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Abstract : Software defect prediction is an important part of software engineering, providing high-quality and trustworthy 

software systems. Conventional defect prediction models use handcrafted features and traditional machine learning 

methods, which tend to have poor generalization, low accuracy, and high computational cost. These shortcomings prevent 

the effective detection of defective software modules, resulting in high maintenance costs and low software reliability. In 

response to such issues, the present work proposes a Firefly Algorithm (FA)-optimized AI model of Deep Neural Networks 

for software defect prediction. The DNN model picks up subtle software metrics patterns proficiently, with the addition of 

FA augmenting the tuning of hyperparameters to bring optimal model efficiency. The experimental assessment illustrates 

that the suggested DNN-FA model excels compared to conventional methods by reaching an accuracy of 98.5%, 

computational effectiveness of 97%, parameter sensitivity of 96.8%, convergence rate of 98%, and an error decrease of 

95.2%. The prime strengths of the model suggested lie in its high defect detection precision, better computation speed, and 

good generalizability to a wide range of software projects. Combining the capabilities of nature-inspired optimization and 

deep learning, the model proves to be cost-effective and high-performing as a solution to predict software defects with 

minimal need for manual interference and maximizing the reliability of the software. This work's discovery enhances AI-

supported software quality checking through a better approach to prediction in contemporary software development 

systems. 
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1 INTRODUCTION 

The fast improvements in technology over the past decade 

have brought about a significant upheaval in the software 

development and testing scene. As software systems grow 

increasingly complex, dynamic, and distributed, 

traditional software testing methods become less efficient 

and more challenging(Gattupalli 2022). In the digital age, 

dependable software is essential, particularly for big 

distributed systems that enable critical applications in 

finance, healthcare, transportation, and communication 

(Dondapati 2020). 

Because of their limited scalability or high processing 

requirements, traditional methods of achieving these 

objectives usually fall short (Allur 2021). Particularly in 

large-scale AI applications, the approach combining 

NOMA, UVFA, and DGNNs has drawbacks such as high 

computational cost, implementation issues, and scalability 

constraints(Ganesan et al. 2024). Real-time performance 

can also be impacted by problems including reliance on 

high-quality data, trade-offs in power allocation, ongoing 

training costs, and possible error accumulation. (Jadon, 

Vantara, and Clara 2019). Artificial intelligence (AI)-

based technologies are dynamic and not static; they are 

more than a collection of algorithms that repeatedly do the 

same tasks to learn. Although this is not always the case 

and takes time to develop, there are dangers and 

advantages, especially for the clinical component (B. R. 

Gudivaka 2021). For this reason, robust surveillance 

systems ought to be established as soon as possible to both 

monitor and combat the tumors concealed by those AI 

techniques (Chetlapalli 2023). 

Artificial Intelligence (AI) boosts software development 

but maximizing AI models poses a problem in the 

presence of challenges such as slow convergence and 

overfitting. Deep Neural Networks (DNNs) possess good 

learning strength but efficient hyperparameter adjustment 

is essential. This work combines the Firefly Algorithm 

(FA) and DNNs for maximizing model performance by 

enhancing the choice of hyperparameters and the 

extraction of features. This approach blends FA to get high 

accuracy, less computational expense, and flexibility, 

thereby improving AI software development. 

Primary Contribution 

• On the particular question, the approach opted 

for optimization using FA of DNN, either, 

additionally, to achieve a better trend. 

• FA boosts hyperparameter tuning in such a way 

that the accuracy rate increases to 98.5 percent, 

quicker convergence, and error reduction take 

place. 

• This software can be employed to support 

system developers who can reduce their 

intervention during runtime once the model is 

established.  
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2 LITERATURE SURVEY 

This paper particularized the evolutionary techniques, 

hybrids, and adaptive strategies on the basis of imbibition 

of many twisted genetic algorithms and different sets of 

technical permutations(Allur 2019). This study offers 

three cutting-edge solutions cloud-based infrastructures, 

automated error injections, and XML scenario-based 

testing toward addressing the identified problem 

(Nagarajan 2021). One of the drawbacks is additional 

computational overhead and resource utilization that real-

time adaptive testing, fault injection through automation, 

and AI integration need. This can also be equated to higher 

cloud infrastructure expenditure costs and higher 

complexity in managing big fault libraries. (Deevi 2022). 

This approach suggests the inclusion of real-time 

performance monitoring, regulatory compliance, and 

checks for consistency of performances for ensuring the 

safety and efficacy of AI SaMDs over time (R. L. 

Gudivaka et al. 2024.) The planned AI SaMD method 

could be difficult to implement under real-world 

conditions due to the challenges posed by continuous 

clinical follow-up and data integration. Variability in data 

access and different regulatory rules across jurisdictions 

may present operational hurdles. (Gollavilli et al. 2023). 

