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Abstract: Lung cancer continues to be one of the most lethal cancers globally, with early and accurate diagnosis being pivotal for 

improving patient outcomes. This study investigates the effectiveness of three DenseNet architectures namely DenseNet121, 

DenseNet169, and DenseNet201 in the classification of lung cancer using histopathologic images from the LC25000 dataset, with a 

specific focus on 15,000 lung images. Comprehensive evaluations were conducted to compare the performance of these models. The 

results reveal that DenseNet201 achieves superior performance with an accuracy of 99.23%, surpassing DenseNet169 and 

DenseNet121. This high level of accuracy underscores the potential of DenseNet201 for integration into clinical workflows, offering a 

robust tool for the early detection and diagnosis of lung cancer. Our findings suggest that deeper DenseNet architectures are 

particularly well-suited for this task, providing a significant advancement in the use of deep learning for medical image analysis. 
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1. INTRODUCTION 
Lung cancer remains a leading cause of cancer-related 

mortality worldwide, accounting for approximately 18% of all 

cancer deaths. The primary risk factor is tobacco smoking, 

contributing to the majority of cases. Despite advancements in 

treatment, lung cancer prognosis remains poor due to late-

stage diagnosis. Early detection is critical for improving 

survival rates and treatment outcomes (Hochhegger et al., 

2022; Hatuwal & Thapa, 2020). Histopathologic examination 

is a crucial method for diagnosing and classifying lung cancer. 

Traditionally, this process relies on pathologists manually 

examining tissue slides under a microscope, which is both 

time-consuming and subject to variability. Digital pathology 

and artificial intelligence (AI), particularly deep learning, 

have the potential to revolutionize this field by automating 

image analysis and providing consistent and accurate results 

(Gao et al., 2021; Šarić et al., 2019). 

Deep learning, especially convolutional neural networks 

(CNNs), has shown exceptional performance in image 

classification tasks. CNNs automatically learn and extract 

features from raw images, making them ideal for complex 

pattern recognition. In medical imaging, deep learning models 

can enhance diagnostic accuracy and reduce the workload of 

pathologists. Studies have demonstrated the potential of deep 

learning in diagnosing various cancers, including lung cancer 

(Goodfellow et al., 2016; LeCun et al., 2015). Esteva et al. 

(2017) successfully applied deep learning to classify skin 

cancer with accuracy comparable to dermatologists. Similarly, 

Wang et al. (2018) developed a CNN model to classify lung 

cancer subtypes from histopathologic images, achieving 

promising results. These models not only provide accurate 

diagnoses but also help identify specific histological patterns 

and molecular markers associated with different lung cancer 

types. 

1.1 DenseNet Architectures 

Densely Connected Convolutional Networks (DenseNet) 

represent a significant advancement in deep learning 

architectures. Introduced by Huang et al. (2017), DenseNet 

connects each layer to every other layer, promoting feature 

reuse and improving gradient flow. This dense connectivity 

addresses the vanishing gradient problem, enabling the 

training of deeper models effectively. DenseNet architectures 

are particularly suited for medical image analysis due to their 

efficient parameter usage and superior performance (Gao et 

al., 2021; Šarić et al., 2019). DenseNet121, DenseNet169, and 

DenseNet201 are variants of this architecture, differing in the 

number of layers. DenseNet121 comprises 121 layers, 

DenseNet169 has 169 layers, and DenseNet201 includes 201 

layers. The increased depth allows these models to capture 

complex features, potentially enhancing classification 

performance. Previous studies have validated the efficacy of 

DenseNet models in medical imaging tasks such as breast 

cancer detection and lung nodule classification (Huang et al., 

2017). 

Detecting lung cancer through histopathologic images 

involves classifying tissue samples to identify malignant cells. 

Traditional methods rely on pathologists' expertise to 

manually interpret these images, which can be time-

consuming and prone to variability. Deep learning models 

offer an automated, standardized approach, reducing 

pathologists' workload and potentially increasing diagnostic 

accuracy (Hatuwal & Thapa, 2020). Several studies have 

explored deep learning for lung cancer detection. Hatuwal and 

Thapa (2020) used a CNN-based method for detecting lung 

cancer in histopathologic images, achieving high accuracy. 

