
International Journal of Science and Engineering Applications

Volume 13-Issue 11, 21 – 25, 2024, ISSN:- 2319 - 7560

DOI: 10.7753/IJSEA1311.1005

www.ijsea.com 21

Practice and Application of Intelligent Technology in

Software Automation Testing

Zhao Xinyuan

College of Electronic Information and Electrical Engineering

Yangtze University

Jingzhou City, Hubei Province

China

Abstract: As intelligent technology becomes widely adopted and applied, the domain of software testing is experiencing significant

transformations, centering around the creation of test data that fulfills particular requirements. Given that traditional testing methods

are not only complex and cumbersome, but also have unsatisfactory accuracy and reliability. This article first introduces the basic

principles and methods of software testing. Subsequently, the article focuses on introducing and analyzing in depth the latest research

progress in software testing based on various intelligent optimization methods. Lastly, this article offers a thorough overview of the

present state of automated testing development and anticipates its future directions.

Keywords: Software testing, automated testing, test data generation, intelligence, optimization methods

1. INTRODUCTION
With the rapid development of information technology,

software has become an indispensable part of modern society,

and its quality and stability are directly related to user

experience and business success. In the process of software

development, if there is a lack of effective quality assurance,

problems and vulnerabilities that arise during use may cause

significant losses. Therefore, software testing is crucial in the

software development and usage process. However,

traditional manual testing is not only time-consuming and

inefficient, but also unable to keep up with the pace of

software development optimization. Long term tedious and

repetitive work can easily demotivate testers, thereby

affecting the accuracy of test results. This article aims to

summarize the practice and application of intelligent

technology in software automation testing, analyze the current

situation and challenges in practice, and look forward to

future development trends.

2. BASIC CONCEPTS OF SOFTWARE

TESTING

2.1 Definition of Software Testing
Software testing is an important component of the software

development process, aimed at discovering and evaluating

errors, defects, or unexpected functionalities in software [1].

This process requires simulating the entire user operation

process and designing and executing specific test cases under

each system. Through these interactions, potential errors,

defects, or inconsistencies with the design intent in the

software can be detected to ensure that it meets the specified

requirements and design specifications. By conducting

various types of testing, such as unit testing, integration

testing, system testing, and acceptance testing, as well as

acceptance testing to confirm that the software meets the

user's final requirements, the quality of the software is

comprehensively evaluated.

Software testing is a continuous iterative process that runs

through all stages of software development, from requirement

analysis to design, coding, release, and maintenance, playing a

crucial role. The procedure for the software is illustrated in

Figure 1. Efficient software testing has the potential to

substantially decrease the post-release failure rate, enhance

user satisfaction, and offer robust assistance for the ongoing

enhancement and refinement of the software.

Figure. 1. Software Testing Process Diagram

2.2 Main methods and applications of

software testing
The application of artificial intelligence in the field of

automated software testing is gradually becoming the key to

improving software quality and reliability, and effectively

reducing testing cycles and costs [2-3]. The integration of

artificial intelligence not only greatly improves the quality and

efficiency of detection, but also enables the discovery of

problems missed by manual detection. For example, through

http://www.ijsea.com/

International Journal of Science and Engineering Applications

Volume 13-Issue 11, 21 – 25, 2024, ISSN:- 2319 - 7560

DOI: 10.7753/IJSEA1311.1005

www.ijsea.com 22

machine learning [4] and pattern recognition techniques,

defects discovered during the testing process can be

intelligently classified and automatically assigned priority

based on their severity and impact range. This helps the

development team to respond and fix critical defects faster.

Artificial intelligence in software testing mainly includes the

following aspects:

1) Test case generation: Automatically generate test

cases based on documents or historical data to test various

functions of the software. This can gradually reduce time and

labor costs [5], and greatly improve the coverage of testing.

2) Performance testing and optimization: Easily simulate

large-scale user usage, analyze performance test results,

identify performance bottlenecks, which is beneficial for

improving system stability and consistency.

3) GUI testing: Simulate user operations, automate

complex multi-step tasks, or use image recognition

technology to identify and locate various elements in the

interface, such as buttons, text, etc.