The publication reports that a mixture of CBMs and H-

MANs is used in the experimental design to create a 

system that is modeled in terms of open options and 

associative recall effectiveness (Basani 2024). It should be 

noted that the framework would need more optimization 

in real-time adaptive learning to match scalability 

challenges posed by larger and more complex 

environments. (Alagarsundaram 2024). Development of 

algorithms for specialized fields, e.g., robotics and 

autonomous vehicles, may involve additional adaptations 

for high-stakes application (Jadon 2020). The new 

paradigm suggested in this treatise endorses adaptive AI 

towards software development through neurosymbolics 

tensor networks, metaheuristic optimization, and social 

influence-based reinforcement learning (Jadon 2021). 

Further enhancements incorporating new elements from 

neural-symbolic and meta-heuristic areas are a must for 

ensuring flexibility. Real-world alpha tests on the 

applicability of autonomous systems and smart 

infrastructure should also inform its real-world worth in 

critical scenarios (B. R. Gudivaka 2022). SRC, ELM, and 

RFE are used in this research to furnish a high-

performance machine learning pipeline for feature 

selection, rapid training, and effective representation of 

data. (Jadon 2018). 

This could be a disadvantage of the model considering its 

inflexibility to varying data conditions requiring 

transformations as transfer or reinforcement learning for 

making it more flexible. But due to the use of multimodal 

data and hybrid ensemble strategies, it is expected to 

generalize better across applications (Bobba 2021). 

(Bobba 2021). This research mainly aims to improve 

classification accuracy, boost model robustness in multi-

dimensional data annotation, and develop a PSO-tuned 

QDA parameter optimization to make efficient AI 

software applications(Jadon 2019). Combining PSO with 

QDA results in better accuracy coupled with simplified 

computations, but it complicates and makes the tuning of 

model parameters very difficult. Also, high computation 

cost may not be in favor of real-time AI applications with 

this mixture (Vasamsetty and Kaur 2021). 

3 PROBLEM STATEMENT 

Traditionally, software defect prediction models are based 

on human-engineered features and machine learning 

algorithms, which have been proven to be too 

generalizable, not precise, and very complex (Jadon 

2018). Such dimensions worsen the defect-detection 

process, thereby increasing maintenance cost and 

decreasing reliability(Deevi 2022). In addition, deep 

learning models of defect prediction are difficult to 

optimize due to issues like slow convergence and 

overfitting (B. R. Gudivaka 2022). To tackle these 

challenges, this study proposes a FA optimize (DNN for 

improved hyperparameter optimization, enhanced defect 

detection accuracy, computation speed, and model 

stability as a whole. 

4 PROPOSED METHODOLOGY 

JMI Software Detect Prediction Dataset-based Software 

Defect Prediction model is depicted in Figure 1. It consists 

of data pre-processing (handling missing values, 

normalization, removal of duplicates), correlation 

analysis, training data splitting. A DNN is trained using 

the FA, Adam optimizer, Binary Cross-Entropy Loss for 

prediction. 

 

Figure 1: Methodology Flow Diagram 

4.1 Data Collection 

To conduct the study, this work utilizes the JM1 Software 

Defect Prediction dataset (“Software Defect Prediction” 

2019) under the PROMISE repository for the training and 

validation of deep models. The data contains software 

measurements collected from an example NASA software 

project and therefore is a viable option for using in defect 

prediction experiments. The features are some numeric 

measures like LOC, CC, Halstead measures, and 

maintainability index, which are used as input features to 

the DNN. There is one example for each software module 

in the data, either a defective one (1) or a non-defective 

one (0). For good-quality data, pre-processing tasks like 

missing value management, normalization of numerical 

attributes, and removing duplicate records are performed 

before feeding the data into the model. This structured 

dataset is utilized for training an enhanced AI-driven 

defect prediction system employing the FA for 

performance enhancement and hyperparameter tuning. 
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4.2 Data Pre-Processing 

Data pre-processing is a crucial step to ensure the quality 

and effectiveness of the AI-driven SDM model. The raw 

JM1 SDP dataset contains some numerical software 

measures that must be converted before inputting into the 

DNN. Pre-processing entails the following steps. 

4.2.1 Handling Missing  

 Mean/Median imputation is used to fill in 

missing values for numerical attributes with the mean or 

median of that specific column. Mean imputation suits 

normally distributed data, and its calculation is given in 

Eqn. (1) 

𝑋new =
∑  𝑛

𝑖=1  𝑋𝑖

𝑛
   (1) 

4.2.2 Data Normalization and Scaling 

 As the dataset has attributes with different 

ranges, normalization is used to enhance model 

convergence. 

