
International Journal of Science and Engineering Applications

Volume 13-Issue 07, 48 - 51, 2024, ISSN:- 2319 - 7560

DOI:10.7753/IJSEA1307.1013

www.ijsea.com 48

Comparative Functional and Performance Analysis

of Apache Cordova and Android UI Development Tools

Anton Novikau

 Head of Mobile Development

Talaera, 28 Liberty Street, 6th Floor

 New York, USA

Abstract: mobile app usage is at an all-time high. According to some data, users spend an average of 2 hours and 20 minutes a day

interacting with a mobile application. For the savvy business owner, this is a great opportunity to get in front of clients with

entertaining, useful, high-quality applications. Given the wide range of available devices and operating systems on the market, it is not

surprising that entrepreneurs and companies looking to enter the mobile app market are interested in creating apps that function on any

device.

Since cross-platform development takes a long time and requires different knowledge (Swift/iOS or Java/Kotlin), cross-platform

solutions have been implemented over the years. These include Unity, Ionic, Cordova and React Native. These solutions are ideal for

developing and running applications on two platforms simultaneously.

In this article, we will see how to use Apache Cordova in the Android development environment compared to native tools.

Keywords: android programming, cross-platform efficiency, mobile development tests, apache cordova, java, kotlin.

1. INTRODUCTION

1.1 Apache Cordova
Mobile app development is rapidly gaining popularity, and

nowadays, smartphone apps are often created before websites.

With the improvement in mobile technology, developers now

have access to a vast arsenal of app development tools tailored

to a variety of usage scenarios.

Apache Cordova opens up new possibilities for mobile app

developers, especially when working with the Android platform

compared to traditional native tools. The main advantage of

Cordova lies in its ability to simplify development across

platforms, allowing the same code base to be used to create

applications on different platforms, which significantly reduces

development time and cost [3].

Apache Cordova is a robust open-source platform that enables

developers to create cross-platform applications using widely

adopted web technologies such as HTML5, CSS3, and

JavaScript. A key feature of Cordova is its ability to transform

standard web code into a format compatible with mobile

devices. This transformation is achieved by providing access to

device-specific functionalities, such as the camera or file

system, through specialized Application Programming

Interfaces (APIs).

Cordova-based applications are hybrid in nature, blending the

elements of both web and mobile applications. They are

packaged and distributed as native applications through app

stores, while still maintaining a core web-based architecture.

This hybrid model allows developers to leverage their existing

web development skills to create mobile applications.

Beyond mobile platforms, Cordova also facilitates the

development of desktop applications for Windows and macOS.

This capability is achieved using web technologies akin to

those employed by the Electron framework, thus extending the

versatility of Cordova to desktop environments.

Despite its advantages, utilizing Cordova requires a strategic

approach to tool selection and additional effort to optimize user

interactions. This is crucial to ensure that the performance and

user experience of Cordova-based applications meet the

standards expected of native applications.

A significant feature of Cordova is its plugin architecture,

which allows access to local device functions. Plugins offer

JavaScript APIs that interface with native components,

enabling developers to interact with device features directly

from their web code. Developing with Cordova involves

creating custom plugins and ensuring the appropriate Software

Development Kits (SDKs) for the target platforms are pre-

installed. Once set up, these plugins can be invoked through

JavaScript to integrate native functionalities seamlessly into the

web view.

Cordova presents an effective solution for developers aiming to

extend their web development expertise to mobile and desktop

application development. However, the successful

implementation of Cordova projects hinges on careful planning

and the proficient use of its plugin system to harness native

device capabilities.

1.2 Native development
When high performance is a paramount requirement, native

development remains the superior choice for application

development. Native applications exploit the full capabilities of

specific operating systems and device hardware, resulting in

optimized performance and responsiveness. This is particularly

critical in scenarios involving intensive data processing or

complex graphics rendering, where frameworks like Apache

Cordova might encounter performance bottlenecks and latency

issues [4].

Native development environments, such as Android's View

system and Jetpack Compose, provide direct and efficient

access to system APIs. This direct access facilitates the creation

of applications with superior performance and deeper

integration with the underlying operating system.

