
International Journal of Science and Engineering Applications

Volume 13-Issue 03, 30 - 35, 2024, ISSN:- 2319 - 7560

DOI:10.7753/IJSEA1303.1007

www.ijsea.com 30

Evaluative Comparison of ASGI Web Servers: A

Systematic Review

Anton Novikau

Head of Mobile Development

Talaera, 28 Liberty Street, 6th Floor

New York, USA

Abstract: This paper aims to research major ASGI (Asynchronous Server Gateway Interface) server implementations, including

Uvicorn, Daphne, and Hypercorn, and provide a comprehensive comparison. Utilizing a methodology that incorporates both

quantitative performance metrics and qualitative feature analysis, this study offers a thorough evaluation of these servers in the context

of modern asynchronous web applications.

In this study, performance metrics such as request handling capacity (RPS) and resource consumption (specifically, RAM

consumption) are carefully measured under controlled conditions to identify the most efficient ASGI implementations. Additionally,

we examine the features provided by each ASGI server implementation, covering critical aspects such as protocol support, scalability

options, and an overview of license restrictions.

As a result, this study compares the strengths and limitations of each ASGI implementation. Most importantly, it provides valuable

insights for developers and system architects in selecting the most suitable ASGI server for their specific needs.

Keywords: Python, Software, Network, ASGI, Web server, Web server performance, Concurrent request handling, Scalability in web

servers, Asynchronous web technologies

1. INTRODUCTION

1.1 What is an application server in

Python?
An application server, specifically in the context of Python

web development, is a type of software that provides an

environment where web applications can be executed. They

are responsible for handling the low-level details of client

request processing. The application server serves as a bridge

between the user's client (or browser) and the backend logic of

a web application. Tasks managed by these application

servers include managing incoming connections, executing

application code, providing an effective way of handling

connections, scaling, and ensuring security.

Application servers are necessary due to their ability to

simplify and manage the complex interactions in client-server

systems. They allow developers to focus on building the core

functionality of their applications without worrying about the

underlying network protocol implementation details.

In the Python ecosystem, there are two major protocols for

such servers: WSGI (Web Server Gateway Interface) and

ASGI (Asynchronous Server Gateway Interface). WSGI is an

older protocol designed for synchronous Python web

applications, while ASGI was created for asynchronous

applications, allowing them to handle long-lived connections

like WebSockets or HTTP polling more efficiently. The

choice between these protocols and their corresponding

implementations is determined by the application's specific

needs, whether it requires handling real-time data, the

expected traffic load, and the nature of the tasks it performs.

1.2 History of ASGI
ASGI, the Asynchronous Server Gateway Interface,

represents a significant advancement in Python’s web

development capabilities, especially in the context of building

asynchronous web servers. It provides a solution to the

limitations of the Web Server Gateway Interface (WSGI), an

older Python standard established in 2003 [1]. WSGI, built on

a traditional synchronous request-response model, cannot

effectively handle communications outside this format. For

example, implementing HTTP long-polling, or any technique

requiring long-lived connections, poses challenges (though

not insurmountable) due to the complexities and limitations of

Python’s multithreading system. Furthermore, WSGI is

incompatible with WebSockets, a popular protocol for

asynchronous message exchanges between clients and servers.

ASGI was developed considering these limitations and

addresses them. The introduction of new asynchronous

features in CPython version 3.5 [2] made the approach used

by ASGI feasible. ASGI’s design enables a more flexible

communication paradigm, allowing servers and clients to

exchange information asynchronously once a connection is

established [3].

ASGI servers are gaining more traction within the Python

community. Modern frameworks, such as Starlette, LiteStar,

and Django, have been developed with ASGI in mind or have

recently integrated support for it.

1.3 Overview of ASGI & Comparison

with WSGI
The Asynchronous Server Gateway Interface (ASGI) by itself

is just a specification that could be implemented by protocol

servers/application servers. These implementations are

utilized by the applications. The server is responsible for

International Journal of Science and Engineering Applications

Volume 13-Issue 03, 30 - 35, 2024, ISSN:- 2319 - 7560

DOI:10.7753/IJSEA1303.1007

www.ijsea.com 31

managing low-level implementation – work with sockets,

generating connections, and connection-specific events. For

each connection, the server calls the application once - after

that, the application takes care of the connection’s event

messages as they happen and produces events back when

necessary.