4) Intelligent testing management: applied to testing

management tools, enabling them to have self-learning and

optimization capabilities, better adapt to different testing

scenarios, unify management, reduce human interference, and

improve the work efficiency of testing teams.

3. RESEARCH PROGRESS ON

SOFTWARE TESTING BASED ON

DIFFERENT INTELLIGENT

OPTIMIZATION METHODS

3.1 Automated testing methods based on

natural language processing (NLP)
Test cases are a collection of input data used to execute the

program under test, and are an important foundation for

automated testing. NLP technology plays a core role in

machine learning test case generation. Through NLP

technology, the system is able to understand, interpret, and

generate human language, allowing machines to accurately

capture functional requirements and constraints based on the

requirements document. For example, when the requirement

document mentions that "users should be able to log in by

entering their account and password", the NLP system can

automatically recognize this requirement and generate

corresponding test cases, such as verifying the validity of

input boxes, compliance of data, and functionality of buttons.

NLP technology can automatically analyze various

information sources such as software requirement documents,

user feedback, and historical test data, extract key features

from them, and automatically generate high-quality test data

based on these features [6]. This process not only greatly

improves the efficiency of generating test cases, but also

reduces human errors, ensuring the accuracy and

comprehensiveness of test cases.

Besides creating test cases from requirement documents, NLP

can be integrated with various AI technologies to offer more

sophisticated approaches to test case generation. For instance,

by merging NLP with machine learning models, the test case

repository can be significantly enhanced through the

incorporation of user feedback and remarks, leading to the

production of tailored test cases that assist development teams

in promptly identifying and rectifying potential problems. In

addition, machine learning also plays a significant role in test

result analysis and defect prediction [7-9], such as using hill

climbing method, modular annealing method to optimize

variable access sequence for fault detection [8], using

heuristic strategies to generate fine-grained synchronization

sequences, and detecting concurrent faults [9].

3.2 Automated Testing Methods Based on

Deep Learning
Deep learning (DL) has been introduced as a subset of

machine learning, utilizing more advanced techniques than

traditional shallow machine learning techniques, as shown in

Figure 2. The concept of neuron and multilayer perceptron

(MLP) topology existed before DL was widely adopted. In

DL networks, the clever combination of multiple hidden

layers and different types of layers such as convolutional

layers, pooling layers, and dropout layers together constitute

its powerful architecture. The convolutional layer is

responsible for automatically extracting key features from

input data, such as selecting Convolutional Neural Networks

(CNN) [10-12], or combining Recurrent Neural Networks

(RNN) with Long Short Term Memory (LSTM) [13]. The

pooling layer effectively reduces data dimensionality and

preserves important information, while the dropout layer

achieves regularization by randomly discarding neurons to

prevent overfitting. The introduction of these new

architectures collectively promotes DL networks to exhibit

better function approximation capabilities in complex tasks.

Figure 2. Deep Learning in Machine Learning.

In addition, reinforcement learning has shown great potential

in optimizing testing strategies in continuous integration and

deployment processes. In this dynamic environment, software

undergoes frequent updates, therefore, there is an urgent need

for a fast and efficient testing strategy to ensure consistent

software quality. Reinforcement learning techniques can assist

systems in learning how to accurately select and execute the

most critical test cases within limited time resources [14].

3.3 Automated testing methods based on

reinforcement learning
Compared to other learning approaches, Reinforcement

Learning (RL) excels in discovering optimal decisions within

interactive environments, without necessitating a pre-existing

dataset to study the interplay between agent and environment.

