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Abstract: Power transformers are vital in ensuring the reliability of electrical power systems, necessitating accurate fault classification 

for their efficient operation. This research evaluates a novel Transformer Deep Learning model architecture for fault classification 

using dissolved gas analysis (DGA) data, leveraging feature engineering and an over-sampling technique to address high-

dimensionality and class imbalance challenges. The model demonstrated substantial accuracy improvements across datasets of varying 

sizes and preprocessing stages, particularly with SMOTE-enhanced data. These findings underscore the effectiveness of Transformer 

deep learning architectures in advancing the state-of-the-art in fault classification for power transformer systems. 
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1. INTRODUCTION 
Power transformers are critical components in electrical 

power systems, responsible for the efficient transmission and 

distribution of electricity. The reliability of these transformers 

is paramount to ensuring a stable and uninterrupted power 

supply. However, transformers are prone to various types of 

faults, often indicated by the presence of dissolved gases in 

the transformer oil. The accurate classification of these faults 

based on gas concentration levels is crucial for timely 

maintenance and prevention of catastrophic failures. 

Traditional methods for fault diagnosis, such as the Duval 

Triangle method and Key Gas Analysis, have limitations in 

handling the complex, high-dimensional data typically 

encountered in modern power systems. This has led to the 

exploration of advanced machine learning and deep learning 

techniques for more accurate and automated fault 

classification [1]. 

In recent years, Transformer models have gained significant 

attention in various domains, including natural language 

processing and time-series analysis, due to their ability to 

capture long-range dependencies and complex relationships 

within data [2]. The self-attention mechanism, which is 

central to Transformer architectures, enables these models to 

weigh the importance of different input features dynamically, 

making them highly effective in tasks requiring nuanced 

understanding of input data. In the context of power 

transformer fault diagnosis, the application of Transformer 

models is relatively novel. Their potential to handle high-

dimensional data and learn intricate patterns makes them 

promising candidates for improving fault classification 

accuracy, especially when dealing with data that exhibits 

significant variability and noise. 

Recent research in the field of power transformer fault 

diagnosis has begun to explore the use of advanced deep 

learning techniques. For example, Zhi Li et al. [3] proposed a 

fault diagnosis technique based on Long Short-Term Memory 

(LSTM) neural networks combined with dissolved gas 

analysis (DGA). Their study, which analyzed 240 samples, 

demonstrated that the LSTM model achieved superior 

diagnostic accuracy compared to traditional neural networks. 

This underscores the potential of deep learning models to 

improve fault diagnosis in power transformers. Despite these 

advancements, there remains a gap in the application of 

Transformer models specifically for predicting power 

transformer fault types, suggesting a novel direction for future 

research [4]. 

In addition to the challenges posed by high-dimensional data, 

another critical issue in transformer fault diagnosis is the class 

imbalance often present in the data. Certain fault types may 

occur less frequently, leading to a skewed distribution that can 

bias machine learning models towards the more common 

classes. To address this issue, Synthetic Minority Over-

sampling Technique (SMOTE) has been widely adopted as a 

data augmentation strategy. SMOTE generates synthetic 

samples for the minority class by interpolating between 

existing samples, thereby balancing the class distribution and 

enabling the model to learn from a more representative dataset 

[5]. The effectiveness of SMOTE has been demonstrated in 

various domains, including medical diagnosis, fraud 

detection, and power systems, where it has been used to 

enhance the performance of classifiers in imbalanced datasets 

[6,7]. In the power transformer domain, SMOTE, combined 

with feature engineering, can significantly improve the 

model's ability to correctly identify rare but critical fault 

types. 

Several studies have applied Transformer models and 

SMOTE in different domains with positive outcomes. For 

instance, Transformer models have been used in the 

healthcare sector to predict patient outcomes based on time-

series data, demonstrating superior accuracy compared to 

traditional recurrent neural networks (RNNs) [8]. Similarly, 

SMOTE has been successfully employed in fraud detection 

tasks to address the issue of imbalanced datasets, leading to 

more accurate and reliable predictions [6]. Despite these 

successes, there has been limited exploration of these 

techniques in the power transformer fault diagnosis domain. 

