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Abstract:EfficientNet-B7 is an efficient deep convolutional neural network architecture, belonging to the 

EfficientNet series of models. This model, through systematic research on model scaling methods, proposes a 

compound scaling technique, and simultaneously optimizes the network's depth, width, and input resolution, thereby 

achieving a better balance between accuracy and computational efficiency. This paper elaborates on the working 

principle of EfficientNet-B7 in detail. A flower dataset with 104 categories was downloaded from Google Cloud 

Server, and EfficientNet-B7 was introduced to implement flower classification. To reduce model overfitting, the 

DropPath regularization term was added after the loss function. Through validation and testing, EfficientNet-B7 can 

effectively classify all flowers successfully, with a success rate reaching 100%. The addition of the DropPath 

regularization term can effectively reduce training time and improve network communication efficiency. 

Experiments show that the flower classification research based on EfficientNet-B7 is practical and effective, and it 

is of great significance to the study of flower classification and recognition. 
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1. Introduction 

Deep Convolutional Neural Networks (DCNN) are a 

type of deep learning architecture specifically designed 

for processing grid-structured data, such as images. By 

stacking multiple convolutional and pooling layers, 

DCNNs can automatically extract hierarchical features 

from data. In recent years, they have been widely 

applied in many significant fields, including image 

recognition and classification, video analysis, natural 

language processing, speech recognition, etc., and have 

driven the development of deep learning technology. 

Common deep convolutional neural networks include 

LeNet (one of the earliest convolutional neural 

networks, mainly used for handwritten character 

recognition, including convolutional layers, pooling 

layers, and fully connected layers, mainly used for 

simple image classification tasks), AlexNet (consisting 

of an 8-layer network, using ReLU activation functions 

and Dropout technology, significantly improving the 

accuracy of image classification, widely used in image 

recognition and classification tasks), and the 

EfficientNet-B7 mentioned in this paper, which is 

widely applied. 

Studying the classification and recognition of flowers 

is of great significance to the study of plant 

classification and recognition. Currently, plant species 

classification and recognition are mainly achieved 

through botanical classification indexes and manual 

reference materials, which are both time-consuming 

and labor-intensive. With the continuous in-depth 

research and wide application of deep convolutional 

neural networks, new directions and ideas have been 

provided for the classification and recognition of plant 

species. In this paper, an improved EfficientNet-B7 

neural network model for flower classification is 

proposed, which is helpful for the study of plant species 

classification and recognition. 

2. EfficientNet-B7 Neural Network 

Model 

Before EfficientNet, the development of Convolutional 

Neural Networks (CNNs) usually depended on a fixed 

resource budget, and then performance was improved 

by increasing the network's width (number of channels), 

depth (number of layers), or the resolution of the input 

images. However, these one-dimensional scaling 

methods often lead to a significant increase in the 

number of model parameters, but the performance 

improvement gradually tends to saturate. 

EfficientNet-B7 is a deep convolutional neural network 

architecture proposed by the Google Brain team in 
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2019, belonging to the EfficientNet series of models. 

The core innovation of this series of models is the 

introduction of a new model scaling method - 

Compound Scaling. EfficientNet-B7 is suitable for 

image classification tasks that require high precision 

and efficient computation, such as medical image 

analysis, satellite image processing, and complex 

visual recognition tasks. Its efficient architectural 

design allows it to perform well even in resource-

constrained environments. 

2.1 EfficientNet-B7 Neural Network 

Model Structure 

EfficientNet-B7 is the largest model in the EfficientNet 

series, and its detailed structure is based on Compound 

Scaling, which achieves a balance between accuracy 

and computational efficiency by simultaneously 

adjusting the network's depth, width, and input 

resolution. EfficientNet-B7 is divided into three parts: 

the input layer, the main structure, and the output layer. 

Input Layer: Input resolution: 600×600×3 . Initial 

convolutional layer: uses a 3×3 convolution kernel with 

a stride of 2, and an output channel number of 48. The 

role of this layer is to halve the resolution of the input 

image while increasing the number of channels, 

preparing for subsequent feature extraction. 

