
International Journal of Science and Engineering Applications

Volume 14-Issue 04, 42 – 52, 2025, ISSN:- 2319 - 7560

DOI: 10.7753/IJSEA1404.1007

www.ijsea.com 42

Research on Flower Classification Based on the

Improved EfficientNetB7
Xiao Zuowen

School of Electronic Information and Electrical Engineering

Yangtze University

Jingzhou, China

Abstract:EfficientNet-B7 is an efficient deep convolutional neural network architecture, belonging to the

EfficientNet series of models. This model, through systematic research on model scaling methods, proposes a

compound scaling technique, and simultaneously optimizes the network's depth, width, and input resolution, thereby

achieving a better balance between accuracy and computational efficiency. This paper elaborates on the working

principle of EfficientNet-B7 in detail. A flower dataset with 104 categories was downloaded from Google Cloud

Server, and EfficientNet-B7 was introduced to implement flower classification. To reduce model overfitting, the

DropPath regularization term was added after the loss function. Through validation and testing, EfficientNet-B7 can

effectively classify all flowers successfully, with a success rate reaching 100%. The addition of the DropPath

regularization term can effectively reduce training time and improve network communication efficiency.

Experiments show that the flower classification research based on EfficientNet-B7 is practical and effective, and it

is of great significance to the study of flower classification and recognition.

Keywords: EfficientNet-B7; deep convolutional neural network; flower classification; regularization term

1. Introduction

Deep Convolutional Neural Networks (DCNN) are a

type of deep learning architecture specifically designed

for processing grid-structured data, such as images. By

stacking multiple convolutional and pooling layers,

DCNNs can automatically extract hierarchical features

from data. In recent years, they have been widely

applied in many significant fields, including image

recognition and classification, video analysis, natural

language processing, speech recognition, etc., and have

driven the development of deep learning technology.

Common deep convolutional neural networks include

LeNet (one of the earliest convolutional neural

networks, mainly used for handwritten character

recognition, including convolutional layers, pooling

layers, and fully connected layers, mainly used for

simple image classification tasks), AlexNet (consisting

of an 8-layer network, using ReLU activation functions

and Dropout technology, significantly improving the

accuracy of image classification, widely used in image

recognition and classification tasks), and the

EfficientNet-B7 mentioned in this paper, which is

widely applied.

Studying the classification and recognition of flowers

is of great significance to the study of plant

classification and recognition. Currently, plant species

classification and recognition are mainly achieved

through botanical classification indexes and manual

reference materials, which are both time-consuming

and labor-intensive. With the continuous in-depth

research and wide application of deep convolutional

neural networks, new directions and ideas have been

provided for the classification and recognition of plant

species. In this paper, an improved EfficientNet-B7

neural network model for flower classification is

proposed, which is helpful for the study of plant species

classification and recognition.

2. EfficientNet-B7 Neural Network

Model

Before EfficientNet, the development of Convolutional

Neural Networks (CNNs) usually depended on a fixed

resource budget, and then performance was improved

by increasing the network's width (number of channels),

depth (number of layers), or the resolution of the input

images. However, these one-dimensional scaling

methods often lead to a significant increase in the

number of model parameters, but the performance

improvement gradually tends to saturate.

EfficientNet-B7 is a deep convolutional neural network

architecture proposed by the Google Brain team in

http://www.ijsea.com/

International Journal of Science and Engineering Applications

Volume 14-Issue 04, 42 – 52, 2025, ISSN:- 2319 - 7560

DOI: 10.7753/IJSEA1404.1007

www.ijsea.com 43

2019, belonging to the EfficientNet series of models.

The core innovation of this series of models is the

introduction of a new model scaling method -

Compound Scaling. EfficientNet-B7 is suitable for

image classification tasks that require high precision

and efficient computation, such as medical image

analysis, satellite image processing, and complex

visual recognition tasks. Its efficient architectural

design allows it to perform well even in resource-

constrained environments.

2.1 EfficientNet-B7 Neural Network

Model Structure

EfficientNet-B7 is the largest model in the EfficientNet

series, and its detailed structure is based on Compound

Scaling, which achieves a balance between accuracy

and computational efficiency by simultaneously

adjusting the network's depth, width, and input

resolution. EfficientNet-B7 is divided into three parts:

the input layer, the main structure, and the output layer.

