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Abstract: This study evaluates the quality of the pseudorandom number generator (PRNG) implemented in Python's random module, 

which utilizes the Mersenne Twister algorithm. PRNGs are integral to numerous computational applications, and their statistical integrity 

directly impacts simulations, modeling, and cryptography. Using the ent toolset, we analyzed ten independent runs of the Python PRNG 

based on metrics including entropy, compression, chi-square tests, arithmetic mean, Monte Carlo π estimation, and serial correlation. 

Results indicate near-maximum entropy, a uniform byte distribution, accurate π estimation, and negligible serial correlation, 

demonstrating robust randomness properties suitable for general-purpose use. However, the deterministic nature of the Mersenne Twister 

limits its application in cryptographic contexts. These findings affirm the statistical reliability of Python's random module while 

highlighting the need for specialized algorithms for security-critical applications. 
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1. INTRODUCTION 
Pseudorandom number generators (PRNGs) are mathematical 

algorithms designed to produce sequences of numbers that 

mimic the properties of randomness. They are distinct from true 

random number generators (TRNGs), which rely on inherently 

unpredictable physical phenomena, such as radioactive decay 

or thermal noise[2]. Instead, PRNGs operate deterministically, 

generating numbers from an initial input known as a seed[8]. 

This approach allows the sequence to be both predictable and 

reproducible—characteristics that are essential in many 

computational contexts[1].  

The central problem addressed by PRNGs is the need for 

randomness in scenarios where obtaining true random numbers 

is either impractical or unnecessary. Randomness is a 

cornerstone of numerous applications, including statistical 

simulations, cryptography, gaming, and randomized 

algorithms. However, acquiring truly random numbers can be 

slow, expensive, or infeasible for the high-speed, high-volume 

demands of modern computation. PRNGs provide an efficient 

and scalable solution by producing numbers that, while not 

genuinely random, are statistically indistinguishable from 

random sequences for most practical purposes.  

One of the strengths of PRNGs lies in their ability to generate 

large amounts of pseudorandomness quickly. The deterministic 

nature of these generators also enables reproducibility—a 

crucial feature for debugging and verifying results in scientific 

experiments and software development [3]. For example, a 

simulation using a PRNG can be repeated precisely by 

reinitializing the generator with the same seed, ensuring 

consistent outcomes. This is a key advantage over non-

deterministic methods, where exact replication is often 

impossible.  

Despite their utility, PRNGs must meet rigorous standards to 

be effective. High-quality PRNGs exhibit long periods before 

repeating sequences, uniform distribution, and minimal 

correlation between successive numbers. These properties are 

essential for maintaining the statistical integrity required in 

simulations, modeling, and cryptographic systems. Yet, no 

PRNG is perfect. The trade-off between computational 

efficiency and the complexity needed to achieve near-random 

behavior remains a fundamental challenge.  

A poorly implemented PRNG may produce sequences that are 

predictable, especially if the internal state of the generator or 

its seed can be inferred [4]. This predictability can compromise 

systems that rely on randomness for security, such as 

cryptographic protocols. For instance, if an attacker can 

determine or guess the seed, they may be able to recreate the 

sequence of numbers and exploit the system.  

A bad PRNG may fail tests for randomness, producing 

sequences that are unevenly distributed or exhibit discernible 

patterns. Such flaws can have cascading effects in domains like 

gaming, randomized algorithms, and scientific modeling. In 

gaming, for example, biased distributions could favor certain 

outcomes, leading to unfair advantages. In simulations, non-

random sequences could fail to accurately represent the 

modeled system.  

The random module in Python uses the Mersenne Twister 

algorithm as its core pseudorandom number generator (PRNG) 

[6]. This algorithm is well-known for its high speed and 

excellent statistical properties, making it a widely used PRNG 

in general-purpose applications. The Mersenne Twister has a 

period of  219937 − 1, meaning the sequence of numbers it 

generates will not repeat for a very long time, ensuring high-

quality randomness for non-secure applications. Given the 

same seed, the random module will always produce the same 

sequence of numbers. This makes it suitable for reproducibility 

in simulations and debugging. The Mersenne Twister is not 

suitable for cryptographic purposes because its deterministic 

nature and internal state can be inferred if enough output is 

observed [7]. In this study, we aim to find out the quality of the 

generated random number sequences using the Python random 

module. 

2. METHODS 
Testing the quality of a pseudorandom number generator 

(PRNG) requires a combination of statistical methods to ensure 

it produces sequences that are sufficiently random and free of 

discernible patterns [5]. One effective approach involves using 

tools like the ent toolset, which provides a suite of tests tailored 

for evaluating randomness. The chi-square test is a 

foundational method included in such tools, comparing the 

observed frequencies of generated values to their expected 

frequencies under a uniform distribution. This test highlights 

biases or uneven distributions in the PRNG's output. 
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Additionally, the Monte Carlo method, which involves 

simulating probabilistic systems (e.g., estimating π through 

random points), can be used to verify whether the PRNG 

produces results consistent with known theoretical 

probabilities. Another critical measure is the serial correlation 

coefficient, which assesses the relationship between successive 

numbers in the sequence. Ideally, there should be no significant 

correlation, indicating that the numbers are independent of one 

another. Together, these methods, encapsulated in the ent suite, 

offer a robust way to evaluate both the statistical quality and 

practical reliability of a PRNG. 