This study aims to bridge this gap by evaluating the 

performance of a Transformer-based model on a dataset of 

gas concentrations, with a particular focus on the impact of 

SMOTE and feature engineering on classification accuracy. 
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By leveraging the strengths of Transformer models and 

addressing the challenges of imbalanced datasets through 

SMOTE, this research seeks to advance the state-of-the-art in 

power transformer fault classification. The results presented in 

this paper not only demonstrate the efficacy of these methods 

in this domain but also provide insights into their potential 

application in other critical infrastructure systems where fault 

diagnosis is essential for maintaining operational reliability. 

2. DATASETS 
To implement the proposed deep learning model for 

identifying and classifying faults in transformers, three 

datasets were collected and processed. The small dataset was 

obtained from [9], manually entered in a spreadsheet, and 

saved as a CSV file. This dataset had no missing values and 

was 100% complete. The medium dataset, collected from 

[10], contained several missing values for gas concentrations. 

To ensure data consistency and prevent skewed results, rows 

with missing values were removed before the dataset was 

used in the model. This dataset was also saved as a CSV file. 

Additionally, the large dataset was sourced from [11] and 

combined with data from [10] to create the most extensive 

dataset. To address any skewed distributions and optimize the 

performance of the transformer model, all datasets underwent 

standardization. This process, which transforms data to have a 

zero mean and unit standard deviation, enhances the 

effectiveness of the algorithms. 

2.1 Dataset Overview and Preprocessing 

2.1.1 Small Dataset 
The small dataset comprises 70 samples, each containing six 

key gas concentration features: hydrogen (H2), methane 

(CH4), acetylene (C2H2), ethylene (C2H4), ethane (C2H6), 

and carbon monoxide (CO), all measured in parts per million 

(ppm). Additionally, the dataset includes a target variable 

labeled "Fault," which is categorized into four distinct classes: 

"Thermal," "High Discharge," "Low Discharge," and "No 

Fault". These fault classes represent the specific fault types to 

be predicted. The distribution of these fault classes within the 

dataset is presented in Figure 1.     

 
Figure 1: Fault distribution in small dataset 

2.1.2 Medium Dataset 
The medium dataset initially comprised 151 data points, each 

containing seven gas concentration features: hydrogen (H2), 

methane (CH4), acetylene (C2H2), ethylene (C2H4), ethane 

(C2H6), carbon monoxide (CO), and carbon dioxide (CO2), 

measured in parts per million (ppm), along with a target 

variable labeled "Fault". The fault types in this dataset 

included: 'D1' (Low Energy Discharge), 'D2' (High Energy 

Discharge), 'None' (No fault), 'HThermal' (High Thermal—

thermal faults exceeding 700oC, as determined by equipment 

inspection), 'LThermal' (Low Thermal—thermal faults below 

700oC, as determined by equipment inspection), and 'PD' 

(Partial Discharge). However, 37 data points had missing 

values for these gas features. To prevent these missing values 

from negatively impacting the algorithm’s performance and 

introducing bias, these data points were excluded from the 

dataset. This likely resulted from unrecorded measurements. 

After cleaning, the final dataset consisted of 114 complete 

data points, which were used for subsequent analysis. The 

distribution of fault types is depicted in Figure 2. 

 

Figure 2: Fault distribution in medium dataset 

2.1.3 Large Dataset 
The large dataset originally consisted of 231 data points, each 

containing five gas concentration features: hydrogen (H2), 

methane (CH4), acetylene (C2H2), ethylene (C2H4), ethane 

(C2H6), all measured in parts per million (ppm), along with a 

target variable labeled "Fault." However, 18 data points had 

missing values for these gas features. To ensure the accuracy 

of the algorithm and prevent data bias, these incomplete data 

points were excluded, likely due to unrecorded measurements. 

After this data cleaning process, the final dataset comprised 

213 complete data points, suitable for further analysis. The 

dataset includes nine distinct fault types, as shown in Table 1. 

The distribution of these fault types is depicted in Figure 3. 