The fundamental workings of the RL process are illustrated in

Figure 3. During this process, the agent engages with the

environment autonomously as a self-directed learner,

progressively refining its strategy. It transitions from a given

state in the set of states to select an action from the

action space in the set of actions . The transition

probability between states determines the final state of

the agent. Next, the environment provides a reward r based on

the selected action. During this period, the agent continuously

http://www.ijsea.com/

International Journal of Science and Engineering Applications

Volume 13-Issue 11, 21 – 25, 2024, ISSN:- 2319 - 7560

DOI: 10.7753/IJSEA1311.1005

www.ijsea.com 23

trains until the goal is achieved or the termination condition is

met [15].
In reinforcement learning based testing strategy optimization,

the testing process is considered as a decision problem. The

testing system (agent) interacts with the software

(environment), executes test cases, and observes the

software's response. If defects are discovered during the

testing process, the system will provide a positive reward; If

no defects are found, the system will not reward or give a

negative reward[16]. In this way, the system can learn how to

select and execute test cases to maximize the probability of

discovering defects. Alternatively, the coverage of the test can

also be used as a reward value to transform the test into a

multi-objective optimization problem, in order to find the

optimal solution. The data shows that approximately 37% of

research reports propose RL based methods that produce

better coverage in their respective fields, such as branch

coverage and statement coverage[17-18]. Simultaneously, a

multitude of research studies suggest that the development of

RL models necessitates less time compared to manual creation

of test cases, while also attaining superior accuracy and

efficiency in their implementation. [19-20].

Figure 3. Reinforcement learning cycle.

4. CHALLENGES AND PROSPECTS
Software testing, as a key link in the software development

process, has immeasurable value in significantly improving

the reliability of software products. The integration of

intelligent optimization technology has greatly enhanced the

efficiency and quality of software testing, promoting

significant progress in this field. However, with the

continuous vigorous development of the software industry,

software testing technology based on intelligent optimization

still faces new challenges and difficulties, and it is urgent for

us to continue exploring and innovating to address these

emerging issues.

Data quality issues, including accuracy, completeness, and

validity of data. Ensure that the test data can truly reflect the

real situation and avoid misleading the test results; Ensure

comprehensive testing data, covering all possible scenarios

and inputs; The test data must comply with business rules and

best practices to ensure the effectiveness of the testing. The

accuracy and effectiveness of the test results are also a major

challenge. Intelligent testing tools require the collection of a

large amount of user data for analysis and learning, but data

privacy protection has become an important ethical and legal

issue. Moreover, for complex business processes and user

interactions, automated tools may not be able to completely

replace manual judgment. Furthermore, the interpretability of

the model is also worth paying attention to. Many machine

learning models have strong learning abilities, but they are

opaque to workers in the decision-making process, which

poses a trust crisis in intelligent testing.

However, intelligent technology will still bring new

opportunities for software testing. For example, developing

new intelligent tools that can adapt to different testing needs

and help development teams analyze and solve problems

faster. In addition, cross disciplinary integration is also a

major trend, which will bring more possibilities for software

testing, such as using big data analysis to optimize strategies.

5. CONCLUSION
Intelligent technology has brought new possibilities for

software testing, greatly improving efficiency and reducing

the burden and pressure on testers.. This article meticulously

examines the practice and application of intelligent

technology within the realm of software automation testing,

providing an insightful summary of some of the most

significant advancements in research methodologies.

Furthermore, the article doesn't stop at merely identifying

these challenges; it also explores and forecasts the potential

opportunities and possibilities that lie ahead.

As the scale and complexity of software continue to grow at

an unprecedented rate, software testing methods that rely

heavily on intelligent optimization are encountering numerous

hurdles that demand immediate attention and resolution. With

the relentless advancement of emerging technologies such as

machine learning, deep learning, and big data analytics, the

field of intelligent technology in software automation testing

is poised to exhibit exciting new development trends. These

technologies have the potential to revolutionize the way we

approach software testing, making it more efficient, accurate,

and capable of handling the ever-increasing complexity of

modern software systems.

6. REFERENCES
[1] Harman M, Jia Y, Zhang Y Y. 2015 Achievements, open

problems and challenges for search based software

testing. IEEE 8th International Conference on Software

Testing, Verification and Validation.

[2] M. Harman, 2012 The role of artificial intelligence in

software engineering, in Proceedings, 1st Int. Workshop

on Realizing Artificial Intelligence Synergies Software

Engineering, pp. 1–6.

[3] T. Xie, 2013 The synergy of human and artificial

intelligence in software engineering, in Proceedings, 2nd

International Workshop on Realizing Artificial

Intelligence Synergies Software Engineering, pp. 4–6.

[4] M. Noorian, E. Bagheri, and W. Du, 2011 Machine

learning-based software testing: Towards a classification

framework, in Proceedings, International Conference on

Software Engineering and Knowledge Engineering, pp.

225–229.

