
International Journal of Science and Engineering Applications 

Volume 14-Issue 04, 08 - 17, 2025, ISSN:- 2319 - 7560 

DOI:10.7753/IJSEA1404.1003 

www.ijsea.com     8 

MDA-RepXNet: Multi-Scale Object Detection with Multi-
Dimensional Information 

 
 Shengzhe Liu 

School of Electronic 

Information and Electrical 

Engineering 

Yangtze University 

Jingzhou 434023, China   

 

 

Abstract: Objects of different scales exhibit varied characteristics within images, necessitating network architectures capable of handling 

multi-scale information for optimal performance in complex scenarios. However, ResNet struggles with detecting small or occluded 

objects. In this work, we introduce the Multi-Dimensional Attention- Reparameterized Multi-Branch Network (MDA-RepXNet), a novel 

multi-scale network designed to enhance performance in challenging conditions. MDA-RepXNet employs a Structurally 

Reparameterized Multi-Branch Network (RepXNet) as its backbone, incorporating multi-scale branches to manage different feature 

scales and thus improving small object recognition. Additionally, we propose a Multi-Dimensional Attention (MDA) mechanism to 

enhance feature fusion. This design significantly improves image feature extraction and object detection while maintaining high 

computational efficiency. Experimental results demonstrate that our approach increases the mean Average Precision (mAP) by 3.9% on 

the MS COCO dataset compared to the baseline, underscoring the effectiveness and superiority of the proposed method. 

 

Keywords: Structural reparameterization, Dynamic networks, Multi-scale, Object detection 

 

1. INTRODUCTION 
In recent years, deep learning has achieved significant advances 

in the field of computer vision, especially through the 

application of Convolutional Neural Networks (CNNs). CNNs 

have demonstrated outstanding performance in various visual 

tasks, including image classification [1][2][3], object detection 

[4][5][6][7] and semantic segmentation [8][9][10]. Since the 

introduction of AlexNet [1] in 2012, which revolutionized 

computer vision research by proving that learned features could 

surpass hand-engineered features, the development of CNNs 

has been propelled forward. Following AlexNet, VGGNet [2], 

composed of convolutional layers, ReLU activations, and 

pooling layers forming VGG blocks, employed loops and 

subroutines to streamline the implementation of these repetitive 

structures within modern deep learning architectures. 

Subsequently, ResNet [11] continued the design of 3x3 

convolutional layers from VGGNet, effectively mitigating the 

problem of gradient vanishing in deep network training by 

introducing residual structures. ResNet has since become the 

foundational network for a multitude of research and 

applications. 

With the increasing demands for network performance, a single 

network architecture could no longer satisfy the requirements 

of complex visual tasks. Consequently, researchers have 

proposed various improvement schemes to enhance network 

expressiveness and computational efficiency. For instance, 

ResNeXt  [12] built upon ResNet by constructing residual 

blocks using repeated grouped convolutions, thus providing 

greater flexibility and scalability while maintaining a relatively 

small number of parameters. DenseNet [13] reused features 

through dense connections, DLA [14] achieved efficient 

feature fusion via hierarchical aggregation, and Res2Net [15]  

introduced a multi-scale feature fusion mechanism within 

residual blocks, further enhancing the network’s feature 

representation capabilities. MRMNet [16] optimizes multi-

scale feature extraction and small object information 

representation by introducing multi-scale extension (MSE) and 

contextual feature refinement (CFR) modules while 

maintaining the plug-and-play characteristics of the modules. 

However, these methods use the same network structure for 

both training and inference, leading to reduced overall training 

efficiency. 

This paper proposes a novel structure, RepXNet, as the 

backbone network. To enhance the network’s feature 

representation capabilities during training, we introduce a 

multi-scale feature fusion structure. For inference, a 

reparameterization process converts multi-branch convolutions 

into single-branch convolutions, improving inference 

efficiency (Figure 1). 

Multi-scale backbone networks significantly enhanced the 

expressiveness and robustness of neural networks by 

integrating information from different scales during the feature 

extraction phase. However, relying solely on the multi-scale 

characteristics of the backbone network was insufficient to 

fully capture objects of all scales in an image. In object 

detection tasks, the Feature Pyramid Network (FPN) [17] and 

its variants [18],[19] further extended this multi-scale concept. 

FPN effectively fused features of different scales by 

constructing a bottom-up feature pyramid, enhancing the 

model’s ability to detect multi-scale objects. Additionally, it 

ingeniously combined these features from various levels to 

create a pyramid rich in semantic information, further 

improving detection performance. In recent years, FPN-like 

networks have further developed this concept. Path 

Aggregation Network (PANet) [20] enhanced feature fusion 

through additional pathways and short connections. Feature 

Pyramid Grid (FPG) [21] integrated a feature pyramid network 

with a grid attention mechanism to improve accuracy. Gated 

mechanisms [22] and scale-dynamic convolution kernels [23] 

were introduced, enhancing detection accuracy and model 

robustness in multiple complex scenarios. While these methods 

improved feature representation in the neck network through 

various connections, they overlooked the finer-grained feature 

details at the convolutional kernel level. 
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To address this, we propose a novel method called Multi-

Dimensional Dynamic Feature Pyramid Network (MDFPN), 

which adaptively generates multi-dimensional dynamic 

convolution kernels based on input features at various scales. 

