface 

conditions, manual detection is time-consuming, labor-

intensive, and prone to errors, making it difficult to meet the 

needs of automated production lines. Subsequent optical 

detection technologies [4], such as X-rays, infrared imaging, 

and laser scanning, have improved detection speed and reduced 

human errors. However, these devices are expensive, have high 

operating costs, and are limited in their ability to handle 

complex defects, restricting their widespread application. 

Currently, automated methods for steel surface defect detection 

[5] can be broadly categorized into three types: traditional 

image processing-based detection methods, deep learning-based 

detection methods [6] , and the use of 3D point cloud scanning. 

The former [7] relies on steps such as data augmentation, image 

preprocessing, edge detection, and feature extraction. These 

methods depend on well-defined rules or algorithms (e.g., 

grayscale thresholding, Canny edge detection) to identify and 

classify steel surface defects. While they are effective for 

detecting simple defects, their accuracy in identifying more 

complex surface textures or varied defect shapes is limited, and 

their generalization ability is poor.The latter approach utilizes 

3D scanning technologies [8] (such as LiDAR and 

photogrammetry) combined with machine learning to further 

enhance the accuracy of surface defect detection. 3D point 

clouds can accurately capture the geometric features of the 

surface, making them particularly effective for detecting small 

defects, such as cracks or surface irregularities. However, these 

methods involve high computational complexity, which makes 

it difficult to meet the real-time requirements of automated 

systems. 

With the development of deep learning, Anvar A et al. [9] 

proposed in 2020 an improved convolutional neural network 

(CNN) architecture called ShuffleDefectNet. This network 

combines the lightweight design of ShuffleNet with specific 

layer structures suitable for defect detection tasks. By using data 

augmentation and transfer learning techniques, the detection 

performance for different types of metal surface defects, such as 

cracks, scratches, and pits, was improved. Hu B et al. [10] 

proposed an enhanced version of the classic Faster R-CNN 

detection algorithm, integrating FPN (Feature Pyramid 

Network) technology to enhance multi-scale feature extraction 

capabilities, enabling the model to more accurately identify 

PCB defects of varying sizes and types, such as breaks, short 

circuits, and missing components. The improved Faster R-CNN 

with FPN demonstrated significant improvements in detection 

precision and recall compared to the original model.Xiao L et al. 

[11] proposed an improved Mask R-CNN model called IPCNN. 

This model first utilizes a deep residual neural network to 

extract features from image pyramids, generating multi-level 

pyramid features. These features are processed by the Region 

Proposal Network (RPN) to generate defect bounding boxes and 

classifications. Finally, within the generated defect bounding 

boxes, a fully convolutional network (FCN) generates 

corresponding defect masks. Xia B et al. [12] introduced the 

SSIM-NET model, which combines SSIM (used to measure 

image similarity) with the lightweight convolutional neural 
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network MobileNet-V3. SSIM is first used to compare the input 

image with a template image, preliminarily locating potential 

defect areas. Then, MobileNet-V3 acts as a feature extractor, 

further classifying and detecting the located areas, improving 

overall efficiency.Yang L et al. [13] aimed to improve model 

performance by modifying YOLOv5, adopting the lightweight 

MobileNetV2 as the backbone network and introducing the 

CBAM attention module to optimize detection accuracy. The 

improved YOLOv5 not only reduces model parameters and 

computation but also significantly increases inference speed, 

improving detection efficiency while maintaining high 

accuracy. Wang Y et al. [14] optimized YOLO-V7 by 

incorporating a de-weighted BiFPN structure to enhance feature 

fusion, thereby reducing information loss during the convolution 

process and improving detection accuracy. Additionally, the 

ECA attention mechanism was introduced in the backbone 

network to strengthen important feature channel representation. 