The Android View system, a mature framework, employs XML

for interface design and Java or Kotlin for application logic.

This traditional approach is well-supported by a large developer

community, making it a reliable and robust choice for many

projects. The strong community support and extensive

documentation available for Android View contribute to its

stability and reliability, particularly in complex applications

International Journal of Science and Engineering Applications

Volume 13-Issue 07, 48 - 51, 2024, ISSN:- 2319 - 7560

DOI:10.7753/IJSEA1307.1013

www.ijsea.com 49

requiring fine-grained control over the user interface and

system interactions.

Jetpack Compose introduces a modern, declarative paradigm

for user interface (UI) development. By utilizing Kotlin, it

allows developers to construct UIs with more concise and

expressive code. This declarative approach simplifies the

development process, reduces boilerplate code, and enhances

the maintainability of the application. Jetpack Compose's

streamlined workflow not only accelerates development but

also facilitates easier updates and modifications, which are

crucial for maintaining long-term application quality [5].

In summary, while Apache Cordova is a viable option for many

applications, especially those leveraging web technologies,

native development tools like Android View and Jetpack

Compose offer unparalleled performance and integration

capabilities. These tools are essential for creating high-

performance applications that demand rigorous interaction with

the operating system and hardware resources.

2. METHODOLOGY
The aim of this research is to compare the capabilities of

Apache Cordova and the Android Software Development Kit

(SDK), focusing on both performance and functionality. This

comparison seeks to highlight the strengths and limitations of

each platform in real-world application development scenarios.

To evaluate performance, two identical applications were

developed: one as a native Android application using the

Jetpack Compose UI library, and the other as a Cordova-based

application built with HTML, CSS, and JavaScript, compiled

through Apache Cordova. Both applications were designed to

render large datasets with asynchronous loading, ensuring that

the user interface operations were carefully synchronized to

maintain consistency between the two.

Performance testing involved a detailed and methodical

approach using Android Studio's profiling tools. The

applications were deployed on a Samsung Galaxy S21 mobile

phone. The testing scenario included interactions that simulated

typical user activities, such as browsing through extensive data

lists and performing standard user actions. During these

interactions, CPU resource utilization was meticulously

monitored and recorded using Android Studio's built-in

profiling features.

The recorded data provided a comprehensive view of CPU

usage, capturing how each application managed system

resources under similar operational conditions. This allowed for

a direct comparison of their performance characteristics. The

data collected were then subjected to a detailed analysis to

identify trends and differences in CPU consumption between

the two platforms. The analysis was complemented by

graphical representations that visually depicted the CPU usage

for both applications, facilitating a clear and comparative

understanding of their performance profiles.

In addition to performance evaluation, this research includes a

functional comparison between Apache Cordova and the

Android Software Development Kit (SDK). The objective is to

assess how each platform supports essential application

functionalities and to understand the extent to which they

enable or limit specific capabilities.

For the functional comparison, we developed two versions of a

sample application. One was created as a native Android

application using the Jetpack Compose UI framework, while

the other was a Cordova application built with HTML, CSS,

and JavaScript. Both applications were designed to perform the

following tasks:

● Accessing device hardware features such as the

camera and GPS.

● Managing local and remote data storage.

● Integrating with various external APIs.

● Handling user authentication and security features.

● Supporting offline functionality and synchronization.

The choice of these functionalities was guided by their

common use in modern mobile applications, providing a robust

basis for comparison.

The functional capabilities of both applications were evaluated

on a Samsung Galaxy S21. The evaluation involved a series of

tests designed to explore how each platform handles the

aforementioned functionality. Results are evaluated using

following metrics: complexity of working with device API,

performance, platform independence, development complexity

and development cost.

Each functionality was meticulously documented, noting the

implementation process, any challenges encountered, and the

overall user experience. Special attention was given to the

following aspects:

● Ease of Development: How straightforward and

developer-friendly the implementation process was

on each platform.

● User Experience: The quality and responsiveness of

the user experience, including any differences in how

users interact with and perceive the application

features.

● Platform Limitations: Any significant limitations or

constraints imposed by either platform that affected

the implementation or performance of the features.