The core idea is to adaptively generate corresponding 

convolution weights from multi-scale features and employ 

MDA to learn convolutional attention across multiple 

dimensions of the kernel space in parallel. These attention types 

are complementary and are sequentially applied to the 

respective convolutional kernels, significantly enhancing the 

feature extraction capability of FPN. 

 

 

Figure 1. Increase units and structural reparameterization:(a) 

The second convolutional layer of the bottleneck block in 

ResNet. (b) The training phase of RepXNet with unit = 4, 

showcasing a multi-branch structure with residual 

connections. (c) The reparameterization inference process of 

RepXNet. 

 
In conclusion, our main contributions include: 

•We introduce RepXNet, a new multi-scale backbone network. 

RepXNet is segmented into distinct units during training, 

employing residual feature methods. In the inference phase, the 

multi-scale branches consolidate into a single convolutional 

structure. This design significantly enhances the network’s 

feature representation capability and improves inference 

efficiency. 

•We present a novel method called MDFPN, designed to 

dynamically generate multi-dimensional convolutional kernels 

based on input features at varying scales. MDFPN utilizes 

Multi-Dimensional Attention (MDA) to learn and apply 

convolutional attention across multiple dimensions 

simultaneously in the kernel. This strategy notably enhances 

the feature extraction capability of the network’s neck 

architecture and improves model performance across diverse 

and complex scenarios. 

•This work proposes the MDA-RepXNet architecture, a fusion 

of RepXNet and MDFPN, as illustrated in Figure 2. We 

showcase the efficacy of this approach in image classification 

and object detection tasks. Our method exhibits a 2.74% 

enhancement in Top-1 accuracy compared to the Baseline in 

image classification. In the downstream task of object detection, 

our method consistently delivers strong performance across 

both one-stage and two-stage detectors. 

2. Related Work 
Modern Convolutional Neural Networks. The development 

of CNNs can be traced back to the proposal of the 

backpropagation algorithm, a pivotal development that 

significantly enhanced the efficiency and feasibility of training 

neural networks. The journey from the seminal LeNet [24] to 

the more sophisticated Deep Belief Networks (DBN) [25] 

marked the gradual emergence of deep learning methodologies. 

In recent developments, Vision Transformer (ViT) [26] has 

harnessed the Transformer model from natural language 

processing [27], marking its foray into image vision processing. 

This paradigm shift has profoundly influenced traditional 

CNNs and catalyzed the development of a range of 

Transformer-based networks for both supervised [28],[29] and 

self-supervised learning [30],[31]. ViT also spurred 

advancements in weakly supervised learning networks, as 

evidenced by KMT-PLL [32], a methodology that tackled 

partial label learning (PLL) challenges through a fusion of K-

means clustering and attention mechanisms. Window Token 

Transformer (WTT) [33] efficiently models long-range 

dependencies using learnable window tokens and the Global–

Local Feedforward Network (GLFFN), while ensuring 

hierarchical information transfer through the Feature 

Inheritance Module (FIM). The emergence of Robust-ResNet 

[34] and ConvNeXt [35] signified a robust response, as these 

models integrated effective components from ViT into CNNs, 

achieving robustness that matched or surpassed Transformer 

models during testing. Therefore, this paper incorporates these 

efficient design elements into our architecture to leverage the 

advantages of ViT while enhancing processing capabilities for 

various tasks. 

Structural Reparameterization. The reparameterization 

method enhances model performance by employing networks 

with diverse structures during the training and inference phases. 

Its fundamental principle lies in utilizing complex model 

architectures during training to augment expressive power and 

optimization effects while simplifying model structures during 

inference to enhance inference speed and reduce computational 

overhead. For instance, ACNet [36] incorporated asymmetric 

convolution blocks (ACB) during training, DBB [37] employed 

multiple different convolution kernels during training, and 

RepVGG [38] introduced additional branches and convolution 

operations during training. However, during the inference 

phase, these architectures were reparameterized into a single 

equivalent convolution operation, reducing computational 

complexity and enhancing inference speed. OREPA [39], on 

the other hand, leveraged a linear scaling layer to optimize 

online blocks more effectively, decomposing convolutions for 

online reparameterization, leading to a substantial reduction in 

training time for reparameterized models. FastViT [40] adopted 

a hybrid visual Transformer architecture, integrating the token 

mixing operator RepMixer, structural reparameterization, and 

large kernel convolutions. This approach eliminated skip 

connections in the network, further enhancing model efficiency. 

This paper adopts structural reparameterization technology, 

employing intricate network structures during training to 

improve model learning capability and transitioning to more 

efficient model structures during inference. This strategy 

significantly boosts model inference speed without 

compromising performance. 

Dynamic Neural Networks. Dynamic neural networks exhibit 

adaptability by adjusting their structure and computational 

pathways based on changes in input data, thus improving 

computational efficiency and demonstrating strong potential in 

model generalization. Introducing the concept of dynamic 

convolution kernel [41] concept enhanced the network’s 

expressive power and adaptability by generating convolutional 

kernels based on input data. DyNet [42] introduced dynamic 

computational graph structures to adjust network structure and 

computational pathways. Dynamic convolution [43] and 

CondConv [44] dynamically adjusted convolutional kernel 

weights by introducing attention mechanisms. Building upon 

this, WeightNet [45] added a set of hierarchical fully connected 
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layers on the attention activation layer, unifying SENet [46] 

and CondConv, simplifying and enhancing the training process. 