The original bounding box loss function was replaced with the 

SIoU loss function, redefining the penalty term to account for 

the angle between required regression vectors. The optimized 

YOLO-V7 significantly increased detection efficiency and 

accuracy.Song X et al. [15] proposed a multi-directional 

optimization model based on YOLOv8. This model enhances 

the feature learning capability of the CSP Bottleneck and C2F 

modules by introducing deformable convolutions (DCN). It 

adopts a bidirectional feature pyramid network (BiFPN) for 

feature fusion and adds the BiFormer attention mechanism to 

adaptively allocate attention, effectively identifying potential 

defects. Additionally, the loss function was adjusted to Wise-

IoUv3 (WIoUv3) to address overfitting issues with low-quality 

bounding boxes. With the application of transformers in object 

detection, Tang B et al. [16] proposed a steel surface defect 

detection method based on the Swin Transformer architecture. 

This research aimed to develop an efficient end-to-end model 

that leverages the hierarchical representation capability of Swin 

Transformer to improve feature extraction and fusion, thus 

enhancing defect detection accuracy. Experimental results 

demonstrated the method's excellent performance in identifying 

various steel surface defects, highlighting its potential in 

industrial quality inspection applications.Zhang L et al. [17] 

recognized the advantages of DETR (Detection Transformer) in 

the field of image object detection and optimized the DETR 

model for feature extraction and detection performance, 

improving the recognition accuracy of casting defects. The 

improved framework excelled in handling complex defect 

morphologies, particularly in detecting irregularly shaped 

defects on casting surfaces. 

In conclusion, this paper designs a steel surface crack detection 

model, FTD-DETR, based on RT-DETR [18] . To address the 

issue of a small dataset, data augmentation is applied to expand 

the dataset. After comparing different feature extraction 

networks, ResNet18 [19] was selected as the baseline backbone 

network. Faster-EMA is utilized to adjust the basic blocks, 

further improving feature extraction speed while enhancing 

feature interaction. To resolve issues with feature detail 

information at mid and lower levels, the AIFI (Anchor-Free 

Instance-aware Feature Interaction) module is replaced with 

Transformer-DAttention, which enhances RT-DETR’s global 

perception capability, multi-scale feature processing, and overall 

performance. Finally, experimental results confirm that the 

FTD-DETR model can effectively handle steel surface defect 

detection tasks. 

 

2. Method 

2.1 RT-DETR Model 
RT-DETR is an end-to-end object detection model designed for 

real-time applications, based on the Transformer framework. It 

is specifically optimized for handling multi-scale features. By 

decoupling interactions between features at the same scale and 

integrating cross-scale features, RT-DETR significantly reduces 

the computational complexity of the original DETR model. It 

retains efficient multi-scale information extraction capabilities 

while surpassing many similar models, such as the YOLO 

series, in both inference speed and detection accuracy. The 

model simplifies traditional post-processing workflows, 

ensuring zero-latency inference and stable output.The core of 

RT-DETR consists of a backbone network, a hybrid encoder, 

and a decoder with auxiliary prediction heads. The feature 

extraction component is based on the selected backbone 

network architecture, utilizing features from the last three stages 

as inputs for the encoder. The hybrid encoder contains the AIFI 

(Anchor-Free Instance-aware Feature Interaction) and CCFM 

(Cross-scale Context Fusion Module) modules: AIFI focuses on 

encoding the highest-level features (S5), while the CCFM 

module integrates multi-scale features through both bottom-up 

and top-down feature fusion paths, producing rich image 

representations.In the decoding phase, RT-DETR introduces an 

IoU-aware query module, which selects key image features 

from the encoder’s output as initial object queries and iteratively 

optimizes them to generate precise bounding boxes and 

confidence scores. As shown in the network architecture 

diagram (Figure 1), this design greatly enhances detection 

efficiency and accuracy, especially in applications requiring 

high real-time performance. These improvements make RT-

DETR a high-performance model, significantly reducing 

computational burdens while maintaining precision, making it 

well-suited for various real-time object detection tasks. 

 

Fig1. The structure of RT-DETR model. 