Table 1: Faults and number association 

Fault Type Number 

Association 
Partial Discharge 0 

Spark Discharge 1 

Arc Discharge 2 

High -temperature Overheating 3 

Middle -Temperature 

Overheating 

4 

Low -Temperature Overheating 5 

Low/Middle -Temperature 

Overheating 

6 

High Energy Discharge 7 

No Fault 8 
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Figure 3: Fault distribution in large dataset 

2.2 Feature Engineering: Unveiling 

Critical Insights 
To enhance the performance of the transformer deep learning 

model, feature engineering was conducted based on a 

thorough correlation analysis of the gas concentration features 

within each dataset. Since the gas measurements varied across 

the datasets, the features generated through the feature 

engineering process were unique to each case. The correlation 

matrix heat maps revealed varying degrees of correlation 

between the features. Features with strong positive 

correlations and weak negative correlations were used to 

derive new features through ratio calculations. This strategy 

was designed to leverage the inherent relationships between 

gas concentrations while minimizing the influence of features 

with weaker or opposing trends. Specifically, features with 

moderate to high positive correlations (greater than 0.7) and 

weak negative correlations (around -0.1) were selected to 

create these new ratio-based features. Consistent patterns of 

correlations were observed across all three datasets. 

2.2.1 Small Dataset 
In the small dataset, only ratios derived from highly positive 

correlations were identified and utilized to generate additional 

features. Six key correlations were selected to create new 

ratio-based features: 

• H2:C2H6 Ratio: The strong positive correlation (corr = 

0.92) between Hydrogen(H2) and Ethane (C2H6) suggests a 

close relationship in their concentrations under fault 

conditions. This ratio captures and leverages this inherent 

link. 

• H2:CO Ratio: A strong positive correlation (corr = 0.78) 

exists between Hydrogen (H2) and Carbon (CO) indicating 

that a higher H2:CO ratio may reflect similar trends in fault-

related gas emissions. 

• CH4:C2H6 Ratio: The strong positive correlation (corr = 

0.87) between Methane (CH4) and Ethane (C2H6) reflect 

their tendency to vary together, making this ratio a valuable 

feature for distinguishing fault conditions. 

• CH4:CO Ratio: The positive correlation (corr = 0.79) 

between Methane (CH4) and Carbon (CO) suggest that their 

concentrations rise and fall together, potentially offering 

predictive insights through the CH4:CO ration. 

• C2H2:C2H4 Ratio: The strong positive correlation (corr = 

0.79) between Acetylene (C2H2) and Ethylene (C2H4) 

highlights their mutual response to fault conditions, making 

this ratio a meaningful feature for fault classification.  

• C2H6:CO Ratio: The strong positive correlation (corr = 

0.80) between Ethane (C2H6) and Carbon (CO) further 

emphasizes the relationship between these gases, allowing this 

ratio to capture relevant fault-related interactions.  

The correlation heatmap for the small dataset is represented in 

Figure 4. 

 

Figure 4: Correlation heat map of the small dataset 

2.2.2 Medium Dataset 
In the medium dataset, both ratios with high positive 

correlations and those with weak negative correlations were 

identified and used to generate additional features. Five key 

correlations were selected for feature creation: 

• H2:CO2 Ratio: This ratio captures the relative 

concentration of Hydrogen (H2) to Carbon Dioxide (CO2). 

Although the correlation is weakly negative (corr = -0.06), a 

higher H2:CO2 ratio may still be indicative of specific fault 

types. 

• CH4:C2H4 Ratio: The strong positive correlation (corr = 

0.85) between Methane (CH4) and Ethylene (C2H4) 

highlights their potential interdependence during fault 

conditions, making this ratio an informative feature for fault 

prediction. 

• C2H2:CO2 Ratio: Similar to the H2:CO2 ratio, this feature 

(corr = -0.09) represents the relative concentration of 

Acetylene (C2H2) to Carbon Dioxide (CO2). Despite the 

weak negative correlation, this ratio could provide subtle 

insights into fault characteristics. 

• C2H4:C2H6 Ratio: The high positive correlation (corr = 

0.76) between Ethylene (C2H4) and Ethane (C2H6) indicates 

that their concentrations tend to increase or decrease together, 

providing valuable information for the model through the 

C2H4: C2H6 ratio. 

• CO: CO2 Ratio: The positive correlation (corr = 0.70) 

between Carbon Monoxide (CO) and CO2 suggests a co-

dependent behavior of these gases under transformer fault 

conditions, making the CO:CO2 ratio a key feature in the 

dataset. 

The correlation heatmap for the medium dataset is illustrated 

in Figure 5. 
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Figure 5: Correlation heat map of the medium dataset 

2.2.3 Large Dataset 
In the large dataset, only ratios reflecting high positive 

correlations were identified. Three key correlations were 

established to create additional features: 

• CH4:C2H6 Ratio: This ratio represents the relative 

concentration of Methane (CH4) to Ethane (C2H6). The 

strong positive correlation (corr = 0.78) suggests that an 

increased CH4:C2H6 ratio may indicate similar trends in gas 

emissions. 