DynamicViT [47] proposed a dynamic spatial sparsification 

framework. This framework significantly accelerated visual 

Transformer models by progressively pruning redundant 

tokens and introducing asymmetric computation. KAConv [48] 

embeds the attention mechanism into convolution kernels 

through the AG unit, adaptively adjusting kernel parameters to 

enhance the flexibility and information representation of the 

convolution. Our approach is closely related to dynamic 

convolution, which generates dynamic convolutional kernels 

based on input feature content, more effectively handling 

features of different scales and complexities.

3. Approach 
In this section, we present an overview of the proposed multi-

scale network architecture, MDA-RepXNet. To overcome the 

limitations of traditional methods, we introduce the RepXNet 

module as the backbone network in Sec 3.1. This module 

captures and analyzes features of different scales through a 

multi-scale design during the training phase and re-

parameterizes the original structure during the inference phase. 

This reparameterization allows the network to maintain its 

original performance while achieving faster inference speeds. 

Sec 3.2, we first review dynamic convolution based on 

convolutional kernels, analyzing its advantages and 

disadvantages to design MDA and comparing its computational 

cost with traditional convolution methods. By employing a 

parallel strategy, MDA constructs MDFPN as the detection 

neck network, enabling the learning of multi-dimensional 

attention corresponding to the convolutional kernels at 

different levels of feature maps. This significantly enhances the 

network’s feature representation capability. 

The MDA-RepXNet framework utilizes RepXNet as its 

backbone network and integrates MDFPN as its neck network. 

This architecture effectively handles multi-scale targets while 

maintaining high efficiency and providing superior detection 

performance. In the subsequent sections, we present a series of 

quantitative and qualitative experiments to demonstrate the 

performance of MDA-RepXNet on multi-scale object detection 

tasks, along with analyses to reveal its intrinsic advantages. 

3.1 RepXNet Module 
Patchify Stem Replacement. In computer vision tasks, the 

stem initiates the network by processing input images to create 

effective feature representations. In standard ResNet-style 

architecture, the stem performs spatial downsampling using a 

7×7 convolution layer with a stride of 2, followed by a 3×3 

max-pooling layer. This process generates suitably sized 

feature maps for deeper layers. ViT-style architectures  

downsample more aggressively by dividing the input image 

into non-overlapping p×p patches, projecting each through a 

linear layer. This approach, resembling a convolutional kernel 

operation, enhances the robustness of ViTs. Applying this 

patchify method to CNNs helps bridge the robustness gap 

between CNNs and Transformers, as noted in [49]. To this end, 

we replace the ResNet-style stem with a ViT-style stem. 

Specifically, we utilize a convolution layer with a kernel size 

of 8 and a stride of 8. In stage 2, we set the stride of the first 

block to 1 to maintain the overall stride, ensuring that the 

224×224 input image generates a 7×7 feature map before 

reaching the final global pooling layer (Figure 4). This 

substitution leverages the robust patchify operation from ViTs 

to enhance initial feature extraction in CNNs. 

Multi-Scale Training and Re-parameterization Inference. 

During the training phase, complex multi-scale structures 

enhance the model’s ability to represent data and improve 

training effectiveness. In the inference phase, these multi-

branch structures are re-parameterized into an equivalent, more 

efficient single-branch structure to improve inference 

performance. This approach reduces computational load and 

memory usage during inference, maintaining high performance 

while increasing the model’s inference speed. 

During the training process, we enhanced the bottleneck 

blocks in ResNet by incorporating grouped convolution 

operations to improve feature extraction capabilities. Initially, 

the input x is transformed into a feature map 𝐼 using a 1 × 1 

convolution operation, resulting in 𝐼 ∈ ℝ𝑁×𝐶1×𝐻1×𝑊1, where 

𝐶1 is the number of channels. This feature map 𝐼 serves as 

the input to subsequent multi-scale structures. After 

processing through these structures, we obtained a feature 

map 𝑃 ∈ ℝ𝑁×𝐶2×𝐻2×𝑊2 , where the number of output channels 

is 𝐶2. 

We partition the feature map 𝐼  into multiple units 𝑢 , each 

with the same number of channels 𝐶1/𝑖, where 𝑖 represents 

Figure 2. The MDA-RepXNet framework utilizes RepXNet as its backbone network and integrates MDFPN as its neck network. 

Apply the input channel attention 𝛂𝐢 to adjust each channel’s importance in the input feature map. Use kernel attention 𝛂𝐜 and 

spatial attention 𝛂𝐬 to adjust convolutional kernel weights for convolution operations. Utilize an output channel attention 𝛂𝐨 to 

enhance the importance of each filter in the output feature map. 
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the number of units and 𝑖 > 1. For each unit, the input and 

output feature maps are denoted as 𝐼𝑖 ∈ ℝ𝑁×(𝐶1/𝑖)×𝐻1×𝑊1 and 

𝑃(𝑖) ∈ ℝ𝑁×(𝐶2/𝑖)×𝐻2×𝑊2 , respectively. In the first unit, we 

utilize 𝜇(0) , 𝜎(0) , 𝛾(0) , and 𝛽(0)  as the channel mean, 

standard deviation, learned scaling factor, and bias term for the 

Batch Normalization (BN) layer, respectively. This BN layer is 

applied to the input 𝐼1 to obtain the output 𝑃(1). Subsequently, 

𝑃(1) is used as one of the inputs to the second unit, combined 

with 𝐼2 through a residual connection to form a new input 𝐼(2). 