The findings were systematically compared to highlight the

strengths and weaknesses of Apache Cordova and the Android

SDK. This comprehensive functional comparison aimed to

provide actionable insights for developers choosing between

these platforms for their mobile application projects.

3. EXPERIMENTAL RESULT

Figure 1 - Functional comparison between Apache Cordova

and Android SDK

The functional comparison reveals that the choice between

Apache Cordova and native development tools is significantly

influenced by specific project requirements, especially when

considering the trade-offs between performance, cost, and

development flexibility. Apache Cordova excels in several

functional areas:

● Development Cost: Cordova reduces costs by

allowing developers to use existing web technologies

(HTML, CSS, and JavaScript), streamlining the

process of creating cross-platform applications.

● Platform Independence: Cordova's ability to compile

code for multiple platforms from a single codebase

offers significant advantages in terms of deployment

across different operating systems.

International Journal of Science and Engineering Applications

Volume 13-Issue 07, 48 - 51, 2024, ISSN:- 2319 - 7560

DOI:10.7753/IJSEA1307.1013

www.ijsea.com 50

● Complexity of Development: The simplicity and

familiarity of web technologies make Cordova a less

complex solution for developers, particularly those

already proficient in these technologies.

Conversely, the Android SDK, with its native development

tools, stands out in terms of:

● Device API Access: Native tools provide direct and

efficient access to device-specific APIs, allowing

deeper integration and use of hardware features.

● Rich Functionality: Native development frameworks

like Jetpack Compose offer robust support for

complex user interfaces and extensive platform-

specific functionalities.

These functional differences are illustrated in Figure 1, which

demonstrates the comparative strengths of Apache Cordova and

the Android SDK based on the conducted experiment.

Figure 2 - performance comparison between Apache Cordova

and native tools

The performance evaluation of the native Android application

developed using the Android SDK and the Apache Cordova

application revealed significant disparities favoring the native

approach. The native application consistently outperformed the

Cordova application in key performance metrics, highlighting

its superior efficiency and responsiveness.

One of the most striking differences observed was in CPU

resource utilization. The native Android application, benefiting

from more straightforward access to the system's hardware and

operating system APIs, managed to execute tasks with

significantly lower CPU usage. This efficiency is largely due to

the absence of additional abstraction layers, which are inherent

in the Cordova framework. Cordova's reliance on web

technologies (HTML, CSS, and JavaScript) introduces an extra

layer that interprets and compiles these technologies into a

format executable on mobile devices. This process inherently

consumes more CPU resources.

In terms of user interface (UI) performance, the native Android

application demonstrated superior responsiveness and fluidity.

This was particularly evident during tasks involving complex

UI rendering and asynchronous data loading. The native

application maintained smooth interactions and quick response

times, attributes critical for delivering a high-quality user

experience.

Conversely, the Cordova application, due to its hybrid nature,

struggled with latency issues during intensive UI operations.

The additional processing overhead required to render web-

based components within a native container resulted in

noticeable lags and slower UI updates. This performance lag is

especially problematic in applications that require real-time

data processing and interactive graphics, where even slight

delays can detract from user satisfaction.

Figure 2 graph illustrating the performance comparison

between the two approaches further underscores these findings.

It vividly shows that the native Android application, developed

using the Android SDK, consistently achieves better

performance metrics across all tested scenarios. This includes

lower CPU usage, faster UI rendering, and more efficient

handling of complex tasks

The results of this performance comparison unequivocally

suggest that for projects where high performance is crucial, the

Android SDK is the superior choice over Apache Cordova.

Native development provides unparalleled efficiency,

responsiveness, and capability to exploit the full potential of

device hardware and system resources. Apache Cordova, while

beneficial for its cross-platform development ease and cost

efficiency, cannot match the performance levels achievable

through native development tools. Therefore, for applications

demanding top-notch performance and minimal latency,

especially those involving intensive data processing or intricate

graphics, native development with the Android SDK is the

recommended path.