While the general design is similar to WSGI, it has a very

distinct attribute - ASGI applications are asynchronous

callables. While WSGI only allows an application to receive a

single input stream and return a single result before finishing

connection, ASGI lets applications receive and send

asynchronous event messages as long as the connection is

alive.

The protocol server specifies the following interface for client

applications (such as web frameworks): it’s a coroutine

callable (a Python object that implements the __call__

method) that takes three arguments:

'scope' - a dictionary that contains connection scope

information. It’s guaranteed to contain a 'type' key that defines

the connection protocol. It could be 'http', 'websocket', or any

other [4].

'receive' - an awaitable callable, it yields new information

(event) when it becomes available. It could be an HTTP body

or a new WebSocket message sent by the client.

'send' - an awaitable callable, that takes an event as an

argument. Event content is defined by the protocol, it could be

an HTTP response body or WebSocket message.

An important part of ASGI is its compatibility with WSGI.

ASGI servers can host WSGI-based applications by wrapping

them through a translation layer that converts ASGI interface

into WSGI and back.

1.4 WSGI Limitations
While Python is widely used in web development, it has a

limitation that dramatically limits its potential performance -

the Global Interpreter Lock (GIL). The GIL is a part of

CPython's memory management mechanic, it’s a global mutex

that doesn’t allow native threads to execute Python bytecode

simultaneously. CPython is the most popular implementation

of a Python interpreter, directly supported by the Python

foundation. This lock was put in place because CPython's

memory management is not thread-safe. Since GIL prevents

bytecode from running simultaneously in multiple threads on

multiple CPU cores it can lead to performance bottlenecks in

multi-threaded applications, undermining the potential

benefits of parallelism on multi-core processors.

Outside of Python, the most popular design option for web

servers to run multiple requests simultaneously is by having

multiple workers, where most commonly, workers are native

threads that run simultaneously in the same memory space

and allow web servers to handle requests concurrently without

major impact caused by need in interprocess

communication[8]. Another weak spot of WSGI is that its

design is not suited for non-blocking IO calls. While many

WSGI web servers utilize non-blocking IO internally (see

uWSGI), generally, WSGI design prohibits applications from

yielding control to the web server while they await for non-

blocking operations to finish. Thus, it is usually impossible to

handle other requests in the same worker while the application

waits for non-blocking API calls to complete. It could be

mitigated by using Gevent, which patches IO calls and

replaces them with non-blocking versions. It comes with a

cost, since Gevent can’t patch all of the IO calls, especially

made in unsupported packages, additionally, not many WSGI

servers support Gevent. With the GIL in place and given

WSGI's constraints, the most popular option to support

running multiple requests simultaneously is to run web servers

with multiple processes, which is significantly more resource-

expensive than running them using threads.

ASGI solves this issue by utilizing Python coroutines and

allowing its implementations & applications to take advantage

of advanced features such as non-blocking IO. By using a

non-blocking API, web servers can handle hundreds or

thousands of simultaneous connections/requests, which is

challenging for WSGI-based applications. The very design of

ASGI forces developers to utilize coroutines.

1.5 Objective

Currently there are many implementations of ASGI protocol

servers, 3 most popular (according to their rating on

Github.com) are:

uvicorn - the most widely used ASGI web server, currently

supports only the HTTP/1.1 and WebSockets protocols[5].

daphne - is one of the first ASGI implementations. It was

developed for the Django project, specifically for Django

channels.

hypercorn - ASGI web server, that supports HTTP/1, HTTP/2

and WebSockets (over HTTP/1 and HTTP/2) protocols.

Each web server evaluated in this research fully supports the

ASGI protocol and offers integration capabilities with ASGI

web applications. Presently, there exists an absence of

definitive guidance for developers regarding the selection

among these distinct ASGI implementations. This study is

designed to methodically investigate the differences among

the three principal ASGI servers—focusing on a

comprehensive evaluation employing quantitative

performance metrics alongside qualitative feature analysis.