Then, 𝐼(2)  is passed through a 3 × 3  convolution layer 

𝑊(3) ∈ ℝ𝐶2×𝐶1×3×3  with 𝐶1  input channels and 𝐶2  output 

channels, followed by a BN layer with parameters 𝜇(3), 𝜎(3), 

𝛾(3), and 𝛽(3), to obtain the output 𝑃(2).

This process iterates for each subsequent unit. For each 𝑖-th 

unit, 𝑃(𝑖−1)  is combined with 𝐼𝑖  through a residual 

connection to form a new input 𝐼(𝑖) , which is then passed 

through 𝑊(3) and the BN layer to obtain the corresponding 

unit output 𝑃(𝑖) , as shown in Figure 1(b). The above 

description can be formalized as: 

𝑃 = BN(𝐼1, 𝜇(0), 𝜎(0), 𝛾(0), 𝛽(0)) ⊕ ∑ 𝑃(𝑖)𝑖
𝑖=1 ,

𝑃(𝑖) = BN(𝐼(𝑖) ∗ 𝑊(3), 𝜇(3), 𝜎(3), 𝛾(3), 𝛽(3)),

𝐼(𝑖) = 𝐼𝑖 + 𝑃(𝑖−1)

  (1) 

This improved structure enables the network to learn complex 

feature representations more effectively, enhancing model 

performance and generalization capabilities. 

In the inference phase, these multi-branch structures are 

reparameterized into an equivalent, streamlined single-branch 

structure to enhance inference efficiency. This approach 

reduces computational load and memory usage during 

inference, maintaining high performance while increasing the 

model’s inference speed. Formally, for the channel j of the non-

first unit, ∀1≤j≤C_2/i, the batch normalization function during 

inference is converted according to the following expression: 

BN(𝐼(𝑖))
:,𝑗,:,:

= 𝛾𝑗 ⊙
𝐼:,𝑗:,:

(𝑖)
−𝜇𝑖

√𝜎𝑗
2+𝜖

+ 𝛽𝑗 (2) 

where 𝜖 > 0 is a small value to avoid division by zero. Each 

BN layer and the preceding convolution layer are merged into 

a single convolution layer with a bias vector.Let 𝑊, 𝜇, 𝛾, 𝜎 

denote the converted convolution kernel 𝑊′ and bias vector 

𝑏′, which are given by: 

𝑊′
𝑗,:,:,: ←

𝛾𝑗⊙𝑊𝑗,:,:,:

√𝜎𝑗
2+𝜖

,

𝑏′
𝑗 ← 𝛽𝑗 −

𝛾𝑗⊙𝜇𝑗

√𝜎𝑗
2+𝜖

.
 (3) 

By deriving from Eq. (2) and Eq. (3), we obtain: 

BN(𝐼 ∗ 𝑊, 𝜇, 𝛾, 𝜎):,𝑗,:,: = (𝐼 ∗ 𝑊′):,𝑗,:,: + 𝑏′
𝑗  (4) 

The reparameterization method ensures that during inference, 

the network uses a simplified structure, thereby improving 

inference speed without sacrificing performance. 

We extend this transformation to the first unit by treating its 

identity branch as a 1×1 convolution with an identity matrix 

kernel. Following this transformation, we obtain three 3×3 

kernels, one 1×1 kernel, and four bias vectors, as illustrated in 

Figure 3. To maintain the size and position of the feature map, 

the 3×3 and 1×1 kernels must have the same stride. 

Consequently, we zero-pad the 1×1 kernel to match the size of 

the 3×3 kernels, resulting in a padded 3×3 kernel that is 

slightly smaller. This process involves combining the 

resulting 3×3 convolution kernels, including the padded 1×1 

kernel, into a final 3×3 kernel, and adding the four bias 

vectors to produce the final bias vector. 

 

 
Figure 4. The structure of ResNet-50 and RepXNet-S1. Here, 

‘IS’ denotes the input size, and ‘OS’ is the output size. By 

setting the stride of the first block in RepXNet stage 2 to 2, we 

ensure that the input image produces a 7×7 feature map 

before the final GAP layer. 

 
Adjusting Stage Block Structure. ResNet mitigates the deep 

neural network degradation issue during training by 

incorporating residual blocks and shortcut connections. This 

stage-wise arrangement facilitates the development and 

training of deep networks without encountering challenges 

from gradient vanishing or explosion. Within ResNet, stages 

represent different network sections, each comprising multiple 

residual blocks, with variations in feature map sizes and 

Figure 3. Visualization of Structural Reparameterization in the Bottleneck Section: (a) shows the structural form, with residual 

connections between branches omitted for clarity; (b) depicts the reparameterized form. 
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channel counting across stages. While the original ResNet 

stage configuration was primarily empirical, the Swin 

Transformer [49] follows a comparable structure but with 

distinct stage ratios. Recent research has extensively examined 

computation distribution [50],[51], hinting at possibilities for 

further optimized designs. This study adopts the computation 

ratios from [49], employing 1:1:3:1 ratio for shallower 

networks (as shown in Figure 4) and 1:1:9:1 ratio for deeper 

networks. 