Min-Max Scaling is used to scale values  

between 0 and 1 is given in Eqn. (2): 

  

𝑋scaled =
𝑋−𝑋min

𝑋max−𝑋min

    (2) 

4.3 Feature Selection and Reduction 

 Feature selection and dimensionality reduction 

are essential components in the optimization of the AI-

based software defect prediction model. By removing 

irrelevant or duplicate features, the model becomes more 

efficient, has lower computational cost, and increases 

prediction accuracy. The proposed methodology 

incorporates the following techniques. 

4.3.1 Correlation Analysis for Feature Selection 

 Correlation analysis is also an important feature 

selection step in AI-based software defect prediction, 

which enables us to find redundant or irrelevant features 

that can reduce model performance. The Pearson 

Correlation Coefficient (PCC) is applied to quantify the 

linear correlation between numeric attributes and it is 

calculated as Eqn. (3): 

𝑟 =
∑  (𝑋𝑖−𝑋‾)(𝑌𝑖−𝑌‾)

√∑  (𝑋𝑖−𝑋‾)2√∑  (𝑌𝑖−𝑌‾)2
   (3) 

 A correlation matrix is employed to represent 

relationships between features such that only the most 

significant attributes are preserved to train the Deep 

Neural Network (DNN) model, thus minimizing 

dimensionality, avoiding overfitting, and improving the 

accuracy of defect prediction. 

 

 

4.4 Data Splitting for Training and Testing 

Splitting of data is critical for the training of an AI-based 

software defect prediction model so that there is good 

generalization and overfitting does not occur. The data is 

split into training (70-80%), validation (10-15%), and test 

(10-20%) sets, as software defect datasets tend to be class-

imbalanced, stratified sampling is used to preserve the 

original class ratio. Random shuffling, which eliminates 

order biases before splitting, ensures diversity in training 

before the dataset is split as defined by Eqn. (4): 

𝐷 = 𝐷train ∪ 𝐷val ∪ 𝐷test , 𝐷train ∩ 𝐷val ∩ 𝐷test = ∅     (4) 

4.5 Network Architecture Selection: DNN 

 Following data preprocessing and splitting, 

designing the architecture for the Deep Neural Network 

(DNN) in software defect prediction is the subsequent step 

in the methodology. A feedforward DNN is employed 

because it can learn complex relationships in software 

defect data. The model is comprised of an input layer, 

several hidden layers, and an output layer, where the input 

layer takes in software metrics (e.g., code complexity, 

Halstead metrics), the hidden layers employ fully 

connected neurons with ReLU activation to learn deep 

features, and the output layer employs the sigmoid 

activation function to classify software modules as 

defective (1) or non-defective (0). The model is trained 

with Binary Cross-Entropy Loss, which is calculated as 

Eqn. (5) 

𝐿 = −
1

𝑁
∑  𝑁

𝑖=1 [𝑦𝑖 log(𝑦̂𝑖) + (1 − 𝑦𝑖) log(1 − 𝑦̂𝑖)]       (5) 

where 𝑦𝑖is the true label and 𝑦̂𝑖 is predicted probability for 

increasing training efficiency, adaptive weight update has 

been performed with the help of the Adam optimizer. 

Furthermore, Firefly Algorithm (FA) is utilized to 

optimize hyperparameters like the number of layers 

hidden, neurons in the layer, and learning rate, where 

fireflies modify their position considering brightness 

(fitness), which is considered through the classification 

accuracy of the model. This DNN-FA model optimized 

ensures enhanced defect detection accuracy and software 

prediction robustness. 

4.6 Firefly Algorithm  

 Firefly Algorithm (FA) is utilized for the 

hyperparameters optimization of learning rate, the number 

of hidden layers, and neurons in a layer to increase the 

overall performance of the DNN used for predicting 

software defects. Motivated by fireflies' bioluminescence, 

FA works by optimizing fireflies' positions based on how 

bright they are, i.e., defined as the classification accuracy 

of the model. Attractiveness β of a firefly with increasing 

distance 𝑟 and is given as Eqn. (6): 

   𝛽 = 𝛽0𝑒−𝛾𝑟2
   (6) 

where 𝛽0 is the highest attractiveness, 𝛾 is the absorption 

coefficient of light, and 𝑟 is the distance between two 

fireflies, The travel of a firefly towards a more luminous 

(better-functioning) firefly is described as Eqn. (7): 
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𝑥𝑖
𝑡+1 = 𝑥𝑖

𝑡 + 𝛽(𝑥𝑗
𝑡 − 𝑥𝑖

𝑡) + 𝛼𝜖  (7) 

where 𝑥𝑖  and 𝑥𝑗  are firefly positions, 𝛼 is the 

randomization parameter, and 𝜖 is a uniformly distributed 

random number. Through updating positions iteratively, 

fireflies converge to a best set of hyperparameters that 

enhance the predictive power of the DNN as well as 

maintain strong software defect detection. 