Main Structure: The main structure of EfficientNet-B7 

consists of multiple MBConv modules, which are the 

core building blocks of EfficientNet. Each MBConv 

module includes the following parts: 

Expand Layer: Increases the number of channels 

through a 1×1 convolution kernel. 

Depthwise Separable Convolution: Performs 

convolution operations on each channel separately to 

reduce computational load. 

Squeeze-and-Excitation (SE) Block: Used for channel 

attention mechanisms to enhance feature expression. 

Linear Projection Layer: Restores the number of 

channels to the original size through a 1×1 convolution 

kernel. 

Residual Connection: In some modules, the input is 

directly added to the output to avoid the vanishing 

gradient problem. The improved EfficientNet-B7 

connects each MBConv module through residual 

connections. 

The main structure of EfficientNet-B7 consists of 7 

main modules (Blocks), each containing multiple sub-

modules (Sub-blocks), including MBConv3 and 

MBConv6: MBConv3 uses a 3×3 convolution kernel, 

while MBConv6 uses a 6×6 convolution kernel. Both 

types of modules include an expansion layer, 

depthwise separable convolution, Squeeze and 

Excitation (SE) block, and linear projection layer. 

Repeats: The number of times the MBConv module is 

repeated in each stage. Input Channels: The number of 

input channels in each stage. Output Channels: The 

number of output channels in each stage. Kernel Size: 

The size of the convolution kernel. Stride: The stride of 

the convolution kernel, used to control the size of the 

feature map. Expansion Factor: The expansion factor 

of the expansion layer, used to increase the number of 

channels. This structural design of EfficientNet-B7 

allows it to perform excellently in image classification 

tasks while maintaining efficient computational 

performance. 

Output Layer:Top Convolution Layer: Uses a 1×1 

convolution kernel to increase the number of channels 

to 1280. 

Global Average Pooling: Performs average global 

pooling on the feature map, reducing the feature map 

to 1×1×1280. 

Fully Connected Layer: Fully connected layer, outputs 

the number of classes (e.g., 1000 classes for the 

ImageNet dataset). 

Swish Activation Function: In EfficientNet, the Swish 

activation function is widely used, providing better 

gradient flow and model performance compared to the 

traditional ReLU activation function. 

Regularization Technique - Dropout: Dropout is used 

before the fully connected layer to prevent overfitting. 

Stochastic Depth: Randomly drops some layers during 

training to enhance the model's generalization ability 
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Training and Optimization - Optimizer: Uses the 

RMSProp optimizer, with a learning rate scheduler 

dynamically adjusting the learning rate. 

Data Augmentation: Uses AutoAugment data 

augmentation technology to improve the model's 

generalization ability. 

Performance - Accuracy: On the ImageNet dataset, 

EfficientNet-B7 achieved a top-1 accuracy of 84.3% - 

Number of Parameters: The number of parameters is 

66M. Computational Load: The computational load is 

37B FLOPS. The efficient architectural design and 

excellent performance of EfficientNet-B7 make it a 

powerful tool for image classification tasks. 

As shown in Figure 1, the architecture diagram of the 

EfficientNet-B7 neural network model. The diagram 

shows the overall structure of EfficientNet-B7, 

including the following main parts: Stem (Root Block): 

The initial part of the model, used to process input 

images and extract preliminary features. Modules: 

EfficientNet-B7 consists of multiple repeated modules, 

each containing several sub-layers, which can be 

convolutional layers, batch normalization layers (Batch 

Normalization), activation functions, etc. The diagram 

shows three types of different modules (Module 1, 

Module 2, Module 3), which repeat in the network, and 

each module may contain a different number of sub-

layers. Skip Connections: The "Add" operations 

represented by red arrows in the diagram represent skip 

connections, which allow the network to directly 

transmit information between different layers, helping 

to alleviate the vanishing gradient problem and 

promote feature reuse. Final Layers: After all modules, 

the network passes through a global average pooling 

layer (Global Average Pooling). 