4. CONCLUSION
Based on the experiment and analysis of the results, we can

conclude that an application written using native development

tools was less resource-intensive than a similar application

developed using Cordova. However, in 2024, Apache Cordova

continues to be an excellent choice for mobile application

development, effectively linking web technologies with mobile

platforms. The platform provides developers with convenient

tools for cross-platform development, including code

reusability, easy access to device functionality, and active

community support. Cordova makes it easy to customize

applications for different platforms to meet the needs of a wide

range of users and remain competitive in the mobile

development market.

Apache Cordova is particularly suited for projects where you

need to quickly develop and launch applications across multiple

platforms with limited financial resources, and where deep

integration with operating systems and high performance are

not key requirements. In contrast, native apps offer greater

stability and speed by better utilizing built-in device features

such as camera, geolocation, and accelerometer. This

optimization makes native apps the ideal choice for tasks where

maximum responsiveness and performance are critical.

Each of these approaches has advantages and disadvantages.

Apache Cordova is ideal for projects requiring rapid

development and multi-platform support, but its use can lead to

performance compromises and limited access to native features.

On the other hand, Android View and Jetpack Compose

provide more powerful capabilities for building high-

performance applications, but require more in-depth knowledge

of specialized technologies and languages [6].

Ultimately, the choice between Apache Cordova and native

tools will depend on the specifics of the project, the resources

and time available, and the skill level of the developers. It is

important to comprehensively evaluate project requirements

and resources to make an informed decision regarding

technologies for mobile application development.

International Journal of Science and Engineering Applications

Volume 13-Issue 07, 48 - 51, 2024, ISSN:- 2319 - 7560

DOI:10.7753/IJSEA1307.1013

www.ijsea.com 51

5. REFERENCES
[1] Giacomo Balli - Technology Advisor. "A Comprehensive

Comparison of Flutter, React Native, and Cordova." Big

Balli, 2023. URL: https://bigballi.com/blog/flutter-vs-

react-native-vs-cordova (date of reference: 21.05.2024).

[2] Apache Cordova - The Official Website [Electronic

resource]. – Mode of access: https://cordova.apache.org/,

free. - Extracted from the screen. - date of reference:

24.04.2024.

[3] Android Developers [Electronic resource]. – Mode of

access: https://developer.android.com/, free. - Extracted

from the screen. - date of reference: 24.04.2024.

[4] Appsmith. "Apache Cordova vs. Native Android

Development: What You Should Know" [Electronic

resource]. – Mode of access:

https://community.appsmith.com/solution/create-android-

app, free. - Extracted from the screen. - date of reference:

24.04.2024.

[5] Clockwise Software. "Cordova vs React Native:

Frameworks Performance Comparison." Clockwise

Software, 2023. URL:

https://clockwise.software/blog/cordova-vs-react-native-

frameworks-performance-comparison/ (дата обращения:

21.05.2024).

[6] Mobile App Development. "Apache Cordova vs. Native

Android: Which One Should You Use?" [Electronic

resource]. – Mode of access:

https://enlear.academy/cordova-vs-react-native-for-

mobile-development-what-to-choose-in-2022-

ddc91143f7f4, free. - Extracted from the screen. - date of

reference: 24.04.2024.

[7] 100apps. "The Pros and Cons of Using Apache Cordova

for Mobile Development" [Electronic resource]. – Mode

of access: https://www.trustradius.com/products/apache-

cordova/reviews?qs=pros-and-cons, free. - Extracted

from the screen. - date of reference: 24.04.2024.

https://cordova.apache.org/
https://developer.android.com/
https://community.appsmith.com/solution/create-android-app
https://community.appsmith.com/solution/create-android-app
https://enlear.academy/cordova-vs-react-native-for-mobile-development-what-to-choose-in-2022-ddc91143f7f4
https://enlear.academy/cordova-vs-react-native-for-mobile-development-what-to-choose-in-2022-ddc91143f7f4
https://enlear.academy/cordova-vs-react-native-for-mobile-development-what-to-choose-in-2022-ddc91143f7f4
https://www.trustradius.com/products/apache-cordova/reviews?qs=pros-and-cons
https://www.trustradius.com/products/apache-cordova/reviews?qs=pros-and-cons