The aim is to equip software engineers, software architects,

and solution architects with definitive guidelines delineating

the advantages and limitations inherent in each option. By

elucidating the strengths and weaknesses of each server, this

study intends to aid in the selection of the most suitable server

for specific applications, thereby enhancing the efficiency,

reliability, and overall user experience in web application

development.

2. RELATED LITERATURE
The topic of measuring software performance, and

specifically web servers, is well studied. For example,

Radhakrishnan and John [9] researched a difference between

serving static and dynamic data by web servers in a controlled

environment. In their 2011 work, Abbas and Kumar study the

performance of Web Servers as perceived by clients. They

focused on 2 scenarios: when there is no data flow between

Web Server and client, and when there is a data flow from

web server to client [10].

Ehrlich, Hariharan, Reeser and Mei (2001) proposed an end-

to-end performance model for Web-servers in distributing

computing and predictions produced by the model matched

the performance measured in the test environment.

International Journal of Science and Engineering Applications

Volume 13-Issue 03, 30 - 35, 2024, ISSN:- 2319 - 7560

DOI:10.7753/IJSEA1303.1007

www.ijsea.com 32

Additionally, Kunda, Chihana and Sinyinda managed to

compare popular web servers, including Apache, Nginx and

IIS. They came to the conclusion that Nginx outperforms most

web servers in many metrics, including CPU utilization,

response time and memory usage. [11]

It’s worth mentioning that this study should be viewed in the

context of development using Python language. There are

multiple valuable researches that focus on performance issues

in Python, such as work by Ziogas, Schneider, Ben-Nun,

Calotoiu, Matteis, Licht, Lavarini and Hoefler. They present a

workflow, that both keeps Python’s high productivity and

achieves portable performance across different

architectures.[12]

3. METHODOLOGY
One of the critical criteria for web server ranking is their

performance rating. Performance depends on many attributes,

most importantly on the implementation details of the web

servers in question. A performance comparison will be

performed by creating an ASGI-compatible application with a

set of endpoints. Some of these endpoints will behave

similarly to a regular HTTP-based application, including

making asynchronous calls to the database, authenticating

users, and generating a JSON response to be returned by the

web server.

Figure. 1 Test endpoint that authenticates user, utilizes database and

returns JSON response

There are also two endpoints that return a static plain text

response. One of them returns a response with a body size of

22 bytes, and the other returns a response with a body size of

430 kb. Both endpoints are useful for comparing the "clean"

performance of the web servers – one not influenced by

possible side effects of having a DB connection – and how

well these servers can act as static servers.

Testing will be conducted using a performance load testing

tool called "locust," configured to run 6 worker processes that

perform simultaneous calls to the defined endpoints. The

target metrics for testing include requests per second (RPS)

and memory consumption. The requests per second metric is

provided by locust, while memory consumption is tracked

using a Python script that collects the memory footprint of all

the processes belonging to the web server. Choosing requests

per second (RPS) and memory consumption as the primary

metrics for comparing ASGI implementations is grounded in

their direct relevance to web server performance and

scalability in real-world applications.

RPS is a direct indicator of a server's ability to manage

incoming traffic. High RPS values suggest that the server can

handle a larger number of simultaneous requests, making it

suitable for high-traffic applications. From the end-users

perspective, high RPS often means faster response times,

which leads to better user experience.

Memory consumption measures how much RAM a server

uses under various loads. It’s crucial to make sure that

memory is used efficiently, as it’s a major factor in

maintaining system stability and ensuring that applications

can run without exhausting memory resources.

All tests were performed on a MacBook Pro 2019 with a 2.6

GHz 6-Core Intel Core i7 CPU and 16 GB RAM. Versions of

software used in these tests are: Hypercorn - 0.16.0, Uvicorn -

0.27.0.post1 and daphne - 4.0.0.

Regarding the different worker classes supported by

Hypercorn, separate tests have been performed, and the

default configuration of Hypercorn (running with asyncio)

shows the same results as uvloop-based workers and much

better results than trio-based workers.