Mohalder et al. (2021) developed a deep learning approach to 

predict lung cancer from histopathologic images, showcasing 

AI's potential. These models accurately classify different lung 

cancer types, including adenocarcinoma, squamous cell 

carcinoma, and small cell lung carcinoma (Günaydin et al., 

2019; Mehmood et al., 2022). 

This study aims to evaluate and compare the performance of 

three DenseNet architectures namely DenseNet121, 

DenseNet169, and DenseNet201 in classifying lung cancer 

from histopathologic images using the LC25000 dataset, 

focusing on 15,000 lung images. The dataset is split into 

training, validation, and test sets to ensure robust evaluation. 

Standard data preprocessing techniques, including resizing, 

normalization, and data augmentation, are applied to enhance 

model performance and generalization. Evaluation metrics 

include accuracy, loss, precision, recall, F1-score, and 

confusion matrices, providing a comprehensive assessment of 
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each model's classification capabilities. By analyzing the 

results, we aim to identify the most effective DenseNet 

architecture for lung cancer detection and discuss its potential 

for clinical application. 

2. LITERATURE SURVEY 
The application of deep learning in medical imaging has 

significantly transformed the field, offering robust tools for 

the automatic analysis and classification of medical images. 

Convolutional neural networks (CNNs), a subset of deep 

learning, have proven particularly effective in extracting 

hierarchical features from raw images, which is essential for 

complex pattern recognition tasks such as disease detection 

and diagnosis. These models have shown superior 

performance in various medical imaging applications, 

including the detection of lung cancer (Gao et al., 2021; Šarić 

et al., 2019). Esteva et al. (2017) successfully applied deep 

learning to classify skin cancer with an accuracy comparable 

to that of dermatologists. Similarly, demonstrated the 

potential of deep learning in predicting mutations from 

histopathology images of lung adenocarcinoma, squamous 

cell carcinoma, and normal lung tissue, highlighting the 

model's ability to provide accurate diagnoses and identify 

specific histological patterns and molecular markers 

associated with different types of lung cancer. 

Densely Connected Convolutional Networks (DenseNet) have 

been a significant advancement in CNN architecture, 

introduced by Huang et al. (2017). DenseNet is characterized 

by its dense connectivity pattern, where each layer receives 

input from all preceding layers and passes its feature maps to 

all subsequent layers. This architecture promotes feature reuse 

and mitigates the vanishing gradient problem, enabling the 

training of very deep networks (Hochhegger et al., 2022). 

DenseNet architectures, such as DenseNet121, DenseNet169, 

and DenseNet201, have been particularly effective in medical 

image analysis. These models differ primarily in the number 

of layers and have been validated in various studies for their 

robustness and high accuracy in complex classification tasks. 

For example, Mehmood et al. (2022) applied DenseNet for 

malignancy detection in lung and colon histopathology 

images, demonstrating its potential for accurate and efficient 

image classification. Lung cancer detection using 

histopathologic images involves classifying tissue samples to 

identify malignant cells. Traditional methods rely heavily on 

the expertise of pathologists, which can lead to variability and 

potential diagnostic errors. Deep learning models offer an 

automated approach, providing consistent and accurate 

classifications (Mohalder et al., 2021, Bushara et al. 2024).  

Several studies have highlighted the potential of deep learning 

in lung cancer detection. Hatuwal and Thapa (2020) used 

CNNs for the classification of lung cancer from 

histopathologic images, achieving high accuracy. These 

models have been effective in distinguishing between various 

types of lung cancer, including adenocarcinoma, squamous 

cell carcinoma, and small cell lung carcinoma. In addition to 

classification, deep learning models have also been used to 

predict molecular subtypes and treatment responses.. 

Comparative studies are crucial for understanding the 

performance of different deep learning architectures. Šarić et 

al. (2019) compared various CNN-based methods for lung 

cancer detection in whole slide histopathology images, 

highlighting the advantages and limitations of each approach. 