Activation functions. The Swish [52] activation function 

provides differentiability across the entire real number domain 

and exhibits smooth transitions near zero, effectively 

mitigating the vanishing gradient problem. In contrast to step 

functions like ReLU [53], the smoothness of Swish stabilizes 

model training, enhances performance, and accelerates 

convergence rates. Additionally, the Swish function allows for 

a trainable 𝛽 parameter, enhancing the activation function’s 

flexibility to adapt to various layer characteristics and data 

properties. 

Swish𝛽(𝑥) = 𝑥 • 𝑆𝑖𝑔𝑚𝑜𝑖𝑑(𝛽𝑥)  (5) 

While adding a trainable 𝛽 parameter to the Swish activation 

function slightly increases the computational load, the 

performance benefits justify this overhead. During training, 

updating the additional 𝛽  parameter requires just one extra 

multiplication operation to the overall model’s parameter 

count. We argue that in practical scenarios, this increase is 

negligible, making the trade-off acceptable and beneficial. 

3.2 Multi-Dimensional Dynamic Feature 

Pyramid Network (MDFPN) 
Dynamic Convolution. Traditional convolutional layers 

utilize a single fixed convolution kernel, applying identical 

convolution operations to all input samples. The output feature 

𝑦 is obtained by convolving the input feature 𝑥 with the fixed 

convolution kernel 𝑊 , expressed as 𝑦 = 𝑊 ∗ 𝑥 , with the 

temporary exclusion of the bias term. 

In contrast, dynamic convolution employs 𝑛  parallel 

convolution kernels that aggregate into a single convolution 

kernel through an input-dependent attention mechanism. This 

method does not significantly increase computational overhead 

because the parallel convolutions share output channels and do 

not expand the network’s dimensions. By adaptively fusing 

multiple convolution kernels based on image content, dynamic 

convolution reduces redundant computations and enhances 

feature extraction capabilities. Comprising convolution kernels 

𝑊𝑘 and attention functions 𝛼𝑘: 

𝑦 = ∑ 𝑎𝑘𝑊𝑘
𝑛
𝑘=1 ∗ 𝑥  (6) 

where 𝛼𝑘(𝑥) is the attention weight for 𝑘-th kernel based on 

the input 𝑥 . This mechanism allows dynamic convolution 

layers to adapt their operations to different inputs, enhancing 

the network’s ability to extract meaningful features from the 

data. 

Multi-dimensional Attention (MDA). MDA differs from 

existing dynamic convolution methods by focusing on 

designing attention mechanisms across spatial, input channel, 

and output channel dimensions. MDA first assigns attention 

scalar 𝛼𝑘 to the parameters of each spatial position. Then, it 

assigns attention scalars 𝛼𝑖  and 𝛼𝑜 to the parameters of each 

input and output channel, respectively. Finally, like traditional 

dynamic convolution methods, attention scalar 𝛼𝑐  is assigned 

to the entire convolution kernel: 

𝑦 = 𝑊̃ ∗ 𝑥 = ∑ 𝑎𝑘
𝑖 ⊗ 𝑎𝑘

𝑠 ⊗ 𝑎𝑘
𝑐 ⊗ 𝑎𝑘

𝑜𝑊𝑘
𝑛
𝑘=1 ∗ 𝑥  (7) 

Spatial attention 𝛼𝑠  effectively targets various locations 

within the input feature map, enabling the network to capture 

and utilize critical spatial information. This mechanism allows 

the network to adjust its focus dynamically to various positions 

within the input feature map, thereby emphasizing key spatial 

regions. Specifically, 𝛼𝑠 assigns distinct attention weights to 

each spatial position of the convolution kernel. As the 

convolution kernel processes the input feature map, it 

dynamically applies these weights to capture significant local 

features more effectively, enhancing feature extraction 

capabilities. 

Output channel attention 𝛼𝑜 assigns varying attention weights 

to each output channel of a convolutional layer. These weights 

determine the response strength of each filter to the input 

features, dynamically adjusting each filter’s contribution. In 

convolution operations, each filter corresponds to an output 

channel; hence, attention weights for output channels are 

essentially attention weights for the filters. By assigning higher 

attention weights to filters that are more responsive to the input 

features, the network can more effectively capture important 

features, achieving adaptive feature extraction. 

Figure 2 illustrates the specific implementation process of 

MDA: global average pooling is applied to the input features, 

followed by a fully connected (FC) layer and ReLU activation 

function to obtain the feature vector 𝑣. This feature vector is 

then input into different FC layers, where the routing functions 

𝛼𝑖 = 𝑓𝑖(𝑥)  compute the corresponding attention weights. 