The comparative analysis of supported protocols and built-in

scalability is a critical factor in the evaluation of ASGI server

implementations, often surpassing raw performance metrics in

importance. The reason for this prioritization originates from

the fact that the ability of a server to support a wide range of

protocols, such as HTTP/2 and WebSocket can be pivotal for

the development and deployment of modern, real-time web

applications. These protocols facilitate efficient, bi-directional

communication between clients and servers, enabling the

creation of highly interactive and responsive user experiences.

Furthermore, built-in scalability mechanisms, including the

support for multiple workers and the ability to seamlessly

integrate with load balancers, are essential for applications

that must scale in response to varying load. Such mechanisms

ensure that an application can maintain high performance and

availability, even under significant traffic by distributing the

load across multiple instances or processes. Given above, this

work includes comparison of supported protocols and

scalability mechanics.

Another important metric discussed in this study is license

limitations of each ASGI server. License can define when

usage of the project is allowed or prohibited, therefore an

analysis and comparison of licenses is included.

4. EXPERIMENT

4.1 Comparing static endpoints

performance
In order to test the case when a server serves static data, two

endpoints were implemented. The ―GET /api/longbody‖

endpoint returns a plain text body of 430 kilobytes in size, and

the ―GET /api/shortbody‖ endpoint returns a plain text body

of 22 bytes in size. This configuration allows us to test ASGI

implementations in different scenarios.

International Journal of Science and Engineering Applications

Volume 13-Issue 03, 30 - 35, 2024, ISSN:- 2319 - 7560

DOI:10.7753/IJSEA1303.1007

www.ijsea.com 33

Table 1. ASGI servers performance metrics for “GET

/api/longbody” endpoint

Name Requests per

second

Memory (RSS)

consumption

MB

uvicorn 2460 80,8

daphne 1039 110,5

hypercorn 2021 116,5

Table 2. ASGI servers performance metrics for “GET

/api/longbody” endpoint

Name Requests per

second

Memory (RSS)

consumption

MB

uvicorn 4253 79,4

daphne 3073 126,7

hypercorn 3112 112,8

From the data presented in these tables, it's clear that the

performance of the servers degrades when returning larger

response bodies, although this does not significantly impact

memory consumption.

In scenarios involving the serving of short responses, Uvicorn

distinguishes itself by outperforming its closest competitor by

36% in terms of the number of requests served per second.

Hypercorn and Daphne exhibit comparable performance when

managing small data loads, yet there is a twofold difference in

their request handling capabilities when dealing with larger

data volumes. Regarding memory usage, Uvicorn consistently

shows the lowest memory consumption in both scenarios,

whereas Daphne and Hypercorn demonstrate similar levels of

memory utilization.

4.2 Comparing close-to-real-life

performance

Table 2. ASGI servers performance metrics during test

imitating close-to-real-life flow

Name Requests per

second

Memory (RSS)

consumption

MB

uvicorn 1511 77,6

daphne 1258 108,7

hypercorn 1230 109,4

Figure. 2 Test endpoint that authenticates user, utilizes database and
returns JSON response

Upon a detailed analysis of the performance metrics, it is clear

that Uvicorn, Daphne, and Hypercorn display remarkably

similar performance profiles when subjected to tests that

closely mimic real-world conditions. Although Uvicorn is

approximately 20% faster than both Hypercorn and Daphne,

this advantage, when converted into absolute numbers, seems

to be relatively minor.

Further review reveals Uvicorn has demonstrated significantly

lower memory consumption in all of the tested scenarios.This

efficiency in resource usage can be particularly advantageous

in environments where memory resources are limited or when

running multiple applications simultaneously, offering

potential cost savings and enhanced application scalability.

Along with exceptional performance, memory usage profile of

Uvicorn only contributes to its performance excellence and

makes it a compelling choice for developers seeking an

optimal balance between speed and resource management in

their ASGI applications.

4.3 Comparing supported protocols

While Uvicorn shows exceptional performance, it has a very

limited number of supported protocols. At this moment

Uvicorn only supports HTTP 1.1 and Websockets.