2.2 Improved Model Design for RT-DETR 
Although RT-DETR is a high-performance model that 

significantly reduces computational load while maintaining 

accuracy, making it suitable for various real-time object 

detection tasks, the choice of backbone network directly affects 

feature extraction and computational complexity. In this paper, a 

series of lightweight networks such as ResNet18, Mobilenetv3 

[20] , Fasternet [21] , Efficientnet [22] , HGNetV2, and 

VanillaNet13 [23] were selected for experiments, as shown in 

Table 1. These experiments comprehensively evaluated the 

model's parameter count, computational complexity, and 

accuracy in detection tasks. The results, displayed in Table 1, 

indicate that ResNet18 delivers the most balanced performance. 
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Table 1. Comparison of training results of different  

2.2.1  Resnet-18 
ResNet-18 (Residual Network 18) is a classic convolutional 

neural network (CNN) architecture composed of 18 

convolutional layers. Its key innovation lies in the introduction 

of "residual blocks" (as shown in Figure 2). These blocks use 

skip connections to directly pass input information to later 

layers, addressing the common vanishing gradient problem in 

deep networks. This allows deeper networks to be trained 

effectively. The design of ResNet-18 enables the network to 

learn more efficient feature representations while avoiding 

performance degradation caused by increased network 

depth.Specifically, ResNet-18 consists of 5 convolutional 

stages, with each stage containing multiple residual blocks. 

These blocks perform convolution operations using 3×3 kernels, 

and after applying the activation function, the output from the 

previous layer is added. Compared to deeper ResNet versions, 

such as ResNet-50 or ResNet-101, ResNet-18 has fewer 

parameters, making it more computationally efficient while 

maintaining high accuracy. This makes it particularly suitable 

for resource-constrained applications. 

 

Fig2. Residual learning mechanism 

2.2.2 EMA  
In steel surface defect detection, the presence of occlusions or 

complex textures can affect detection accuracy, leading to false 

positives and missed detections. To reduce interference from 

irrelevant features and enhance the model's feature extraction 

capabilities, we introduced the EMA attention mechanism into 

the model. This mechanism retains information from each 

channel while reducing computational costs, allowing the model 

to focus more on the target defect areas, thereby improving 

detection performance. The structure of the EMA attention 

module is shown in Figure 3. 

 

Fig3.  The structure of EMA 

In the steel surface defect detection task, the input features are 

divided into i sub-features along the channel dimension, and the 

attention weights learned by the model enhance the feature 

representation related to defect areas within each sub-feature. 

To capture cross-channel dependencies and reduce 

computational load, cross-channel information interaction is 

modeled along the channel direction, processed through three 

parallel paths: horizontal global average pooling, vertical global 

pooling, and convolution.The features from the first two paths 

are connected along the height of the image and share a 1×1 

convolution, with the output feature vectors activated by a 

Sigmoid function. The third path captures local cross-channel 

interactions using a 3×3 convolution to expand the feature 

space.In the cross-spatial learning part, 2D global average 

pooling is used to encode global spatial information for both the 

1×1 and 3×3 branches, and the output is processed using a 

Softmax function. The smallest branch output is reshaped to the 

corresponding dimensions. The two generated spatial attention 

weights are aggregated through a cross-spatial interaction 

module, establishing long-range dependencies and capturing 

pixel-level pairwise relationships of steel surface defects. This 

highlights the global context information of all pixels.After 

fusing multi-scale information, the output feature map is 

activated by a Sigmoid function, enhancing the model’s focus 

on defect regions on the steel surface. This results in richer 

feature aggregation and improved accuracy in defect detection. 

2.2.3 FasterNet Block 
In response to the issue of slow inference speed on edge devices 

due to the large number of model parameters in current steel 

surface defect detection tasks, this paper introduces 

improvements to the ResNet-18 module. Specifically, the 

FasterBlock-EMA module from the FasterNet network is used 

to replace the BasicBlock module in ResNet-18. This 

modification effectively reduces both computational complexity 

and the number of parameters in the detection task, significantly 

improving detection speed. With its lightweight design, the 

model is particularly well-suited for efficient inference on 

resource-constrained edge devices. 