 

Figure 1. Architecture diagram of the EfficientNet-B7 

neural network model. 

2.2 Algorithm Flowchart of 

EfficientNet-B7 with DropPath 

Regularization 

The main features of the EfficientNet-B7 algorithm 

with the introduction of the DropPath regularization 

technique are as follows: On the one hand, DropPath 

can randomly drop paths to prevent the model from 

over-relying on certain fixed paths, thereby avoiding 

overfitting. On the other hand, by forcing the network 

to work under different path combinations, DropPath 

enables the model to better adapt to different data 

distributions and enhances its generalization ability. 

For deep networks like ResNet, DropPath can 

effectively alleviate the vanishing gradient problem, as 

gradients can still propagate effectively through skip 

connections even if some main paths are dropped. This 

helps in training deeper networks. Moreover, 

EfficientNet-B7 uses a compound scaling method to 

proportionally balance depth, width, and resolution, 

improving accuracy while minimizing resource usage. 

In summary, these features enable the EfficientNet-B7 

with DropPath regularization to more effectively 

utilize network parameters and improve model 

accuracy and generalization ability when handling 

tasks such as image classification. The algorithm 

flowchart of EfficientNet-B7 with DropPath 

regularization：  
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Start

Data preprocessing, load dataset, data 

cleaning, data augmentation, normalization

Build EfficientNet-B7, define model 

architecture, integrate DropPath

Compile model, select optimizer, define loss 
function, set evaluation metrics

Take a batch for forward propagation

Calculate loss value

Perform backward propagation

Parameter update, batch end? Save best model

Apply DropPath

NO

Model deployment, export model, deploy model 
monitoring and maintenance

YES

Result analysis

Figure 2: Algorithm Flowchart of EfficientNet-B7 with 

DropPath Regularization 

2.2.1Forward Propagation 

In neural networks, forward propagation refers to the 

process where data is processed through various layers 

of the network from the input layer to the output layer 

to produce the final result. For the EfficientNet-B7 

model with the introduction of the DropPath 

regularization technique, the forward propagation 

process is shown in Table 2: 

Table 2: Forward Propagation Process  

St

ep 

Description Input 

Dimensi

ons 

Output 

Dimensi

ons 

Remar

ks 

1 Input Layer N×H×W

×C 

N×2H×2

W×64 

3x3 

convol 

2 Skip  

 

 

Varies Varies output  

3 Skip 

Connection 

N×2H×2

W×64 

Varies Add 

convol

ution 

DropPa

th 

4 Global 

Average 

Polling 

Varies N×Cout spatial 

dimens

ions 

5 Fully 

Connected 

Layer 

N×Cout N×K Output

s 

results 

6 Activation 

Function 

N×K N×K Softma

x 

Forward Propagation Steps: 

Input Layer: The input data first passes through a 

convolutional layer, including a 3x3 convolutional 

layer with a stride of 2, to extract preliminary features 

and reduce spatial dimensions. 

MBConv Module: The input data flows through 

multiple MBConv modules. Each MBConv module 

includes:Expansion Convolution: Uses 1x1 

convolution to increase the number of channels. 

Depthwise Convolution: Performs convolution 

operations separately on each input channel. 

SE Module: Enhances the model's representational 

ability by adaptively recalibrating channel features. 

Projection Convolution: Uses 1x1 convolution to 

reduce the number of channels, matching the feature 

map size with the input. In each MBConv module's 

residual connection, DropPath regularization is applied 

to discard the entire module's output with a certain 

probability. 

Skip Connection: MBConv modules typically include 

skip connections, which directly add the input to the 

module's output. 

Global Average Pooling: After all MBConv modules, 

the feature map passes through a global average 

pooling layer, reducing the spatial dimensions of each 

channel to a single value. 
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Fully Connected Layer: The pooled features pass 

through one or more fully connected layers to 

ultimately output prediction results. 

Activation Function: Typically, there is an activation 

function at the end of the network, softmax, used to 

convert the output into a probability distribution. 

Output: Assuming the model is a classification model, 

the goal is to classify the input image into K categories. 