On the other hand, Daphne is capable of handling HTTP,

HTTP2, and WebSocket protocols. Daphne's support for

HTTP2 makes it distinct from Uvicorn - HTTP2 improves

performance of web applications by using TCP connections

more efficiently. This makes Daphne better at support of

modern web development practices. Daphne is also a part of

the Django ecosystem, which is a great advantage for

developers planning to use that framework due to its native

integration with Django tools.

Compared to its competitors, Hypercorn has the broadest

protocol support, which includes HTTP/1, HTTP/2 and

WebSocket. It’s also worth highlighting that Hypercorn

supports QUIC - an emerging standard designed by Google

with the purpose of making the web faster by reducing

connection establishment time and improving congestion

control[13]. Additionally, Hypercorn boasts support for

HTTP/3 through plugins, which allows it to provide better

performance in high-latency networks, such as mobile

networks.[14]. This makes Hypercorn a solid choice for

projects that prioritize long life-time, since it’s already

prepared to handle next-generation internet protocols.

International Journal of Science and Engineering Applications

Volume 13-Issue 03, 30 - 35, 2024, ISSN:- 2319 - 7560

DOI:10.7753/IJSEA1303.1007

www.ijsea.com 34

4.4 Licenses

Project license is a very important metric, since it defines

when and how a project could actually be used. Uvicorn and

Daphne are licensed under the BSD-3-Clause license. This

BSD license is known for its permissiveness, it allows almost

unrestricted freedom to use, modify and distribute licensed

software. It only requires that all copies of the licensed

software include the original copyright notice and a list of

conditions. BSD-3-Clause also prohibits the use of the names

of the project authors and contributors to promote products

created using this software without prior written

permission[6].This makes Uvicorn & Daphne attractive

options for both commercial and open-source projects,

offering flexibility for developers and protection for

contributors.

Hypercorn follows the MIT license - another highly

permissive free software license. Just like the BSD license,

the MIT license allows the software to be used, copied,

modified, published, distributed, and/or sold freely. The only

significant condition of the MIT license is that all copies of

the software must include the original copyright notice and

permission notice[7]. The simplicity and permissiveness of

the MIT license encourages the widespread use of Hypercorn

in both open-source and proprietary projects, facilitating

innovation and collaboration.By comparing all three ASGI-

implementations, it’s safe to conclude that there’s no major

difference between them in terms of licensing and each of

them could be used safely and freely in applications.

4.5 Comparing scalability options
In other programming languages, most of the web servers are

scaled by running more OS threads, but because of CPython’s

multithreading constraint, this is not a viable option. ASGI’s

design promotes web server implementations to use

asynchronous I/O operations, which allows handling multiple

connections concurrently in a single thread. Given this, if the

server doesn’t handle the workload, we’re left with process-

based scaling through the utilization of worker processes.

Uvicorn and Hypercorn both provide built-in support for

worker processes, which allows developers to spread the

workload across multiple CPU cores and achieve near-linear

scalability, limited mostly by the number of CPU cores

available.

In contrast, Daphne does not include this multi-worker

support as a native feature. It may appear as a limitation;

however, there’s still a way to scale the Daphne web server.

By utilizing a load balancer - a software distributing network

requests among multiple nodes - Daphne could handle

requests simultaneously in separate processes. It requires

additional setup, which is unnecessary for Uvicorn and

Hypercorn, but it also introduces the potential for advanced

traffic management strategies.

To conclude, Uvicorn and Hypercorn both provide built-in

options to scale servers using worker processes, while Daphne

doesn’t, although it’s not impossible to scale Daphne too.

5. CONCLUSIONS

In conclusion, this article offers a comprehensive analysis of

ASGI server implementations. Daphne, Hypercorn, and

Uvicorn were evaluated in terms of performance, supported

protocols, and scalability options. Performance evaluation was

conducted through a detailed study of their performance in

various real-life scenarios, including serving static data and

simulating real-life API endpoints that perform database

queries for each incoming request.

It was demonstrated that Uvicorn has superior performance,

low resource consumption, and provides a scaling mechanism,

which makes it a great choice for high-load scenarios,

although it lacks protocol support.

Hypercorn and Daphne, while demonstrating similar

performance metrics, have significant differences in other

dimensions. Hypercorn comes with support for advanced

protocols like QUIC, which makes it a superior option by this

criterion. While its overall performance is similar to

Daphne’s, Hypercorn offers support for scaling by spawning

additional worker processes, which puts it at an advantage

over Daphne.