• CH4:C2H4 Ratio: A strong positive correlation (corr = 

0.87) exists between Methane (CH4) and Ethylene (C2H4), 

indicating a potential connection in their concentrations 

during fault conditions. This ratio serves to leverage the 

inherent relationship within the dataset. 

• C2H4:C2H6 Ratio: The very high positive correlation (corr 

= 0.92) between Ethylene (C2H4) and Ethane (C2H6) 

signifies that their concentrations tend to rise and fall in 

tandem under specific fault conditions, providing valuable 

insights for the model. 

The correlation heatmap for the large dataset is presented in 

Figure 6.  

 

2.3 Data Augmentation and Balancing with 

SMOTE 

2.3.1 Synthetic Minority Oversampling Technique 

(SMOTE) 

The Synthetic Minority Over-Sampling Technique (SMOTE) 

is a widely used approach for addressing class imbalance in 

machine learning tasks. Proposed by Chawla et al. [12] in 

their paper "SMOTE: Synthetic Minority Over-sampling 

Technique," SMOTE generates synthetic examples of the 

minority class to balance the distribution of classes in the 

training dataset. This method aims to enhance the model's 

ability to learn from underrepresented classes by providing a 

more even representation of all classes [12]. 

SMOTE operates by creating synthetic samples in the feature 

space rather than simply duplicating existing samples. It 

selects samples that are close in the feature space and  

generates new samples along the line segments connecting 

them. This process effectively increases the density of the 

minority class and improves the model's performance in 

detecting and classifying underrepresented fault types [12]. 

 

Figure 6: Correlation heat map of the large dataset 

The application of SMOTE spans various domains, including 

medical diagnosis, fraud detection, and industrial equipment 

fault prediction. In medical diagnostics, SMOTE has been 

used to improve the detection of rare diseases and anomalies 

by generating synthetic patient data [13]. In fraud detection, 

SMOTE helps in identifying fraudulent transactions in 

imbalanced financial datasets [14]. For industrial applications, 

such as power transformer fault prediction, SMOTE addresses 

the challenge of class imbalance by enhancing the model's 

ability to detect and predict rare but critical fault types [15]. 

By incorporating SMOTE, predictive models can achieve 

better performance and more reliable predictions in scenarios 

where class imbalance is a significant issue. 

 

2.3.2 Data Augmentation with SMOTE 
Across all datasets, instances of class imbalance were 

observed. Such imbalances can lead to inconsistencies during 

the training of the proposed algorithm, as unbalanced data 

may result in inaccurate predictions due to the dominance of 

oversampled classes. Each of the three datasets contained 

minority classes that could contribute to misclassifications. To 

address these imbalances, the Synthetic Minority 

Oversampling Technique (SMOTE) was employed. This 

technique was applied to all three datasets. Figures 7, 8, and 9 

illustrate the distributions of fault types following the 

application of SMOTE, which equalized the number of 

samples for each fault type, resulting in a balanced 

representation across all classes. 
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Figure 7: Fault distribution in small dataset after Feature 

engineering & SMOTE 

 

 
 

Figure 8: Fault distribution in medium dataset after SMOTE 

 

 

Figure 9: Fault distribution in large dataset after SMOTE 

 

 

3. DEEP LEARNING TRANSFORMER 

MODEL  

Transformer models represent a significant advancement in 

the field of deep learning, particularly in handling sequence-

to-sequence tasks. Introduced by Vaswani et al. [2] in their 

seminal paper "Attention Is All You Need," transformers 

utilize a self-attention mechanism that enables the model to 

weigh the importance of different elements in the input 

sequence, irrespective of their position. This mechanism is 

crucial for capturing long-range dependencies and contextual 

relationships within data [2]. 

The architecture of transformers consists of encoder and 

decoder layers, each equipped with multi-head self-attention 

and feed-forward neural networks. This design allows 

transformers to process sequences in parallel, significantly 

improving efficiency compared to previous sequential models 

like RNNs and LSTMs [2]. Transformers have achieved state-

of-the-art results in various domains, including natural 

language processing (NLP) and computer vision. In NLP, 

models like BERT (Bidirectional Encoder Representations 

from Transformers) and GPT (Generative Pre-trained 

Transformer) have set new benchmarks in tasks such as text 

classification, translation, and summarization [16][17]. 