The FasterNet Block is the core component of FasterNet, and its 

design is inspired by GhostNet, addressing the redundancy issue 

in feature convolution channels. However, unlike GhostNet, 

FasterNet does not use DWConv (Depthwise Separable 

Convolution); instead, it introduces a new Partial Convolution 

(PConv), as shown in Figure 4. PConv applies regular 

convolution only to a portion of the input channels to extract 

spatial features, while the remaining channels remain 

unchanged. This approach effectively reduces computational 

load and memory usage, significantly improving computational 

efficiency without notably sacrificing feature representation 

Backbone Parameters/Mb FLOPs/G mAP/% 

Mobilenetv3 37.20 24.7 60.3 

Fasternet 41.25 28.5 69.4 

Efficientnet 56.77 33.2 70.3 

Resnet-18 75.85 57.0 74.5 

VanillaNet 105.73 165.9 73.2 

HGNetV2 125.16 108.0 75.5 
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capability.For continuous feature access, the first or last channel 

is treated as a representative of the entire feature map for 

computation, which further reduces computational complexity. 

FasterNet is an efficient neural network designed specifically 

for object detection tasks, optimized for both speed and 

accuracy. Its core concept is to enhance feature representation 

capability and expand the receptive field coverage, all while 

maintaining a lightweight architecture and high inference speed. 

The FasterNet network structure consists of four stages, as 

shown in Figure 4. Each stage is responsible for extracting 

features at different scales, with the primary differences being 

the size of the convolution kernels.The Embedding module 

performs the initial feature extraction using regular convolutions 

with a stride of 4. The Merging layer uses convolutions with a 

stride of 2 for spatial downsampling and channel expansion, 

progressively reducing the spatial resolution of the feature maps 

while increasing the number of channels. This stepwise 

compression of spatial resolution and expansion of channel 

dimensions is crucial for efficient detection at multiple scales. 

 

Fig4.  The structure of Fasternet 

2.3  Transformer_DAattention 
In the RT-DETR network, the newly introduced AIFI module 

(Anchor-Free Instance-aware Feature Interaction) offers several 

advantages, particularly its efficient local feature extraction 

capability. By implementing object detection in an anchor-free 

manner, it eliminates the complex anchor design found in 

traditional detectors, simplifying the overall model architecture. 

Moreover, AIFI enhances object instance perception through its 

feature interaction mechanism, making it highly effective at 

handling objects of varying shapes and scales, achieving good 

detection speed and accuracy.However, AIFI also has some 

limitations. Since its focus is primarily on local feature 

extraction, it is less effective at capturing long-range global 

dependencies, which could limit the model’s global awareness 

in complex scenes. Additionally, the feature interaction 

mechanism in AIFI is somewhat inadequate in handling multi-

scale features, which may result in underperformance when 

dealing with tasks that involve large variations in object size. In 

contrast, models equipped with multi-head self-attention 

mechanisms tend to perform better in such scenarios.Overall, 

while the AIFI module excels in certain contexts, it has room for 

improvement in terms of global information capture and multi-

scale processing. 

To address the challenges of automated detection for steel 

surfaces in complex environments, this paper replaces the AIFI 

module with Transformer with Deformable Attention. The 

Transformer Encoder, utilizing the self-attention mechanism, is 

more effective in capturing global contextual information and 

can manage long-range feature dependencies. This improvement 

helps the model perform better in detecting complex objects and 

backgrounds.Additionally, Deformable Attention (DAttention) 

within the Transformer Encoder dynamically adjusts the 

weights between different tokens based on input features or 

context, making the attention mechanism more flexible. The 

inclusion of residual connections and feedforward neural 

networks further prevents gradient vanishing and information 

loss, enhancing both the stability and accuracy of the model. 