5 RESULTS AND DISCUSSION  

This subsection provides experimental outcomes of the 

software defect prediction model based on AI using DNN 

optimized via Firefly Algorithm (FA). Performance 

metrics are used to analyze the efficacy of the proposed 

scheme based on performance measures, comparison 

study, and stability of the model. 

5.1 Model Performance Evaluation 

To analyze the performance of the DNN-FA model, 

numerous metrics used in standard classification problems 

are employed. 

Accuracy (%) measures the ratio of correctly 

classified instances defined as Eqn. (8). 

 Accuracy =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
× 100  (8) 

Computational Efficiency (%) assesses how well the 

model processes data given as Eqn. (9). 

𝐶𝐸 =
 Processing Speed of Proposed Model 

 Processing Speed of Baseline 
× 100  (9) 

Parameter Sensitivity assesses the impact of 

hyperparameter tuning on model performance 

measured in Eqn. (10). 

𝑃𝑆 =
 Change in Per formance 

 Change in Parameter 
× 100  (10) 

Convergence Rate measures how quickly the model 

reaches optimal performance calculated in Eqn. (11). 

𝐶𝑅 =
 Initial Loss − Final Loss 

 Training Iterations 
× 100  (11) 

Error Reduction is the percentage reduction in 

defined prediction errors defined in Eqn. (12). 

𝐸𝑅 = (
 Error Baseline − Error Proposed 

 Error Baseline 

) × 100  (12) 

F1-Score is the harmonic mean of recall and 

precision for imbalanced datasets, defined in Eqn. 

(13). 

 𝐹1 =
2× Precision × Recall 

 Precision + Recall 
× 100   (13) 

 

 

 

 

Table 1: Metrics for DNN-FA 

Metric DNN-FA Model 

Accuracy (%) 98.5% 

Computational Efficiency 

(%) 
97% 

Parameter Sensitivity (%) 96.8% 

Convergence Rate (%) 98% 

Error Reduction (%) 95.2% 

 

The DNN-FA model demonstrates excellent performance 

in software defect prediction with 98.5% accuracy and 

very high efficiency (97%) and parameter sensitivity 

(96.8%). The model also exhibits a 98% convergence ratio 

and 95.2% reduction in error, with excellent optimization 

and learning stability illustrated in Table 1. 

 

Figure 2: Performance Metrics Bar Chart 

 The bar graph reveals performance measures of the DNN-

FA model that range from a high level of accuracy 

(98.5%) to computation (97%), along with being 

parameter-sensitive (96.8%). The convergence rate is 

reasonable for the model at 98%, ensuring high-speed and 

sound learning. Moreover, the decrease of error (95.2%) 

verifies its proficiency in decreasing predictive errors are 

revealed in Figure 3. 

 

Figure 3: Error Detection Comparison 

The Figure 3 shows error reduction in comparison 

between different methods and shows that DNN-FA 

(95.2%) is higher in result compared to PSO (80%), QDA 
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(81%), and PSO+QDA (89%) (Jadon 2019). DNN-FA has 

maximum error reduction and therefore is its optimal 

optimization. This shows it is optimum for reducing errors 

of all methods. 

5.2 Discussion 

The results confirm that the integration of deep learning 

and the FA can significantly enhance software defect 

prediction performance. The DNN-FA model has better 

defect detection accuracy than traditional techniques. 

Optimization using Firefly Algorithm improves 

hyperparameter tuning, leading to greater efficiency and 

faster convergence. The model is very strongly parameter-

sensitive, making it adaptive to various datasets. The high 

reduction of errors emphasizes the proposed method's 

robustness. These results prove the effectiveness of the 

suggested AI-based approach of SDP, which is a valuable 

tool for enhancing software reliability and quality. 

 

6 CONCLUSION 

The study successfully developed a DL-based SDP model 

with the support of the FA for hyperparameter tuning. 

Experimental outcomes confirm that the proposed DNN-

FA model works very efficiently, and its accuracy is 

98.5%, performance is 97%, sensitivity is 96.8%, 

convergence rate is 98%, and error minimization is 95.2%. 

These outcomes indicate that the DNN-FA model 

outperforms existing approaches for SDP to offer a more 

efficient and dependable defect detection system. 

Additional research will extend to other metaheuristic 

optimization algorithms to further enhance model 

performance and applicability in real-world software 

development environments. 
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