These weights are sequentially applied to the convolution 

kernel 𝑊, resulting in the final convolution kernel: 

𝑙𝑣 = ReLU(FC(𝐺𝑙𝑜𝑏𝑎𝑙𝐴𝑣𝑒𝑟𝑎𝑔𝑒𝑃𝑜𝑜𝑙(𝑥))),
𝑎 = 𝑓(𝑥) = 𝑆𝑖𝑔𝑚𝑜𝑖𝑑(FC(𝑣))

  (8) 

Computational Cost. For standard convolution, given an input 

feature map of size (𝐶in, 𝐻, 𝑊), a convolution kernel size of 

𝑘 × 𝑘, and the number of output feature map channels 𝐶out, the 

computational complexity is: 

𝑂(•) = 𝑘2𝐶𝑖𝑛𝐶𝑜𝑢𝑡𝐻𝑊 (9) 

For dynamic convolution kernels in MDFPN, the 

computational complexity is: 

𝑂(•) = 𝐶𝑖𝑛𝐻𝑊 + 𝐶𝛼(2𝐶𝑖𝑛 + 𝐶𝑜𝑢𝑡 + 𝑘2 + 𝐾 + 3) (10) 

Where, 𝐶𝛼 < 𝐶in  and 𝐶𝛼 < 𝐶out  represent the attention 

channels used to measure the attention mechanism based on the 

input channels. This design controls both the parameter and 

computational costs within the attention mechanism, thereby 

preventing overfitting and enhancing efficiency. 𝐾  denotes 

the number of convolution kernels. Notably, while the attention 

mechanism introduces additional computational overhead, the 

overall increase in computational cost remains manageable 

because 𝐶𝛼 is typically much smaller than 𝐶out. Furthermore, 

when 𝐾 ≪ 𝐻𝑊 , the extra cost of computing the attention 

mechanism is minimal compared to the cost associated with the 

fixed convolution kernel. Therefore, the overall increase in 

computational complexity compared to regular convolution 

remains negligible. 

MDFPN. Employing MDA for dynamic convolutions 

significantly improves multi-scale information processing in 

feature pyramid networks. This approach processes multi-scale 

information on the feature map and dynamically adjusts the 

convolution kernel weights, integrating multi-scale and multi-

dimensional information. Consequently, the network can more 
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comprehensively capture and handle object features of varying 

scales. Specifically, MDFPN enhances the recognition ability 

of multi-scale objects by combining feature maps from 

different scales. Simultaneously, by dynamically adjusting 

convolution kernel parameters, it better adapts to multi-

dimensional information of varying scales, effectively 

addressing detection challenges posed by changes in object 

scale. From the perspective of convolution kernels, MDFPN 

improves the network’s adaptive capabilities.MDA’s 

effectiveness extends beyond the MDFPN structure; it can also 

be used as a module in other networks, improving overall 

detection performance. 

4. Experiments 
To validate the performance of our proposed model, we 

compared RepXNet against a baseline on the ImageNet-1k 

dataset [54] and integrated it with MDFPN for downstream 

object detection tasks on the MS COCO 2017 dataset [55]. 

Through a series of comparative experiments and ablation 

studies, we demonstrated the outstanding performance of 

MDA-RepXNet. 

4.1 RepXNet for ImageNet-1K 

To prepare for training, we resize the images in the ImageNet-

1K dataset to 256×256 pixels and then randomly crop them to 

224×224 pixels. Our implementation of RepXNet, along with 

other models such as ResNet [11], ResNeXt [12], Res2Net [15], 

and RepVGG [38], is conducted using the PyTorch framework. 

We maintain consistently the same data argumentation strategy 

with [11] and [12], except for RepVGG. The initial learning 

rate is set to 0.1, with a decay rate of 10% every 30 epochs, and 

the training process extends over 100 epochs. For RepVGG, 

following [38],we initialize the learning rate to 0.1 and employ 

a cosine annealing strategy across 120 epochs. The training 

utilizes the standard SGD optimizer with globalbatchsize=256, 

weightdecay=0.0001, and momentum=0.9. RepXNet model 

configuration follows the criteria outlined in Table 1. All 

experiments utilize four NVIDIA GeForce RTX 3090 (24G) 

GPUs for execution. 

Performance Comparison. Table 2 shows the Top-1 and 

Top-5 accuracies of various models on the ImageNet-1K 

dataset, using ResNet-50 as the baseline. Our implementation 

of the Res2Net model employed the Res2Net-50 configuration 

with "scale factor"=4s and "filter width"=26w. For the 

ResNeXt model, we adopted the ResNeXt-50 configuration 

with "Cardinality"=32 and "bottleneck width"=4. Despite a 0.5 

FLOPs increase compared to ResNet-50, RepXNet-S1 

maintains comparable computational efficiency. It outperforms 

ResNet-50 by 1.96% in Top-1 accuracy. In comparison to other 

multi-scale models, RepXNet-S1 achieves a 0.75% higher Top-

1 accuracy than ResNeXt-50 and a 0.44% improvement over 

Res2Net. Although our model exhibits slightly higher 

computational and parameter complexity than ResNeXt, it 

demonstrates a 4.2 FLOP reduction and a 0.69% increase in 

Top-1 accuracy compared to more complex models like 

RepVGG. Table 3 showcases our experimentation with various 

depths and units of RepXNet models. The comparison between 

RepXNet-S1, RepXNet-S2, and RepXNet-S3 in Table 2 

highlights that increasing the number of units can enhance the 

model’s accuracy. However, this improvement comes with 

increased computational demands and longer training durations. 