Moreover, the adaptive nature of the attention mechanism 

allows it to dynamically allocate attention weights according to 

task requirements, boosting performance in complex 

scenes.Thus, replacing AIFI with Transformer-DAttention 

significantly improves RT-DETR's global perception 

capabilities, multi-scale feature processing, and overall 

performance. The revised network architecture is shown in 

Figure 5. 

 

 Fig5.  The structure of Transformer-DAttention 

In the proposed model, Patch Embedding consists of a Layer 

Norm and a convolution layer, which functions similarly to the 

token transformation process in Vision Transformers. This 

embedding process ensures the input features are appropriately 

transformed for subsequent stages.In stage 1 and stage 2, the 

design includes the Swin Transformer’s paired W-MSA 

(Window-based Multi-Head Self-Attention) and SW-MSA 

(Shifted Window Multi-Head Self-Attention) mechanisms. 

These components help enhance the model's efficiency in 

capturing local and global dependencies.In stage 3 and stage 4, a 

combination of W-MSA and MDHA (Multi-Head Deformable 

Attention) modules is used. The MDHA is the core Deformable 

Attention Module, which allows the model to dynamically focus 

on the most relevant parts of the input while handling varying 

object scales and deformations effectively. This structure is 

illustrated in Figure 6. 

 

Fig6.  Deformable attention module 

The Deformable Attention module enhances the flexibility and 

accuracy of feature extraction by dynamically adjusting the 

sampling positions. First, it generates sampling offsets based on 

the input feature map, allowing the sampling positions to adapt 

to different shapes and scales across various regions. Then, the 

module performs non-uniform sampling at these dynamically 

adjusted locations and applies learned attention weights to 

aggregate the sampled features, ensuring the capture of 

important contextual information. After the weighted 

aggregation, the output features become more expressive, 

effectively addressing the challenges of detecting complex and 

irregular objects. 

3. EXPERIMENTS 

3.1 Data Set 
The dataset used in this study is based on the surface defect 

database released by Northeastern University (NEU), which 

includes six typical defect types on steel surfaces: rolling scale 

(Rs), blister (Pa), crack (Cr), pitting (Ps), inclusions (In), and 

scratch (Sc). This database contains a total of 1,800 grayscale 

images, with 300 samples for each defect type. To enhance the 
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robustness of the model and prevent overfitting, data 

augmentation techniques were applied to the original dataset, as 

illustrated in Figure 7. These techniques include rotation, 

flipping, contrast adjustment, and noise addition. The 

augmented dataset comprises a total of 2,000 images, which 

were split into training, testing, and validation sets in a ratio of 

7:2:1. The six types of surface defects were annotated using the 

LabelImg tool, with each image potentially containing multiple 

defects. 

 
 Fig7. Steel surface defect data set enhancement results 

3.2 Experimental Environment and 

Parameter Settings 
The experiments in this paper were conducted using the 

PyTorch 1.13.1 deep learning framework, with the operating 

system being Windows 11. The hardware environment includes 

an Intel i7-12700 processor, 80 GB of RAM, and an NVIDIA 

GeForce RTX 3070 graphics card with 8 GB of VRAM. To 

accelerate the training process, CUDA 11.6 was used for GPU 

acceleration. 

The specific settings for the experimental parameters are as 

follows: after preprocessing, the images processed by the model 

are consistently sized at 640×640. The batch size is set to 16, 

and the number of iterations is 300. The optimizer chosen is 

AdamW, with an initial learning rate set at 0.0001 and a weight 

decay coefficient also set at 0.0001. 