[5] Michael C C, McGraw G, Schatz M A. 2001 Generating

software test data by evolution[J]. IEEE Transactions on

Software Engineering,, 27(12): 1085-1110.

[6] Chen T Y, Kuo F C, Merkel R G, et al. 2010 Adaptive

random testing: The ART of test case diversity[J].

Journal of Systems and Software, 2010, 83(1): 60-66.

[7] Letko Z. 2010 Sophisticated testing of concurrent

programs[C]. The 2nd International Symposium on

Search Based Software Engineering. Benevento. 36-39

http://www.ijsea.com/

International Journal of Science and Engineering Applications

Volume 13-Issue 11, 21 – 25, 2024, ISSN:- 2319 - 7560

DOI: 10.7753/IJSEA1311.1005

www.ijsea.com 24

[8] Bhattacharya N, El-Mahi O, Duclos E, et al. Optimizing

threads schedule alignments to expose the interference

bug pattern[J]. Search Based Software Engineering.

[9] Qi X F, Zhou H Y. 2019 A splitting strategy for testing

concurrent programs[C]. IEEE 26th International

Conference on Software Analysis, Evolution and

Reengineering. Hangzhou. 388-398

[10] A. Krizhevsky, I. Sutskever, G.E. Hinton, 2012

ImageNet classification with deep convolutional neural

networks, in: F. Pereira, C.J.C. Burges, L. Bottou, K.Q.

Weinberger (Eds.), Advances in Neural Information

Processing Systems, Vol. 25, Curran Associates, Inc.

[11] K. Simonyan, A. Zisserman, 2015 Very deep

convolutional networks for large-scale image

recognition, arXiv:1409.1556.

[12] F. Chollet, Xception: 2017 Deep learning with depthwise

separable convolutions, in: Proceedings of the IEEE C

onference on Computer Vision and Pattern Recognition,

pp. 1251–1258.

[13] S. Hochreiter, J. Schmidhuber, 1997 Long short-term

memory, Neural Comput. 9 (8) (1997) 1735–1780

[14] Abo-Eleneen, A., Palliyali, A., & Catal, C. 2023. The

role of reinforcement learning in software testing.

Information and software technology (Dec.), 164.

[15] R.S. Sutton, Dyna, 1991 an integrated architecture for

learning, planning, and reacting, ACM Sigart Bull. 2 (4)

(1991) 160–163

[16] B. Zhang, R. Rajan, L. Pineda, N. Lambert, A.

Biedenkapp, K. Chua, F. Hutter, R. Calandra, 2021 On

the importance of hyperparameter optimization for

model-based reinforcement learning, in: International

Conference on Artificial Intelligence and Statistics,

PMLR, pp. 4015–4023.

[17] Z. Wu, E. Johnson, W. Yang, O. Bastani, D. Song, J.

Peng, T. Xie, 2018 A reinforcement learning based

approach to automated testing of android applications, A-

TEST 2018 - Proceedings of the 9th ACM SIGSOFT

International Workshop on Automating TEST Case

Design, Selection, and Evaluation, Co-located with FSE

(2018) 31–37

[18] D. Adamo, M.K. Khan, S. Koppula, R. Bryce,

Reinforcement learning for android GUI testing, in: A-

TEST 2018 - Proceedings of the 9th ACM SIGSOFT

International Workshop on Automating TEST Case

Design, Selection, and Evaluation, Co-located with FSE

2018, Association for Computing Machinery, Inc, 2018,

pp. 2–8

[19] X. Zhang, M. Lin, D. Zhang, 2012 A learning strategy

for software testing optimization based on dynamic

programming, in: Proceedings of the Fourth Asia-Pacific

Symposium on Internetware, Association for Computing

Machinery, New York, NY, USA.

[20] M. Esnaashari, A.H. Damia, 2021 Automation of

software test data generation using genetic algorithm and

reinforcement learning, Expert Syst. Appl. 183 .

http://www.ijsea.com/

International Journal of Science and Engineering Applications

Volume 13-Issue 11, 21 – 25, 2024, ISSN:- 2319 - 7560

DOI: 10.7753/IJSEA1311.1005

www.ijsea.com 25

http://www.ijsea.com/