The final output layer's dimensions are N×K, where N 

is the input batch size, and K is the number of 

categories. Each output value represents the probability 

that the input image belongs to a certain category. 

2.2.2 Backward Propagation 

Backward propagation is a key algorithm in the training 

process of the improved EfficientNet-B7 neural 

network, used to calculate the gradients of the loss 

function with respect to the network parameters and use 

these gradients to update the network parameters. The 

backward propagation process is shown as follows: 

Table 3. Backpropagation Process 

step Description Remarks 

1 
Initialize 

Gradients 

Prepare to start 

backward 

propagation 

2 

Calculate 

Output Layer 

Gradients 

Use the 

derivative of 

the loss 

function 

3 

Calculate 

Output Layer 

Weights and 

Bias Gradients 

Use the 

derivative of 

the activation 

function 

4 

Calculate 

Gradients 

Layer by Layer 

Backwards 

Use the chain 

rule 

5 

Handle 

Activation 

Functions 

 

Softmax 

activation 

function 

6 

Handle 

Convolutional 

Layers 

Convolve the 

input feature 

map and the 

gradient of the 

loss with 

respect to the 

output feature 

map 

7 
Handle 

DropPath 

Skip the 

dropped paths 

8 
Parameter 

Update 

Adam 

optimizer 

9 
Repeat the 

Process 

Until a 

predetermined 

number of 

training epochs 

is reached or 

other stopping 

conditions are 

met 

Initialization of Gradients: Before starting 

backpropagation, the gradients of all network 

parameters need to be initialized to zero. This is 

because gradient information will be accumulated 

gradually during the backpropagation process. 

Calculation of Output Layer Gradients: Starting from 

the output layer, calculate the gradient of the loss 

function with respect to the activation values of the 

output layer. This usually involves the derivative of the 

loss function. For example, for cross-entropy loss, it is 

necessary to calculate the difference between the true 

labels and the predicted probabilities. Then, calculate 

the gradient of the output layer activation values with 

respect to the output layer weights. This involves the 

derivative of the activation function. If the output layer 

uses the softmax activation function, then the 

derivative of the softmax function needs to be 

calculated. For an activation function f, its gradient g is: 

g=
∂f

∂z
。Here, z is the input to the activation function。 

Softmax(zi) =
ezi

∑ ezjK
j=1
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z is a vector containing K elements, and zi is the i-th 

element of the vector, where K is the total number of 

classes. The softmax function ensures that the K output 

values are all positive and their sum is 1. 

Layer-by-Layer Gradient Calculation: Calculate 

gradients from the output layer to the previous layers 

layer by layer. For each layer, calculate the gradient of 

the loss with respect to the activation values of that 

layer, and then calculate the gradient of the activation 

values with respect to the weights and biases of that 

layer. This process involves the chain rule, which 

means calculating the gradient of the previous layer 

based on the known gradients. 

Handling Activation Functions and Convolutional 

Layers: For the softmax activation function, calculate 

its derivative. For convolutional layers, calculate the 

gradient of the convolutional kernel, which involves 

performing a convolution operation on the input feature 

map and the gradient of the loss with respect to the 

output feature map. The gradient of the weights w for a 

convolutional layer involves the following convolution 

operation: 

∂L

∂W
= ∑

∂L

∂ (x, y)y
^

.
∂ (x, y)y

^

∂Wx,y
 

where x,y represent the position of the output feature 

map. 

Special Case of Applying DropPath: At locations 

where DropPath is introduced, since some paths are 

randomly dropped during the forward propagation, the 

gradients of these paths should be zero during 

backpropagation. This means that when calculating 

gradients, these dropped paths need to be skipped. D 

represents the output of the DropPath layer, and its 

gradient is: 

∂L

∂D
= ∫

if D ≠ 0
otℎerwise

∂L
∂D

0

 

Parameter Update: Once the gradients of all parameters 

have been calculated, the network parameters can be 

updated using the Adam optimizer. The optimizer 

adjusts the parameters based on the gradients and 

learning rate to minimize the value of the loss function. 