3.3 Experimental Results 

3.3.1 Comparison of Detection Results for Different 

Defects Experiments 
The detection results of the FTD-DETR model for six typical 

surface defects in steel are shown in Table 2. The results 

indicate that the detection performance for inclusion is the best, 

with precision, recall, and mAP reaching 87.7%, 83.9%, and 

89.6%, respectively. In contrast, the detection accuracy for 

crazing is the lowest, with precision, recall, and mean average 

precision (mAP) at 58.8%, 40.4%, and 42.7%, respectively. The 

difference in performance can be attributed to the fact that 

inclusion exhibits more pronounced and consistent features 

among steel surface defects, while the morphology of crazing is 

complex and variable, making it easily confused with other 

defects, resulting in lower detection performance. On the other 

hand, the dataset for inclusion is significantly more abundant 

than that for crazing, allowing the model to learn more 

effectively and improve its generalization capabilities. 

 

 

 

Table 2. Comparison of detection results of different defects 

by FTD-DETR model 

Defect name P/% R/% mAP/% 

Crazing 58.8 40.4 42.7 

Inclusion 87.7 83.9 89.6 

Patches 83.6 76.7 79.6 

Pitted Surface 89.1 70.7 77.3 

Rolled-in Scale 75.5 56.9 66.9 

Scratches 80.6 77.7 84.6 

3.3.2 The comparison results of different models. 
To compare and validate the performance of the FTD-DETR 

network model in detecting steel surface defects, four different 

models, including the original RT-DETR, Yolov5, Yolov7, and 

Yolov8, were selected under the same experimental conditions. 

The detailed comparison results can be found in Table 3. 

Table 3. Comparison results of different models 

Model P/% R/% mAP/% FLOPs/G 

Yolov5 69.5 71.4 73.4 16.5 

Yolov7 75.9 66.8 71.6 105.2 

Yolov8 74.1 66.1 73.1 28.7 

RT-DETR-r18 74.5 64.0 74.5 57.0 

FTD-DETR 83.6 67.7 79.3 51.7 

As shown in Table 3, FTD-DETR demonstrates excellent 

performance in steel surface defect detection, with precision, 

recall, and mAP values of 83.6%, 67.7%, and 79.3%, 

respectively. Compared to other detection models, FTD-DETR 

shows an improvement in mAP by 5.9, 7.7, 6.2, and 4.8 

percentage points, indicating its higher accuracy and reliability 

in detecting steel surface defects. Additionally, FTD-DETR has 

relatively low memory usage, showcasing better computational 

efficiency, which reflects the model's efficient resource 

utilization. Overall, FTD-DETR delivers balanced and 

outstanding performance in terms of detection accuracy and 

resource efficiency, making it particularly suitable for steel 

surface defect detection tasks. 

 

Fig8. Comparison results of different models 
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Figure 8 visually compares the results of RT-DETR, Yolov5, 

and RIC-DETR on the test dataset. Different types of defects are 

marked with rectangular boxes in distinct colors, and the 

corresponding confidence scores are labeled for each detection. 

4. CONCLUSION 
In summary, the proposed improved model, FTD-DETR, 

demonstrated excellent performance in the task of steel surface 

defect detection. By selecting ResNet18 as the backbone for 

feature extraction and integrating the Faster-EMA module to 

replace ResNet18's basic block, feature extraction efficiency 

was enhanced. Additionally, the standard Transformer encoder 

and dynamic attention mechanism were employed to replace the 

original modules. FTD-DETR performed exceptionally well in 

terms of precision, recall, and mean average precision (mAP). 

Experimental results show that this model not only maintains 

high accuracy but also significantly reduces the number of 

parameters, computational complexity, and memory usage. 

With its low complexity and fast detection speed, FTD-DETR is 

suitable for efficient steel surface defect detection in real-world 

scenarios, providing a reliable technical solution for industrial 

applications. 

Future work could focus on expanding the dataset size and 

enriching the variety of defect types to improve the model's 

generalization ability and adaptability to more complex real-

world applications. Additionally, further optimization of the 

multi-scale feature fusion mechanism could enhance the 

detection of defects of various sizes and shapes, particularly 

small defects, thereby improving overall detection accuracy. 
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