Such studies provide valuable benchmarks and guide the 

selection of appropriate models for specific tasks AR et al. 

(2022). 

DenseNet variants, such as DenseNet121, DenseNet169, and 

DenseNet201, have been extensively evaluated in 

comparative studies. These models differ in the number of 

layers and their capacity to learn complex patterns from the 

data. Gao et al. (2021) and Mehmood et al. (2022) have 

shown that deeper DenseNet models generally perform better 

in terms of accuracy and robustness, although they may 

require more computational resources. Recent advancements 

in deep learning techniques have further improved the 

accuracy and efficiency of lung cancer detection. For instance, 

Nazir et al. (2021) discussed the use of self-supervised 

learning techniques for medical imaging data, which have 

been shown to enhance model performance. Similarly, Li et 

al. (2020) developed a framework for automatic lung nodule 

detection using multi-resolution CT screening images, 

demonstrating significant improvements in detection 

accuracy. Moreover, the integration of multimodal data, 

including genomic and clinical data, with imaging data has 

shown promise in providing comprehensive diagnostic 

insights. Studies by Sun et al. (2020) and Xu et al. (2020) 

have explored the use of multi-view and multimodal deep 

learning approaches for lung cancer detection, highlighting 

the potential for more accurate and holistic diagnostic models. 

3. MATERIALS AND METHODS 

3.1 Dataset 
The LC25000 dataset Aitazaz et al. (2023), specifically 

focusing on 15,000 histopathologic images related to lung 

cancer, was utilized for this study. This dataset, which 

includes a diverse array of histopathologic images, serves as a 

robust foundation for training and evaluating deep learning 

models in medical imaging. The lung cancer subset provided 

sufficient data to train and test the performance of various 

DenseNet architectures. The sample images are represented in 

Figure1.    

 

 

 

 

 

 

 

 

 

Figure 1: Sample Images from LC25000 datasets. a) 

Squamous Cell Carcinoma, b) Normal, and c) 

Adenocarcinoma 
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3.2 Data Preprocessing 
To prepare the dataset for training, several preprocessing steps 

were undertaken. The dataset was split into training, 

validation, and test sets to ensure robust model evaluation. 

Each image was resized to 224x224 pixels, a standard input 

size for convolutional neural networks (CNNs). Pixel values 

were normalized to a range of 0 to 1, facilitating faster 

convergence during training. Data augmentation techniques, 

including rotations, flips, and zooms, were applied to the 

training set to enhance model generalization and prevent 

overfitting (Simonyan & Zisserman, 2015; Szegedy et al., 

2015). 

3.3 Model Architectures 

Three DenseNet architectures were evaluated: DenseNet121, 

DenseNet169, and DenseNet201. These architectures differ 

primarily in their depth and number of layers: 

● DenseNet121: This model comprises 121 layers and 

is the shallowest of the three, balancing 

performance and computational efficiency. 

● DenseNet169: With 169 layers, this model offers a 

middle ground between complexity and 

performance. 

● DenseNet201: The deepest model with 201 layers, it 

is designed to capture intricate patterns in the data, 

albeit with increased computational demands. 

Each model was initialized with weights pre-trained on the 

ImageNet dataset, leveraging transfer learning to improve 

performance and reduce training time (Huang et al., 2017; 

Russakovsky et al., 2015. 

Figure 2 shows the structure of the proposed DenseNet model 

for classifying lung cancer. The model starts with an input 

layer that processes images sized 224x224 pixels with three 

color channels (RGB). This input layer is followed by three 

DenseNet blocks, which contain convolutional layers that help 

extract detailed features from the images. After these blocks, a 

Global Average Pooling layer reduces the size of the feature 

maps into a single vector for each map. This vector is then 

passed to a fully connected layer with 4096 units, allowing the 

model to learn complex patterns in the data. A dropout layer 

with a rate of 0.5 is added to prevent overfitting by randomly 

turning off some neurons during training. Finally, the output 

layer uses a softmax function to classify the image into one of 

the lung cancer categories. 

