
International Journal of Science and Engineering Applications

Volume 13-Issue 12, 01 – 04, 2024, ISSN:- 2319 - 7560

DOI: 10.7753/IJSEA1312.1001

www.ijsea.com 1

Analysis of Pseudorandom Number Generator in Python

Anton Novikau

Head of Mobile Development

Talaera Inc

Talaera, New York, USA

Abstract: This study evaluates the quality of the pseudorandom number generator (PRNG) implemented in Python's random module,

which utilizes the Mersenne Twister algorithm. PRNGs are integral to numerous computational applications, and their statistical integrity

directly impacts simulations, modeling, and cryptography. Using the ent toolset, we analyzed ten independent runs of the Python PRNG

based on metrics including entropy, compression, chi-square tests, arithmetic mean, Monte Carlo π estimation, and serial correlation.

Results indicate near-maximum entropy, a uniform byte distribution, accurate π estimation, and negligible serial correlation,

demonstrating robust randomness properties suitable for general-purpose use. However, the deterministic nature of the Mersenne Twister

limits its application in cryptographic contexts. These findings affirm the statistical reliability of Python's random module while

highlighting the need for specialized algorithms for security-critical applications.

Keywords: python, Entropy analysis, Chi-square test, Serial correlation, Randomness evaluation

1. INTRODUCTION
Pseudorandom number generators (PRNGs) are mathematical

algorithms designed to produce sequences of numbers that

mimic the properties of randomness. They are distinct from true

random number generators (TRNGs), which rely on inherently

unpredictable physical phenomena, such as radioactive decay

or thermal noise[2]. Instead, PRNGs operate deterministically,

generating numbers from an initial input known as a seed[8].

This approach allows the sequence to be both predictable and

reproducible—characteristics that are essential in many

computational contexts[1].

The central problem addressed by PRNGs is the need for

randomness in scenarios where obtaining true random numbers

is either impractical or unnecessary. Randomness is a

cornerstone of numerous applications, including statistical

simulations, cryptography, gaming, and randomized

algorithms. However, acquiring truly random numbers can be

slow, expensive, or infeasible for the high-speed, high-volume

demands of modern computation. PRNGs provide an efficient

and scalable solution by producing numbers that, while not

genuinely random, are statistically indistinguishable from

random sequences for most practical purposes.

One of the strengths of PRNGs lies in their ability to generate

large amounts of pseudorandomness quickly. The deterministic

nature of these generators also enables reproducibility—a

crucial feature for debugging and verifying results in scientific

experiments and software development [3]. For example, a

simulation using a PRNG can be repeated precisely by

reinitializing the generator with the same seed, ensuring

consistent outcomes. This is a key advantage over non-

deterministic methods, where exact replication is often

impossible.

Despite their utility, PRNGs must meet rigorous standards to

be effective. High-quality PRNGs exhibit long periods before

repeating sequences, uniform distribution, and minimal

correlation between successive numbers. These properties are

essential for maintaining the statistical integrity required in

simulations, modeling, and cryptographic systems. Yet, no

PRNG is perfect. The trade-off between computational

efficiency and the complexity needed to achieve near-random

behavior remains a fundamental challenge.

A poorly implemented PRNG may produce sequences that are

predictable, especially if the internal state of the generator or

its seed can be inferred [4]. This predictability can compromise

systems that rely on randomness for security, such as

cryptographic protocols. For instance, if an attacker can

determine or guess the seed, they may be able to recreate the

sequence of numbers and exploit the system.

A bad PRNG may fail tests for randomness, producing

sequences that are unevenly distributed or exhibit discernible

patterns. Such flaws can have cascading effects in domains like

gaming, randomized algorithms, and scientific modeling. In

gaming, for example, biased distributions could favor certain

outcomes, leading to unfair advantages. In simulations, non-

random sequences could fail to accurately represent the

modeled system.

The random module in Python uses the Mersenne Twister

algorithm as its core pseudorandom number generator (PRNG)

[6]. This algorithm is well-known for its high speed and

excellent statistical properties, making it a widely used PRNG

in general-purpose applications. The Mersenne Twister has a

period of 219937 − 1, meaning the sequence of numbers it

generates will not repeat for a very long time, ensuring high-

quality randomness for non-secure applications. Given the

same seed, the random module will always produce the same

sequence of numbers. This makes it suitable for reproducibility

in simulations and debugging. The Mersenne Twister is not

suitable for cryptographic purposes because its deterministic

nature and internal state can be inferred if enough output is

observed [7]. In this study, we aim to find out the quality of the

generated random number sequences using the Python random

module.