Daphne itself is a great choice for Django projects - it was

created primarily to be an application server for Django,

specifically for Django Channels. It has excellent

compatibility with Django and provides integration with the

Django CLI.

In terms of licenses, no significant differences were found

between these three ASGI implementations.

Developers should choose ASGI servers for their projects

based on the specific needs of the projects. This study

provides a great explanation of the capabilities and limitations

of each ASGI server, which should guide software engineers

in their search for the most suitable solution.

6. REFERENCES
[1] PEP 333 – Python Web Server Gateway Interface V1.0 |

peps.python.org. (n.d.). https://peps.python.org/pep-

0333/

[2] PEP 492 – Coroutines with async and await syntax |

peps.python.org. (n.d.). https://peps.python.org/pep-0492

[3] Introduction — ASGI 3.0 documentation. (n.d.).

https://asgi.readthedocs.io/en/latest/introduction.html

[4] ASGI (Asynchronous Server Gateway Interface)

Specification — ASGI 3.0 documentation. (n.d.).

https://asgi.readthedocs.io/en/latest/specs/main.html#spe

cification-details

[5] Encode. (n.d.). GitHub - encode/uvicorn: An ASGI web

server, for Python. GitHub.

https://github.com/encode/uvicorn

[6] The 3-Clause BSD license. (2023, June 15). Open Source

Initiative. https://opensource.org/license/bsd-3-clause

[7] MIT. (n.d.). https://www.mit.edu/~amini/LICENSE.md

[8] Menascé, D. A. (2003). Web server software

architectures. IEEE Internet Computing, 7(6), 78-81.

https://doi.org/10.1109/MIC.2003.1250588

[9] Radhakrishnan, R., & John, L. K. (1999). A performance

study of modern web server applications. In P. Amestoy,

International Journal of Science and Engineering Applications

Volume 13-Issue 03, 30 - 35, 2024, ISSN:- 2319 - 7560

DOI:10.7753/IJSEA1303.1007

www.ijsea.com 35

et al. (Eds.), Euro-Par’99 Parallel Processing (Lecture

Notes in Computer Science, vol. 1685). Springer, Berlin,

Heidelberg. https://doi.org/10.1007/3-540-48311-X_29

[10] Abbas, A.M., Kumar, R. (2011). A Client Perceived

Performance Evaluation of Web Servers. In: Abraham,

A., Lloret Mauri, J., Buford, J.F., Suzuki, J., Thampi,

S.M. (eds) Advances in Computing and

Communications. ACC 2011. Communications in

Computer and Information Science, vol 191. Springer,

Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-

22714-1_32

[11] Kunda, D., Chihana, S., & Sinyinda, M. (2017). Web

Server Performance of Apache and Nginx: A Systematic

Literature Review. Computer Engineering and Intelligent

Systems, 8, 43-52.

[12] Ziogas, A., Schneider, T., Ben-Nun, T., Calotoiu, A.,

Matteis, T., Licht, J., Lavarini, L., & Hoefler, T. (2021).

Productivity, Portability, Performance: Data-Centric

Python. SC21: International Conference for High

Performance Computing, Networking, Storage and

Analysis, 1-15. https://doi.org/10.1145/1122445.1122456

[13] Shreedhar, Tanya & Panda, Rohit & Podanev, Sergey &

Bajpai, Vaibhav. (2021). Evaluating QUIC Performance

over Web, Cloud Storage and Video Workloads. IEEE

Transactions on Network and Service Management. PP.

1-1. 10.1109/TNSM.2021.3134562

[14] Perna, Gianluca & Trevisan, Martino & Giordano,

Danilo & Drago, Idilio. (2022). A first look at HTTP/3

adoption and performance. Computer Communications.

187. 10.1016/j.comcom.2022.02.005.

https://doi.org/10.1007/3-540-48311-X_29
https://doi.org/10.1007/978-3-642-22714-1_32
https://doi.org/10.1007/978-3-642-22714-1_32
https://doi.org/10.1145/1122445.1122456