Repeat the Process: Repeat the above process in each 

training epoch until the predetermined number of 

training epochs is reached or other stopping conditions 

are met. In practical applications, backpropagation is 

usually combined with various optimization algorithms 

and regularization techniques to improve the accuracy 

and generalization ability of the model. 

3. Flower Dataset 

Google Cloud provides a commonly used flower 

dataset with 104 species, stored in .tfrec binary 

format. The dataset is available in four different sizes: 

192x192, 224x224, 331x331, and 512x512.As shown 

in Table 4, the flower dataset in different sizes is 

listed. 

Table 4. Flower Dataset 

Size Set Count 
File 

Format 

192x192 

Test  

Val 

Train 

0-15 .tfrec 

224x224 

Test 

Val 

Train 

0-15 .tfrec 

331x331 

Test 

Val 

Train 

0-15 .tfrec 

512x512 

Test 

Val 

Train 

0-15 .tfrec 

4. Flower Classification Based on 

EfficientNet-B7 Model 

Flower classification based on the EfficientNet-B7 

model is approached from four aspects. The first step is 

to define the dataset, showing the sizes of the training, 

validation, and testing datasets, and randomly sampling 

to display images from the dataset. The second step 

involves setting up the EfficientNet-B7 model in 

preparation for model training. The third step trains the 

EfficientNet-B7 model using flower training samples 

to achieve flower classification and analyzes the results. 
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The final step evaluates the model, assessing its 

performance using F1 score, precision, and recall. 

4.1 Defining the Dataset 

The commonly used flower dataset, comprising 104 

species, is available on Google Cloud in the form of 

`.tfrec` binary storage files. For this experiment, the 

512x512 size dataset is selected for classification 

validation. The dataset is divided into training, 

validation, and testing sets in the ratio of 70%, 15%, 

and 15%, respectively. Image pixel values are 

normalized to the range [0,1] to accelerate model 

training. To enhance the model's generalization 

capability, data augmentation can be applied to the 

training data. 

4.2 Setting Up the EfficientNet-B7 

Model 

Model Architecture Selection: EfficientNet-B7 is one 

of the largest models in the EfficientNet series, offering 

high performance and computational efficiency. It 

optimizes the network's depth, width, and input 

resolution through compound scaling techniques, 

making it suitable for complex image classification 

tasks. 

Loading Pre-trained Weights: EfficientNet-B7 

typically comes with pre-trained weights on the 

ImageNet dataset. These weights can serve as initial 

model parameters, facilitating faster convergence and 

improved performance on new tasks. When loading 

pre-trained weights, one can choose whether to include 

the model's top (i.e., fully connected layer). 

Freezing Convolutional Layers: To leverage the pre-

trained model's feature extraction capabilities while 

reducing training time and computational resources, 

the convolutional layers of the pre-trained model are 

usually frozen. Freezing means that the weights of 

these layers will not be updated during training. With 

frozen convolutional layers, the model can focus on 

learning the new classification task without relearning 

basic image features. 

Modifying the Model Top : The original top of the    

model is designed for the ImageNet dataset and 

typically includes a global average pooling layer and a 

fully connected layer with 1000 outputs (the number of 

ImageNet classes). To adapt the model to a new 

classification task (such as flower classification), the 

model top needs to be modified as follows: 

  1. Global Average Pooling Layer: Converts feature 

maps into fixed-size feature vectors for input to the 

fully connected layer. 

  2. Dropout Layer: Adds a Dropout layer to reduce 

overfitting. During training, the Dropout layer 

randomly discards some neurons, enhancing the 

model's generalization ability. 

  3. Custom Fully Connected Layer: Adds a new fully 

connected layer based on the number of classes in the 

new task (e.g., 104 classes for flower classification) 

and uses the softmax activation function to output 

classification probabilities. 

Compiling the Model: After defining the model 

structure, it needs to be compiled, specifying the 

optimizer, loss function, and evaluation metrics: 

  1. Optimizer: Choose a suitable optimizer, such as 

the Adam optimizer, to update the model's weights. 