3.4 Training Procedure 
The models were trained using the Adam optimizer, chosen 

for its adaptive learning rate capabilities, making it well-

suited for complex optimization problems. The categorical  

Figure 2: Proposed Densenet Model Architecture for Lung 

Cancer Classification 

crossentropy loss function was employed, appropriate for 

multi-class classification tasks. Training was conducted with a 

batch size of 32 over 50 epochs. Early stopping and model 

checkpointing techniques were used to save the best-

performing model and prevent overfitting, based on validation 

loss (Kingma & Ba, 2015). 

3.5 Evaluation Metrics 

To comprehensively assess the models, the following metrics 

were used: 

● Accuracy: Measures the proportion of correctly 

classified instances. 
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● Precision: The ratio of true positive predictions to 

the total predicted positives, reflecting the model's 

precision in identifying positive cases. 

● Recall: The ratio of true positive predictions to all 

actual positives, indicating the model's sensitivity. 

● F1-score: The harmonic mean of precision and 

recall, providing a balanced measure of the model's 

performance. 

● Confusion Matrix: A detailed performance 

summary showing true positives, true negatives, 

false positives, and false negatives. 

4. RESULTS AND DISCUSSIONS 
In this section, we analyze how well three DenseNet models, 

namely DenseNet121, DenseNet169, and DenseNet201 

performed in classifying lung cancer using the LC 25000 

dataset, which includes 15,000 lung images. We used 

Precision, Recall, F1-Score, and Accuracy to measure how 

accurately each model identified three different classes of 

lung cancer Squamous Cell Carcinoma, Normal, and  

Adenocarcinoma named as Class 1, Class 2, and Class 3 

respectively. These metrics help us understand how well the 

models can distinguish between different types of lung cancer. 

DenseNet models are known for their ability to handle 

complex image data by efficiently using all the information in 

the network, which is especially useful in medical imaging. 

We carefully evaluated each model's performance to see 

which one worked best for lung cancer classification. The 

following discussion compares the results from each model, 

highlighting important findings and insights. This comparison 

helps us determine which DenseNet model is most effective 

for accurate and reliable lung cancer diagnosis, contributing to 

better automated tools for medical professionals. 

 

 

 

 

 

 

 

 

 

Figure 3: Training and Validation Losses of a) DenseNet121, 

b) DenseNet169, and c)DenseNet201 

Figure 3 illustrates the training and validation losses for the 

DenseNet121, DenseNet169, and DenseNet201 models. In 

Figure 3a, DenseNet121 shows a consistent decrease in 

training loss, with minor fluctuations observed in the 

validation loss, indicating effective learning with occasional 

overfitting tendencies. Figure 3b presents DenseNet169, 

where both training and validation losses exhibit a steady 

decline with fewer fluctuations compared to DenseNet121, 

suggesting superior generalization and stability. Figure 3c 

displays DenseNet201, which demonstrates a smooth and 

continuous reduction in both training and validation losses, 

underscoring the model's robust learning capabilities and 

excellent generalization to unseen data.  

 

 

 

 

 

 

 

 

 

 

Figure 4: Training and Validation Accuracy of a) 

DenseNet121, b) DenseNet169, and c) DenseNet201 

Figure 4 depicts the training and validation accuracy for the 

DenseNet121, DenseNet169, and DenseNet201 models. 

Figure 4a shows DenseNet121 achieving high training 

accuracy, accompanied by slight oscillations in validation 

accuracy, indicative of effective learning but some overfitting. 

Figure 4b illustrates DenseNet169, where both training and 

validation accuracies increase steadily, with fewer 

oscillations, reflecting enhanced robustness and generalization 

compared to DenseNet121. 