Notably, despite RepXNet-S3 having more parameters and 

higher computational complexity than RepXNet-L1, it yielded 

inferior results. As a result, we decided against further 

increasing the unit under the same network depth. 

 

Figure 5. The Top-1 accuracy is displayed for the ImageNet-1K 

validation set, where all models shown were trained using 

identical methodologies. 

 

Table 1. Different complexities were set for the models for 

comparison, with fixed filter width = 𝟐𝟔𝒅. 

Name Layer of each stage unit 

RepXNet-S1 3,3,9,3 4 

RepXNet-S2 3,3,9,3 6 

RepXNet-S3 3,3,9,3 8 

RepXNet-L1 3,3,27,3 4 

 

Table 2. ImageclassificationaccuracyontheImageNet-1K 

dataset. The speed is measured in samples per second with 

a global batch size of 256 on NVIDIA GeForceRTX3090. 

Model FLOPs Speed Top-1 Top-5 

Baseline  4.1 1727 76.52 92.98 

ResNeXt-50  4.3 1256 77.73 93.56 

Res2Net-50  4.3 1623 78.04 93.82 

RepVGG-B1g2  8.8 1864 77.79 93.77 

RepXNet-S1 4.6 1674 78.48 94.18 

RepXNet-S2 6.8 1205 78.82 94.37 

RepXNet-S3 9.0 838 79.26 94.55 

 

Table 3. Classification accuracy of deeper networks on the 

ImageNet-1K dataset. 

Model FLOPs Params Top-1 Top-5 

ResNet-101  7.8 44.55 77.40 93.54 

RepVGG-B2  20.4 89.02 78.54 94.18 

Res2Net-101  8.1 45.21 79.13 94.44 

RepXNet-S3 9.0 57.71 79.26 94.55 

RepXNet-L1 8.9 49.60 79.54 94.71 
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Visualization and CAM. Figure 5 shows the Top-1 accuracy 

performance of ResNet-50, ResNeXt-50, Res2Net-50, and 

RepXNet-S1 on the ImageNet-1K validation set. In the initial 

stages of training, RepXNet-S1 shows more fluctuations in 

accuracy compared to the other models, indicating a longer 

adaptation period. This increased volatility in RepXNet-S1’s 

performance is likely due to its complex architecture, which 

necessitates more time to adapt and stabilize. However, when 

the learning rate decreases to 0.01, RepXNet-S1 demonstrates 

improved stability and reduced fluctuations in accuracy. This 

observation suggests that the model effectively fine-tunes its 

parameters, leading to a smoother learning curve and achieving 

the highest Top-1 accuracy among all models. 

We employed the XGrad-CAM [56] method to visualize Class 

Activation Maps (CAM) and better understand the multi-scale 

representation capabilities of RepXNet-S1. XGrad-CAM 

enhances gradient weighting through normalized activations, 

resulting in more distinct and precise heatmaps that enhance 

interpretability. As illustrated in Figure 6, areas with 

heightened CAM responses are shown with more vivid colors. 

Comparing the CAM images of ResNet-50 and RepXNet-S1, 

we noticed a significant difference in their coverage patterns. 

RepXNet-S1 consistently captures the entire object 

comprehensively, while ResNet-50 focuses on parts of the 

object, such as the curlew, chrysanthemum, and collie. In an 

image featuring meerkats, ResNet-50 concentrated on the roof, 

leading to false detection, whereas RepXNet-S1 effectively 

encompassed all four meerkats. 

4.2 MDA-RepXNet for MS-COCO 

To evaluate the performance of our backbone networks in the 

downstream task of object detection and to validate the 

feasibility of MDFPN, we train the networks on the MS-COCO 

2017 [55] training set and report results on the validation set. 

All backbone networks utilize pre-trained models from 

ImageNet-1k [54] and then fine-tune them on the detection 

dataset. We employ standard COCO evaluation criteria and 

select classic models such as Faster R-CNN [7] and RetinaNet 

[6] as base models. All experiments utilize four NVIDIA 

GeForce RTX 3090 (24G) GPUs for execution. The initial 

learning rate is set to 0.001 and decays by 10% at the 8th and 

11th epochs, during a total of 12 epochs. During the first 500 

iterations, the learning rate increases to 0.02. We use the 

standard SGD optimizer for training all models, with a batch 

size of 2 per GPU, a weight decay of 0.0001, and 

momentum=0.9. 

Performance Comparison. We conducted experiments 

comparing ResNet-50 and RepXNet-S1 as backbone networks. 

Additionally, for ResNet-50, we incorporated the FPN [17], for 

comparative experiments with other neck networks, including 

PAFPN [20], BFPN [57], the lightweight FPG [21], and our 

proposed MDFPN. Error! Reference source not found. 

presents the experimental results obtained using different 

models. When using ResNet-50 as the backbone, MDFPN’s 

mAP improved by 2.8% compared with FPN. Although 

MDFPN slightly underperformed FPG in medium and large 

object detection, it showed a minor improvement in small 

object detection. Furthermore, using MDA-RepXNet resulted 

in a 3.9% overall accuracy increase compared to the baseline.  