In the context of time-series and predictive maintenance, 

transformers offer promising capabilities. Their ability to 

handle complex temporal dependencies makes them suitable 

for analyzing sensor data and predicting faults in industrial 

systems. Recent research has demonstrated the effectiveness 

of transformers in fault detection and prediction for various 

types of equipment, including power transformers [18]. The 

versatility of transformer model (shown in Figure 10) in 

capturing intricate patterns and relationships in data positions 

them as a powerful tool for improving fault prediction 

accuracy. 

 

 

Figure 10: Flowchart of the Deep Learning Transformer 

model 

 

The Transformer model is designed to process input features 

representing gas concentrations, which are first subjected to 

an embedding layer to map the input data into a higher-

dimensional space. This process enhances the model's ability 

to capture the intricate relationships between different gas 

concentrations. The embedded inputs are then supplemented 

with positional encoding, which is crucial for retaining the 

order and structure of the input sequence, despite the inherent 

lack of sequential information in the input data. Figure 10 

how the flowchart of how the deep learning model works.  

The core of our model is the Transformer encoder, which 

leverages multi-head self-attention mechanisms and 

feedforward neural networks to extract deep, context-aware 

features from the input data. The use of multiple encoder 

layers allows the model to learn hierarchical representations 

of the input, which is essential for accurate fault classification.  
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To further refine the extracted features, an average pooling 

operation is applied, reducing the dimensionality and focusing  

on the most relevant information. The pooled features are then 

passed through a fully connected layer, which serves as the 

final classifier, outputting the predicted fault type. 

To ensure the robustness of our model, we employed several 

data preprocessing steps, including the use of Synthetic 

Minority Over-sampling Technique (SMOTE) to address class 

imbalance and the removal of missing values to improve data 

quality. The dataset was then split into training and testing 

sets, with the training data used to optimize the model's 

parameters through backpropagation. The model was trained 

for 200 epochs, with performance monitored through accuracy 

metrics. The results demonstrate that the Transformer model 

is capable of achieving significant improvements in fault 

classification accuracy, surpassing traditional machine 

learning approaches and bringing us closer to our goal of 80% 

or more accuracy. 

The methodology described above was systematically applied 

to three different datasets of varying sizes to evaluate the 

scalability and robustness of the Transformer model. Each 

dataset was processed through multiple stages, including 

feature engineering and synthetic data generation using 

SMOTE, to assess the model's performance across diverse 

data configurations. The following table 2 summarizes the 

number of rows and columns for each dataset across the 

different stages: 

Table 2: Dataset sizes 

 

In the small dataset, the original data consisted of 70 rows and 

7 columns, representing the concentrations of dissolved gases. 

After applying feature engineering techniques, the dataset was 

expanded to 66 rows and 14 columns, where additional 

features were derived to capture more complex patterns. 

Applying SMOTE to this engineered dataset resulted in a 

larger dataset of 136 rows and 14 columns, addressing the 

class imbalance issue and providing a more comprehensive 

training set for the Transformer model. 

The medium-sized dataset began with 114 rows and 8 

columns. Feature engineering increased the dimensionality to 

13 columns while maintaining the same number of rows. 

After applying SMOTE, the dataset expanded to 270 rows, 

further enriching the training data. Similarly, the large dataset, 

which initially had 231 rows and 6 columns, was transformed 

through feature engineering into a dataset with 213 rows and 9 

columns. SMOTE application resulted in an expanded dataset 

with 465 rows and 9 columns, providing ample data for model 

training. 

By following this methodology across datasets of varying 

sizes, we were able to demonstrate the Transformer model's 

adaptability and consistency in handling different data 

volumes. The results from these experiments validate the 

model's potential for generalizing across different datasets, 

making it a robust tool for fault classification in power 

transformers. This approach also highlights the importance of 

data preprocessing and feature engineering in enhancing the 

performance of deep learning models. 

4. IMPLEMENTATION OF 

TRANSFORMER MODEL FOR FAULT 

PREDICTION IN TRANSFORMERS 

The Transformer model was evaluated on three datasets of 

varying sizes, each subjected to different stages of data 

processing: original, feature-engineered, and SMOTE-

enhanced feature engineering. 

The following algorithm delineates the systematic approach 

employed for the classification and prediction of fault types in 

power transformers utilizing a Transformer-based deep 

learning framework.   