Figure 4c presents DenseNet201, which exhibits a smooth and 

continuous increase in both training and validation accuracies, 

maintaining stability and demonstrating strong generalization 

capabilities. Collectively, the results indicate that 

DenseNet169 and DenseNet201 outperform DenseNet121 in 

terms of stability and generalization, making them more 

suitable for the lung cancer classification task. Figure 5 

displays the confusion matrices for the DenseNet121, 

DenseNet169, and DenseNet201 models, providing a detailed 

breakdown of their classification performance across three 

classes. Figure 5a for DenseNet121 shows mostly accurate 

predictions but includes some misclassifications, indicating 

areas for improvement in precision and recall. Figure 5b for 
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DenseNet169 highlights improved performance with fewer 

misclassifications, reflecting higher accuracy and better 

generalization. Figure 5c for DenseNet201 demonstrates the 

best classification capabilities, with the highest number of 

correct predictions and the fewest misclassifications among 

the three models, underscoring its robustness and reliability in 

lung cancer classification. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5 : Confusion Matrices of a) DenseNet121, b) 

DenseNet169, and c)DenseNet201 

The comparative analysis of DenseNet121, DenseNet169, and 

DenseNet201 architectures for lung cancer classification 

reveals nuanced performance variations, emphasizing the 

efficacy of DenseNet169. DenseNet169 achieved the highest 

accuracy and F1-scores, particularly excelling in Class 1 and 

Class 3, with precision values of 0.9877 and 0.9911, 

respectively, and recall values of 0.9907 and 0.9882, 

respectively is presented in Table 1.  

    Table 1: Performance Comparison of Three Proposed 

DenseNet Models 

Model Precision Recall F1-Score Accuracy 

DenseNet121 
(Class 1) 

0.9795 0.9765 0.978 0.9838 

DenseNet121 

(Class 2) 
1.0 1.0 1.0 1.0 

DenseNet121 

(Class 3) 
0.9773 0.9802 0.9788 0.9838 

DenseNet169 
(Class 1) 

0.9877 0.9907 0.9892 0.9934 

DenseNet169 

(Class 2) 
0.999 1.0 0.9995 0.9995 

DenseNet169 

(Class 3) 
0.9911 0.9882 0.9897 0.9949 

DenseNet201 
(Class 1) 

0.9867 0.9907 0.9887 0.9931 

DenseNet201 

(Class 2) 
0.999 1.0 0.9995 0.9995 

DenseNet201 

(Class 3) 
0.9911 0.9872 0.9891 0.9947 

 

The marginally superior performance of DenseNet169 

suggests that it effectively balances model complexity and 

capacity to capture intricate data patterns. DenseNet201, 

while comparable, exhibits slightly lower recall in Class 3, 

indicating that additional network depth does not necessarily 

translate to proportional performance gains. DenseNet121, 

though robust, is slightly outperformed by the deeper 

architectures, underscoring the advantage of increased depth 

in specific classification contexts. All three DenseNet 

architectures demonstrate high precision and recall for Class 

2, with values approaching unity, signifying exceptional 

reliability in identifying this class. This near-perfect 

performance highlights the capability of these models to 

handle clearly defined patterns within the dataset. The study’s 

findings advocate for the continued use and exploration of 

DenseNet architectures in medical imaging, particularly for 

tasks requiring high diagnostic accuracy such as lung cancer 

classification. The observed performance metrics underscore 

the potential of DenseNet-based models to enhance clinical 

decision-making, leading to improved diagnostic accuracy 

and patient outcomes through precise and reliable 

classification of histopathological images. 

5. CONCLUSION 
In this study, we evaluated the performance of three DenseNet 

architectures—DenseNet121, DenseNet169, and 

DenseNet201—for lung cancer classification using the LC 

25000 dataset, focusing on 15,000 lung histopathological 

images. The models were assessed using key metrics such as 

Precision, Recall, F1-Score, and Accuracy. Our results 

demonstrate that all three DenseNet models performed 

exceptionally well, with DenseNet169 showing the best 

overall performance, particularly in terms of accuracy and F1-

Score across all classes. DenseNet201 also performed 

comparably, while DenseNet121, although slightly behind the 

other two, still delivered robust classification results. These 

findings underscore the effectiveness of DenseNet 
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architectures in medical image analysis, specifically for lung 

cancer detection.  

Future work can explore integrating advanced data 

augmentation techniques and transfer learning from other 

medical imaging datasets to further enhance model 

performance. Additionally, expanding the dataset and 

investigating other state-of-the-art architectures, such as 

EfficientNet or Vision Transformers, could provide deeper 

insights and improve generalisation 
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