2. METHODS
Testing the quality of a pseudorandom number generator

(PRNG) requires a combination of statistical methods to ensure

it produces sequences that are sufficiently random and free of

discernible patterns [5]. One effective approach involves using

tools like the ent toolset, which provides a suite of tests tailored

for evaluating randomness. The chi-square test is a

foundational method included in such tools, comparing the

observed frequencies of generated values to their expected

frequencies under a uniform distribution. This test highlights

biases or uneven distributions in the PRNG's output.

http://www.ijsea.com/

International Journal of Science and Engineering Applications

Volume 13-Issue 12, 01 – 04, 2024, ISSN:- 2319 - 7560

DOI: 10.7753/IJSEA1312.1001

www.ijsea.com 2

Additionally, the Monte Carlo method, which involves

simulating probabilistic systems (e.g., estimating π through

random points), can be used to verify whether the PRNG

produces results consistent with known theoretical

probabilities. Another critical measure is the serial correlation

coefficient, which assesses the relationship between successive

numbers in the sequence. Ideally, there should be no significant

correlation, indicating that the numbers are independent of one

another. Together, these methods, encapsulated in the ent suite,

offer a robust way to evaluate both the statistical quality and

practical reliability of a PRNG.

To analyze Python’s PRNG quality, following program was

developed:

Figure. 1 Source code of random sequence generator

This code generates a set of random sequences using Python’s

random module and saves it in the file. Results are stored in the

output file, and then each generated sequence is analyzed using

ent utility to find out its properties. The length of generated

random sequences is 10,000,000. For each run seed was

randomized.

3. RESULTS

Run Entropy

Compre

ssion

(%)

Chi Square

Samples

Chi Square

Value

1 7.999980 0 10000000 282.19

2 7.999984 0 10000000 221.10

3 7.999983 0 10000000 229.40

4 7.999981 0 10000000 256.98

5 7.999981 0 10000000 265.14

6 7.999983 0 10000000 231.63

7 7.999984 0 10000000 226.14

8 7.999980 0 10000000 273.37

9 7.999981 0 10000000 257.42

10 7.999983 0 10000000 242.69

Table. 1 Part 1 of analysis results

Run

Chi

Square

Exceed

Percent

(%)

Arithm

etic

Mean

Monte

Carlo Pi

Value

Monte

Carlo

Error

(%)

Serial

Correlati

on

1 11.65

127.47

10

3.14114

5256 0.01

-

0.000349

2 93.86

127.51

41

3.13992

6056 0.05

-

0.000429

3 87.38

127.49

42

3.14112

8456 0.01 0.000452

4 45.34

127.47

21

3.14122

2056 0.01 0.000153

5 31.82

127.50

94

3.14290

4457 0.04

-

0.000948

6 85.05

127.51

12

3.14109

0056 0.02

-

0.000219

7 90.31

127.44

66

3.14275

5657 0.04 0.000864

8 20.50

127.46

51

3.14321

4057 0.05

-

0.000025

9 44.58

127.48

45

3.13836

8455 0.10 0.000379

10 70.01

127.49

91

3.14051

8856 0.03 0.000214

Table. 2 Part 2 of analysis results

The analysis of the Python random module's pseudo-random

number generator (PRNG) was conducted using the ent tool

across ten independent runs. The following metrics were

assessed to evaluate the quality of randomness in the generated

data:

1. Entropy: The entropy values consistently averaged

7.99998 bits per byte, with negligible variation

across runs. This value approaches the theoretical

maximum entropy of 8 bits per byte for 8-bit data,

http://www.ijsea.com/

International Journal of Science and Engineering Applications

Volume 13-Issue 12, 01 – 04, 2024, ISSN:- 2319 - 7560

DOI: 10.7753/IJSEA1312.1001

www.ijsea.com 3

indicating nearly perfect uniformity in byte

distribution.

2. Compression Percentage: All runs resulted in a

compression percentage of 0%, demonstrating a lack

of detectable patterns or redundancy in the data.

3. Chi-Square Test:

 Chi-square values ranged from 221.10 to

282.19, with corresponding exceed

percentages (p-values) between 11.65%

and 93.86%.

 The majority of p-values fell within the

generally accepted range for random data

(10%–90%), indicating no significant

deviations from a uniform distribution of

byte values.

4. Arithmetic Mean: The observed arithmetic means

ranged from 127.4466 to 127.5141, closely aligning

with the expected mean of 127.5 for a uniform

distribution of byte values between 0 and 255.