  2. Loss Function: For multi-class classification tasks, 

the categorical cross-entropy loss function is 

commonly used. 

  3. Evaluation Metrics: Accuracy is typically used as 

the metric to evaluate model performance. 

Model Summary: To better understand the model's 

structure and number of parameters, the model 

summary can be printed. The summary includes the 

name, output shape, and number of parameters for 

each layer, as well as the total number of parameters, 

trainable parameters, and non-trainable parameters in 

the model. Table 5 below shows the structure of the 

EfficientNet-B7model. 
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Table 5. EfficientNet-B7 Model Architecture 

Layer (type)   Output 

Shape  

Param   

 lambda  (None, 224, 

224, 3)  

0  

keras_layer (None, 2560) 64097680  

dense    (None, 3)    7683 

Total params: 64,105,363 

Trainable params: 63,794,643 

Non-trainable params: 310,720 

Model Architecture: 

1. Lambda Layer (lambda_1)：Output Shape:(None, 

512, 512, 3),Number of Parameters: 0,Description: The 

Lambda layer is typically used to implement custom 

operations. The output shape (None, 512, 512, 

3)indicates that the layer produces a 4-dimensional 

tensor. Here, `None` represents the batch size, which 

can be dynamically adjusted as needed. `512, 512` 

indicates the height and width of the image, meaning 

the input image is resized to 512×512 pixels. The `3` 

represents the number of channels (for RGB images). 

The parameter count is 0, indicating that this layer has 

no trainable parameters. 

2. KerasLayer (keras_layer_1):Output Shape: (None, 

2560),Number of Parameters: 64,097,680,Description: 

KerasLayer is a layer that encapsulates a pre-trained 

model and is part of EfficientNet-B7. The output shape 

`(None, 2560)` indicates that the layer produces a 2-

dimensional tensor. `None` represents the batch size, 

and `2560` represents the feature dimension of the 

output, which is the number of features from the output 

layer of the EfficientNet-B7 model. The total number 

of parameters in this layer is 64,097,680, including 

both trainable and non-trainable parameters. 

3. Dense Layer (dense_1):Output Shape: (None, 

104)，Number of Parameters: 266,344，Description: 

The Dense layer is a fully connected layer commonly 

used to map features to target classes. The output shape 

`(None, 104)` indicates that the layer produces a 2-

dimensional tensor. `None` represents the batch size, 

and `104` represents the number of output classes, 

indicating that this is a 104-class classification task. 

The total number of parameters in this layer is 266,344. 

Summary of Model Parameters:Total Parameters are 

64,364,024.This is the total number of parameters in 

the model, including both trainable and non-trainable 

parameters.Trainable Parameters are 64,053,304 These 

are the parameters that can be updated during training, 

typically including weights and biases.Non trainable 

Parameters are 310,720These are fixed parameters in 

the model, usually from the pre-trained model weights. 

They do not update during training.Summary of Model 

Architecture:Input Layer: The input image is resized to 

a 512×512 RGB image.Pre-trained Model Layer: A 

pre-trained model (such as EfficientNet-B7) is used, 

with an output feature dimension of 2560.Fully 

Connected Layer: The features from the pre-trained 

model are mapped to 104 classes. 

This architectural design fully leverages the powerful 

feature extraction capabilities of the pre-trained model 

and applies them to a specific classification task 

through the fully connected layer. 

4.3 Training the EfficientNet-B7 

Model 

Model Training: 

1. Initiating Training:The model.fit() method is used to 

start model training. It specifies the training dataset, the 

number of steps per epoch, the total number of training 

epochs, the validation dataset, the number of validation 

steps, and the callback functions. 

2. Dynamic Learning Rate Adjustment:At the 

beginning of each epoch, the `LearningRateScheduler` 

callback function calls the `lrfn` function to update the 

learning rate. In this experiment: 

 LR_START: The initial learning rate is set to 0.00001. 

 LR_MIN: The minimum learning rate is set to 

0.00001. 