4.1 Algorithm: 

Step 1: Data Preparation 

- Three datasets—categorized as small, medium, and 

large—were curated, as elaborated in Section 2.1 

(Data Overview and Preprocessing).   

- These datasets were selected to assess the 

scalability, robustness, and efficacy of the proposed 

Transformer model.   

Step 2: Data Preprocessing 

- The raw datasets were subjected to preprocessing to 

eliminate missing values (NAs) and to incorporate 

additional derived features through feature 

engineering, as detailed in Sections 2.2 and 2.3.   

- Feature engineering was undertaken to enhance the 

representational capacity of the input data and to 

facilitate the extraction of meaningful patterns for 

fault classification.   

Step 3: Data Partitioning 

- The preprocessed datasets were partitioned into 

training (80%) and testing (20%) subsets to 

facilitate model training and performance 

evaluation.   

- This stratified division ensures the reliability and 

generalizability of the proposed methodology.   

Step 4: Data Standardization 

- Standardization was applied post-class imbalance 

resolution (via SMOTE) and feature engineering to 

normalize the datasets.   

- Each feature was transformed to have a mean of 0 

and a standard deviation of 1. This ensures the 

mitigation of scale disparity across features, 

accelerates model convergence, and enhances 

predictive performance.   

 

Dataset size Stage Dimensions 

Small 

Original (70, 7) 

Feature Engineering 

 

(66, 14) 

SMOTE + Feature Engineering (136, 14) 

Medium 

Original (114, 8) 

Feature Engineering (114, 13) 

SMOTE + Feature Engineering (270, 13) 

Large 

Original (231, 6) 

Feature Engineering (213, 9) 

SMOTE + Feature Engineering (465, 9) 
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Step 5: Model Architecture and Training 

The standardized data was fed into a Transformer-based 

architecture comprising the following sequential components:   

i. Embedding Layer: Encodes input features into 

dense vector representations to facilitate model 

comprehension.   

ii. Positional Encoding: Introduces positional context 

into the embeddings, ensuring the model captures 

the inherent ordering of features.   

iii. Transformer Encoder: Leverages self-attention 

mechanisms and feed-forward networks to model 

intricate dependencies and relationships within 

high-dimensional data.   

iv. Average Pooling Layer: Aggregates feature 

representations to create a compact latent space 

representation.   

v. Fully Connected Layer: Maps the latent 

representation to a high-level feature space for fault 

classification.   

vi. Output Layer: Outputs a probability distribution 

over fault types, with dimensionality corresponding 

to the number of fault categories.   

Step 6: Model Evaluation and Performance Comparison 

- The performance of the Transformer-based model 

was assessed across three dataset variants:   

o Original dataset.   

o Feature-engineered dataset.   

o SMOTE-enhanced dataset.   

- Accuracy metrics were computed for each dataset 

variant, and comparative analysis was conducted to 

evaluate the impact of feature engineering and data 

augmentation (via SMOTE) on classification 

efficacy.   

This implementation underscores the viability of Transformer-

based deep learning architectures in addressing the challenges 

of high-dimensional and imbalanced datasets for fault 

diagnosis in power transformers. The proposed methodology 

advances the state-of-the-art in fault classification by 

leveraging feature engineering, SMOTE, and self-attention 

mechanisms to achieve superior predictive accuracy.    

The results, summarized in Table 3, reveal significant 

variations in accuracy across the different datasets and 

preprocessing stages, reflecting the impact of data preparation 

and augmentation on model performance. 

For the small dataset, the Transformer model achieved perfect 

accuracy (100%) on both the original and feature-engineered 

versions, indicating that the model was able to learn the 

relationships within the gas concentrations effectively without 

requiring additional synthetic data. However, when SMOTE 

was applied to address class imbalance, the accuracy dropped 

to 71.43%. This decrease suggests that while SMOTE 

successfully increased the dataset's size, it may have 

introduced noise or less representative samples that hindered 

the model's performance. 

In the medium dataset, the original dataset yielded a moderate 

accuracy of 60.87%, which improved slightly to 65.22% after 

feature engineering. This improvement highlights the benefits 

of generating additional features to capture more complex 

relationships in the data. The most significant gain was 

observed when SMOTE was applied, with the accuracy 

jumping to 88.89%. This substantial improvement 

demonstrates the effectiveness of SMOTE in enhancing the 

training set's representativeness, allowing the Transformer 

model to generalize better to unseen data. 