5. Monte Carlo π Estimation: Estimates for π based

on the Monte Carlo method ranged from

3.138368455 to 3.142904457, with error percentages

between 0.01% and 0.10%. These results

demonstrate a high level of randomness, as the

accuracy of π estimation depends on the quality of

the underlying random data.

6. Serial Correlation Coefficient: Serial correlation

coefficients ranged from -0.000948 to 0.000864,

with values consistently near zero, indicating

negligible correlation between successive bytes and

strong independence.

4. DISCUSSION

The results demonstrate that the Python random module’s

PRNG exhibits robust randomness properties across multiple

statistical dimensions:

1. Entropy and Compression: The near-maximum

entropy values and 0% compression percentage

indicate a uniform and pattern-free distribution of

byte values, which is a hallmark of high-quality

random sequences.

2. Chi-Square Test: The acceptable range of chi-

square p-values suggests that the observed

distribution closely matches the theoretical uniform

distribution. This implies that the PRNG effectively

randomizes byte values with minimal bias.

3. Arithmetic Mean: Observed means remain

consistent with the theoretical expectation of 127.5,

confirming the even distribution of generated byte

values.

4. Monte Carlo π Estimation: Accurate π estimations

with minimal error highlight the adequacy of the

PRNG for applications requiring reliable

randomness, as the Monte Carlo method is sensitive

to imperfections in random input.

5. Serial Correlation: The near-zero serial correlation

coefficients indicate a lack of dependency between

successive values, affirming the independence of

generated data.

Overall, these findings suggest that the Python random

module’s PRNG produces high-quality random sequences that

meet rigorous statistical benchmarks. While this level of

randomness is suitable for general-purpose applications and

simulations, further investigation into cryptographic

robustness may be required for security-sensitive use cases.

The observed metrics align closely with theoretical

expectations for a well-designed PRNG, validating its

effectiveness in generating statistically random data.

5. REFERENCES
1. Antunes, B., & Hill, D. R. C. (2024, January 30).

Reproducibility, energy efficiency and performance

of pseudorandom number generators in machine

learning: a comparative study of python, numpy,

tensorflow, and pytorch implementations. arXiv.org.

https://arxiv.org/abs/2401.17345

2. Zhang, Y., Zhu, M., Yang, B., & Liu, L. (2021).

Study on post-processing algorithms for true random

number generators [Conference: 2021 6th

International Symposium on Computer and

Information Processing Technology (ISCIPT)].

https://doi.org/10.1109/iscipt53667.2021.00067

3. Antunes, B., & Hill, D. R. C. (2024a, January 30).

Reproducibility, energy efficiency and performance

of pseudorandom number generators in machine

learning: a comparative study of python, numpy,

tensorflow, and pytorch implementations. arXiv.org.

https://arxiv.org/abs/2401.17345

4. Kim, H., Kwon, Y., Sim, M., Lim, S., & Seo, H.

(2021). Generative Adversarial Networks-Based

Pseudo-Random number Generator for embedded

processors. In Lecture notes in computer science (pp.

215–234). https://doi.org/10.1007/978-3-030-68890-

5_12

5. L’Ecuyer, P., & Simard, R. (2007). TestU01. ACM

Transactions on Mathematical Software, 33(4), 1–40.

https://doi.org/10.1145/1268776.1268777

6. random — Generate pseudo-random numbers. (n.d.).

Python Documentation.

https://docs.python.org/3/library/random.html

7. Vigna, S. (2019, October 14). It is high time we let

go of the Mersenne Twister. arXiv.org.

https://arxiv.org/abs/1910.06437

8. Barker, E., Barker, W., Burr, W., Polk, W., Smid, M.,

Computer Security Division, & National Institute of

Standards and Technology. (2012).

Recommendation for Key Management - Part 1:

http://www.ijsea.com/
https://arxiv.org/abs/2401.17345
https://doi.org/10.1109/iscipt53667.2021.00067
https://arxiv.org/abs/2401.17345
https://doi.org/10.1007/978-3-030-68890-5_12
https://doi.org/10.1007/978-3-030-68890-5_12
https://doi.org/10.1145/1268776.1268777
https://docs.python.org/3/library/random.html
https://arxiv.org/abs/1910.06437

International Journal of Science and Engineering Applications

Volume 13-Issue 12, 01 – 04, 2024, ISSN:- 2319 - 7560

DOI: 10.7753/IJSEA1312.1001

www.ijsea.com 4

General (Revision 3). In NIST Special Publication

800-57.

https://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspe

cialpublication800-57p1r3.pdf

9.

http://www.ijsea.com/
https://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-57p1r3.pdf
https://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-57p1r3.pdf