 LR_MAX: The maximum learning rate is set to 

0.00005×`strategy.num_replicas_in_sync`.`strategy.n

um_replicas_in_sync` represents the number of 

replicas in distributed training and is used to adjust the 

learning rate based on the number of devices. 

LR_RAMPUP_EPOCHS: The number of epochs for 

learning rate ramp-up is set to 4. During these epochs, 
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the learning rate linearly increases from `LR_START` 

to `LR_MAX`. 

LR_SUSTAIN_EPOCHS: The number of epochs to 

sustain the learning rate is set to 0. During these epochs, 

the learning rate remains at `LR_MAX`. 

LR_EXP_DECAY: The exponential decay factor for 

the learning rate is set to 0.8. After the ramp-up and 

sustain phases, the learning rate will decay 

exponentially. 

The following figure illustrates a learning rate schedule 

that changes over time or training epochs. 

 

 Figure 3. Learning Rate Schedule 

The chart shows three phases of change in the learning 

rate: 

Linear Increase Phase: At the beginning of training, the 

learning rate starts from a small initial value (the left 

endpoint in the figure). As training progresses, the 

learning rate increases linearly until it reaches a set 

maximum value (the peak in the figure). This phase 

usually lasts for several epochs, with the goal of 

allowing the model to quickly escape local minima in 

the early stages of training. 

Stable Phase: Once the learning rate reaches the 

maximum value, it remains at this level for a period of 

time (the horizontal line segment in the figure). During 

this phase, the model continues to train using the higher 

learning rate to further optimize the weights. 

Exponential Decay Phase: After reaching the 

maximum value and maintaining it for a while, the 

learning rate begins to decay exponentially (the 

downward curve in the figure). This means that the 

learning rate gradually decreases with each epoch, 

typically reduced by a certain decay factor (e.g., 0.8). 

The decay phase helps the model make finer weight 

adjustments in the later stages of training, avoiding 

large steps that could cause it to overshoot the optimal 

solution. 

This learning rate schedule strategy helps the model to 

adopt different learning strategies at different stages of 

training, thereby improving training efficiency and 

model performance. 

3. Monitoring the Training Process:After each epoch, 

print the training loss , training accuracy , validation 

loss and validation accuracy . 

4. Training Completion:After 13 training epochs, the 

model's training loss gradually decreases, and the 

training accuracy gradually increases. The validation 

loss and validation accuracy also show similar trends, 

indicating that the model's performance on the 

validation set is gradually improving. Figures 4 and 5 

show the changes in loss and accuracy during the 

training process of the improved model. 

 

 Figure 4. Loss Values of the EfficientNet-B7 Model 

It can be seen from this figure that the model performs 

well during the training process, successfully reducing 

the loss. The introduction of the DropPath 

regularization technique in the improved model has 

achieved good fitting effects on both the training and 

validation data. 
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 Figure 5. Accuracy of the EfficientNet-B7 Model 

It can be seen from this figure that the model performs 

well during the training process, successfully 

increasing the accuracy and achieving good 

classification results on both the training and validation 

data. However, the specific performance still needs to 

be further evaluated through other metrics such as 

precision, recall, and F1 score. 

4.4 Performance Evaluation of the 

EfficientNet-B7 Model 

As shown in Figure 6, the confusion matrix evaluates 

the performance of the EfficientNet-B7 model using 

three metrics: precision, recall, and F1 score. 

 

Figure 6. Confusion Matrix 

In the figure, the rows represent the actual class labels, 

while the columns represent the predicted class labels 

by the model. As can be seen from the confusion matrix, 

the model achieves an F1 score of 0.952, precision of 

0.952, and recall of 0.955 in the classification task, 

demonstrating its excellent performance in 

classification. 

 

5 Conclusion 

This paper takes flowers as the research subject and 

proposes an improved flower classification model 

using the EfficientNet-B7 convolutional neural 

network with the incorporation of the DropPath 

regularization term, based on the flower dataset 

provided on Google Cloud, which includes 104 species. 

The model reduces the training time and effectively 

solves the classification task of iris flowers. It can be 

widely applied to the recognition of other plant species. 
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