Visualization. We showcase the detection results of ResNet 

w./FPN and MDA-RepXNet as network structures for object 

detection. In Figure 7(a), ResNet w./FPN generated false 

positives, detecting objects like dogs and cars that were not 

present. An overall comparison reveals that our method 

exhibits higher confidence in detecting larger objects while still 

making accurate predictions for occluded or relatively small 

objects, such as the bench in Figure 7(b) and the car in Figure 

7(c). 

 
Figure 7. Example results of object detection using ResNet 

w./FPN and MDA-RepXNet under the Faster R-CNN 

framework.  

Figure 6. Comparison of CAM visualization results between ResNet-50 and RepXNet. 
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4.3 Ablation Study 

Why adopt the trainable Swish function as the activation 

function for RepXNet? Error! Reference source not 

found.presents the Top-1 and Top-5 accuracy rates on 

ImageNet-1K achieved by modifying different activation 

functions, using RepXNet-S1 as the backbone network. The 

results indicate that a fixed 𝛽  value reduces accuracy and 

performs worse than ReLU as the activation function. Swish, a 

smooth function that interpolates non-linearly between the 

linear function and ReLU, demonstrates improved 

performance. Making 𝛽 as a trainable parameter allows the 

model to control the degree of interpolation, enhancing 

adaptability and optimizing non-linear adjustments. This 

adaptability enables RepXNet to capture features more 

effectively and improve performance when handling complex 

data and tasks. 

Impact of Unit (𝑢)  and Width (𝑑)  on Network 

Performance. In Table 2, we observed a significant reduction 

in model error rates as the number of units increased. To further 

explore their impact, we experimented with different widths 

and units. As shown in Table 6Table 5, increasing the number 

of units from 4 to 6 led to a noticeable improvement in the 

model’s Top-1 accuracy. However, reducing the width from 26 

to 14, while keeping 6 units, significantly decreased the 

model’s accuracy by 0.24% compared to RepXNet-S1 with 

fewer units and width = 26𝑑. Therefore, combined with the 

results in Table 2, we infer that increasing the number of units 

and widths can improve the model’s accuracy, with the number 

of units having a more significant impact.  

Table 4. Report on object detection results on the MS COCO 2017 dataset, ’w./’ indicating ’with’. 1 
Method backbone 𝑚𝐴𝑃 𝐴𝑃50 𝐴𝑃75 𝐴𝑃S 𝐴𝑃M 𝐴𝑃L 

Faster RCNN w./FPN ResNet-50 37.3 57.9 40.3 19.6 40.2 49.2 

Faster RCNN w./PAFPN ResNet-50 37.8 58.7 40.8 21.4 41.0 48.6 

Faster RCNN w./BFPN ResNet-50 38.3 59.5 41.9 22.1 42.0 48.5 

Faster RCNN w./FPG ResNet-50 39.7 59.0 42.0 20.1 42.9 53.0 

Faster RCNN w./MDFPN ResNet-50 40.1 59.7 42.4 22.5 42.6 52.9 

Faster RCNN w./FPN RepXNet-S1 39.6 59.2 42.9 21.7 42.4 51.1 

2 

Table 5. Comparing the accuracy of RepXNet on ImageNet-

1K using different activation functions, 𝜷𝒐  indicates 

trainability. 

Setting Top-1 Top-5 

ReLU 78.31 94.06 

Swish 𝛽 = 1  78.11 93.97 

Swish 𝛽𝑜 78.48 94.18 

 

Table 6. Validating the performance of RepXNet with 

different units and widths on the ImageNet-1K dataset. 

Model Setting Top-1 

RepXNet 4×26d 78.48 

RepXNet 6×26d 78.82 

RepXNet 6×14d 78.24 

 

Comparison of Results on Different Base Models. To 

validate the feasibility of our network with other base models, 

we employed RetinaNet as the foundational network, 

RepXNet-S1 as the backbone, and integrated MDFPN as the 

neck. Table 7 shows the outcomes. These experiments confirm 

that our network architecture is indeed viable within the context 

of one-stage networks. However, it is worth noting that the 

overall performance is comparatively lower when compared to 

that observed in two-stage networks. 

 

 

Table 7. Validating the feasibility of MDA-RepXNet using 

different foundational networks on the MS COCO dataset. 

Method 𝒎𝑨𝑷 𝑨𝑷𝟓𝟎 𝑨𝑷𝟕𝟓 

Faster RCNN 41.2 61.6 43.7 

RetinaNet 40.1 60.2 43.1 

 

5. Conclusion 
The proposed Multi-Dimensional Attention - Reparameterized 

Multi-Branch Network (MDA-RepXNet) combines 

RepXNet’s multi-scale feature extraction capabilities with 

MDFPN’s multi-dimensional feature fusion strategy. This 

integration helps MDA-RepXNet preserve the precise detail 

features of original images, significantly improving 

performance for image classification and object detection tasks. 

Its advanced feature extraction is particularly effective at 

detecting small objects and handling occlusions, demonstrating 

the method’s robustness and efficacy. Future research will 

explore the effects of different unit configurations and width 

variations on multi-scale networks. Additionally, we plan to 

integrate these components into more advanced network 

structures to maximize their potential. 
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