Table 3: Accuracies after Implementation of Transformer 

model for Fault Prediction in Transformers 

The large dataset exhibited similar trends, with the original 

dataset yielding an accuracy of 61.7%, which increased to 

74.42% after feature engineering. This result underscores the 

importance of feature engineering in improving model 

performance, particularly when dealing with larger datasets. 

The application of SMOTE further boosted the accuracy to 

89.25%, highlighting the importance of addressing class 

imbalance in large datasets. The hyperparameter adjustments 

made for the SMOTE-enhanced dataset, particularly the 

reduction in the number of heads and layers, likely 

contributed to the model's ability to handle the more complex 

and diverse training data effectively. 

The choice of hyperparameters played a crucial role in the 

performance of the Transformer model across the different 

datasets and processing stages. For the small and medium 

datasets, consistent hyperparameters were applied, including a 

hidden dimension of 64, feed-forward dimension of 128, four 

attention heads, four layers, and a dropout rate of 0.1. The 

input dimension and number of classes were adjusted 

according to the dataset's specific characteristics, with the 

input dimension ranging from 6 to 13 and the number of 

classes from 4 to 6. The large dataset required more careful 

tuning, particularly after applying SMOTE. For the original 

large dataset, four attention heads and four layers were 

maintained, but for the feature-engineered and SMOTE-

enhanced datasets, the number of heads was reduced to 2, and 

the number of layers to 3, reflecting the need for a more 

streamlined architecture to handle the increased data 

complexity. Across all datasets, a learning rate of 0.001 and 

200 training epochs were used, ensuring sufficient training 

time for convergence without overfitting. 

Overall, these results underscore the importance of data 

preprocessing and augmentation in enhancing the 

performance of deep learning models. The consistent 

improvements observed after applying feature engineering 

Dataset Size Stage %Accuracy 

Small 

Original 100 

Feature Engineering 100 

SMOTE + Feature Engineering 71.43 

Medium 

Original 60.87 

Feature Engineering 65.22 

SMOTE + Feature Engineering 88.89 

Large 

Original 61.7 

Feature Engineering 74.42 

SMOTE + Feature Engineering 89.25 
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and SMOTE across all dataset sizes validate the robustness 

and adaptability of the Transformer model in classifying 

power transformer fault types. The model's performance on 

the large SMOTE-enhanced dataset indicates its potential for 

deployment in real-world scenarios where data diversity and 

class imbalance are common challenges. 

5. CONCLUSION  

This study demonstrates the effectiveness of using a 

Transformer-based model for classifying power transformer 

fault types based on gas concentration levels. By evaluating 

the model across three datasets of varying sizes and 

processing stages—original, feature-engineered, and SMOTE-

enhanced—it was evident that both feature engineering and 

data augmentation significantly contributed to improved 

model accuracy. The model performed exceptionally well on 

the small dataset, achieving 100% accuracy in the original and 

feature-engineered stages, though the accuracy dropped to 

71.43% after applying SMOTE. The medium and large 

datasets also showed substantial improvements with the 

application of SMOTE, with accuracies of 88.89% and 

89.25%, respectively, indicating the model's potential to 

generalize well across diverse and imbalanced data. 

The results underscore the importance of comprehensive data 

preprocessing, careful hyperparameter tuning, and the use of 

advanced deep learning techniques like Transformers in 

tackling complex classification tasks in the power systems 

domain. The hyperparameter adjustments made for the large 

dataset, particularly in reducing the number of attention heads 

and layers after applying SMOTE, highlight the necessity of 

optimizing model architecture to handle increased data 

complexity effectively. 

However, the reliance on synthetic data generated through 

SMOTE raises concerns about the model's real-world 

applicability. While SMOTE helps to balance the dataset and 

improve model performance, it can introduce synthetic 

patterns that do not entirely represent real-world scenarios. 

Therefore, future work should focus on gathering more real-

time data that captures various gas concentration levels and 

associated fault types in power transformers. This would 

enable a more robust evaluation of the Transformer model's 

performance in practical settings and ensure that the 

predictions are not overly influenced by synthetic data 

patterns. Expanding the dataset with real-world measurements 

will provide a more reliable basis for deploying this model in 

operational environments, ultimately enhancing its utility in 

preventing power transformer failures. 
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