To analyze Python’s PRNG quality, following program was 

developed: 

 
Figure. 1  Source code of random sequence generator 

This code generates a set of random sequences using Python’s 

random module and saves it in the file. Results are stored in the 

output file, and then each generated sequence is analyzed using 

ent utility to find out its properties. The length of generated 

random sequences is 10,000,000. For each run seed was 

randomized. 

 

3. RESULTS 

Run Entropy 

Compre

ssion 

(%) 

Chi Square 

Samples 

Chi Square 

Value 

1 7.999980 0 10000000 282.19 

2 7.999984 0 10000000 221.10 

3 7.999983 0 10000000 229.40 

4 7.999981 0 10000000 256.98 

5 7.999981 0 10000000 265.14 

6 7.999983 0 10000000 231.63 

7 7.999984 0 10000000 226.14 

8 7.999980 0 10000000 273.37 

9 7.999981 0 10000000 257.42 

10 7.999983 0 10000000 242.69 

Table. 1  Part 1 of analysis results 

 

Run 

Chi 

Square 

Exceed 

Percent 

(%) 

Arithm

etic 

Mean 

Monte 

Carlo Pi 

Value 

Monte 

Carlo 

Error 

(%) 

Serial 

Correlati

on 

1 11.65 

127.47

10 

3.14114

5256 0.01 

-

0.000349 

2 93.86 

127.51

41 

3.13992

6056 0.05 

-

0.000429 

3 87.38 

127.49

42 

3.14112

8456 0.01 0.000452 

4 45.34 

127.47

21 

3.14122

2056 0.01 0.000153 

5 31.82 

127.50

94 

3.14290

4457 0.04 

-

0.000948 

6 85.05 

127.51

12 

3.14109

0056 0.02 

-

0.000219 

7 90.31 

127.44

66 

3.14275

5657 0.04 0.000864 

8 20.50 

127.46

51 

3.14321

4057 0.05 

-

0.000025 

9 44.58 

127.48

45 

3.13836

8455 0.10 0.000379 

10 70.01 

127.49

91 

3.14051

8856 0.03 0.000214 

Table. 2  Part 2 of analysis results 

The analysis of the Python random module's pseudo-random 

number generator (PRNG) was conducted using the ent tool 

across ten independent runs. The following metrics were 

assessed to evaluate the quality of randomness in the generated 

data: 

1. Entropy: The entropy values consistently averaged 

7.99998 bits per byte, with negligible variation 

across runs. This value approaches the theoretical 

maximum entropy of 8 bits per byte for 8-bit data, 
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indicating nearly perfect uniformity in byte 

distribution. 

2. Compression Percentage: All runs resulted in a 

compression percentage of 0%, demonstrating a lack 

of detectable patterns or redundancy in the data. 

3. Chi-Square Test: 

 Chi-square values ranged from 221.10 to 

282.19, with corresponding exceed 

percentages (p-values) between 11.65% 

and 93.86%. 

 The majority of p-values fell within the 

generally accepted range for random data 

(10%–90%), indicating no significant 

deviations from a uniform distribution of 

byte values. 

4. Arithmetic Mean: The observed arithmetic means 

ranged from 127.4466 to 127.5141, closely aligning 

with the expected mean of 127.5 for a uniform 

distribution of byte values between 0 and 255. 

5. Monte Carlo π Estimation: Estimates for π based 

on the Monte Carlo method ranged from 

3.138368455 to 3.142904457, with error percentages 

between 0.01% and 0.10%. These results 

demonstrate a high level of randomness, as the 

accuracy of π estimation depends on the quality of 

the underlying random data. 

6. Serial Correlation Coefficient: Serial correlation 

coefficients ranged from -0.000948 to 0.000864, 

with values consistently near zero, indicating 

negligible correlation between successive bytes and 

strong independence. 

4. DISCUSSION 

The results demonstrate that the Python random module’s 

PRNG exhibits robust randomness properties across multiple 

statistical dimensions: 

1. Entropy and Compression: The near-maximum 

entropy values and 0% compression percentage 

indicate a uniform and pattern-free distribution of 

byte values, which is a hallmark of high-quality 

random sequences. 

2. Chi-Square Test: The acceptable range of chi-

square p-values suggests that the observed 

distribution closely matches the theoretical uniform 

distribution. This implies that the PRNG effectively 

randomizes byte values with minimal bias. 

3. Arithmetic Mean: Observed means remain 

consistent with the theoretical expectation of 127.5, 

confirming the even distribution of generated byte 

values. 

4. Monte Carlo π Estimation: Accurate π estimations 

with minimal error highlight the adequacy of the 

PRNG for applications requiring reliable 

randomness, as the Monte Carlo method is sensitive 

to imperfections in random input. 

5. Serial Correlation: The near-zero serial correlation 

coefficients indicate a lack of dependency between 

successive values, affirming the independence of 

generated data. 

Overall, these findings suggest that the Python random 

module’s PRNG produces high-quality random sequences that 

meet rigorous statistical benchmarks. While this level of 

randomness is suitable for general-purpose applications and 

simulations, further investigation into cryptographic 

robustness may be required for security-sensitive use cases. 

The observed metrics align closely with theoretical 

expectations for a well-designed PRNG, validating its 

effectiveness in generating statistically random data.
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