Input Layer: Input resolution: 600×600×3 . Initial

convolutional layer: uses a 3×3 convolution kernel with

a stride of 2, and an output channel number of 48. The

role of this layer is to halve the resolution of the input

image while increasing the number of channels,

preparing for subsequent feature extraction.

Main Structure: The main structure of EfficientNet-B7

consists of multiple MBConv modules, which are the

core building blocks of EfficientNet. Each MBConv

module includes the following parts:

Expand Layer: Increases the number of channels

through a 1×1 convolution kernel.

Depthwise Separable Convolution: Performs

convolution operations on each channel separately to

reduce computational load.

Squeeze-and-Excitation (SE) Block: Used for channel

attention mechanisms to enhance feature expression.

Linear Projection Layer: Restores the number of

channels to the original size through a 1×1 convolution

kernel.

Residual Connection: In some modules, the input is

directly added to the output to avoid the vanishing

gradient problem. The improved EfficientNet-B7

connects each MBConv module through residual

connections.

The main structure of EfficientNet-B7 consists of 7

main modules (Blocks), each containing multiple sub-

modules (Sub-blocks), including MBConv3 and

MBConv6: MBConv3 uses a 3×3 convolution kernel,

while MBConv6 uses a 6×6 convolution kernel. Both

types of modules include an expansion layer,

depthwise separable convolution, Squeeze and

Excitation (SE) block, and linear projection layer.

Repeats: The number of times the MBConv module is

repeated in each stage. Input Channels: The number of

input channels in each stage. Output Channels: The

number of output channels in each stage. Kernel Size:

The size of the convolution kernel. Stride: The stride of

the convolution kernel, used to control the size of the

feature map. Expansion Factor: The expansion factor

of the expansion layer, used to increase the number of

channels. This structural design of EfficientNet-B7

allows it to perform excellently in image classification

tasks while maintaining efficient computational

performance.

Output Layer:Top Convolution Layer: Uses a 1×1

convolution kernel to increase the number of channels

to 1280.

Global Average Pooling: Performs average global

pooling on the feature map, reducing the feature map

to 1×1×1280.

Fully Connected Layer: Fully connected layer, outputs

the number of classes (e.g., 1000 classes for the

ImageNet dataset).

Swish Activation Function: In EfficientNet, the Swish

activation function is widely used, providing better

gradient flow and model performance compared to the

traditional ReLU activation function.

Regularization Technique - Dropout: Dropout is used

before the fully connected layer to prevent overfitting.

Stochastic Depth: Randomly drops some layers during

training to enhance the model's generalization ability

http://www.ijsea.com/

International Journal of Science and Engineering Applications

Volume 14-Issue 04, 42 – 52, 2025, ISSN:- 2319 - 7560

DOI: 10.7753/IJSEA1404.1007

www.ijsea.com 44

Training and Optimization - Optimizer: Uses the

RMSProp optimizer, with a learning rate scheduler

dynamically adjusting the learning rate.

Data Augmentation: Uses AutoAugment data

augmentation technology to improve the model's

generalization ability.

Performance - Accuracy: On the ImageNet dataset,

EfficientNet-B7 achieved a top-1 accuracy of 84.3% -

Number of Parameters: The number of parameters is

66M. Computational Load: The computational load is

37B FLOPS. The efficient architectural design and

excellent performance of EfficientNet-B7 make it a

powerful tool for image classification tasks.

As shown in Figure 1, the architecture diagram of the

EfficientNet-B7 neural network model. The diagram

shows the overall structure of EfficientNet-B7,

including the following main parts: Stem (Root Block):

The initial part of the model, used to process input

images and extract preliminary features. Modules:

EfficientNet-B7 consists of multiple repeated modules,

each containing several sub-layers, which can be

convolutional layers, batch normalization layers (Batch

Normalization), activation functions, etc. The diagram

shows three types of different modules (Module 1,

Module 2, Module 3), which repeat in the network, and

each module may contain a different number of sub-

layers. Skip Connections: The "Add" operations

represented by red arrows in the diagram represent skip

connections, which allow the network to directly

transmit information between different layers, helping

to alleviate the vanishing gradient problem and

promote feature reuse. Final Layers: After all modules,

the network passes through a global average pooling

layer (Global Average Pooling).

Figure 1. Architecture diagram of the EfficientNet-B7

neural network model.

2.2 Algorithm Flowchart of

EfficientNet-B7 with DropPath

Regularization

The main features of the EfficientNet-B7 algorithm

with the introduction of the DropPath regularization

technique are as follows: On the one hand, DropPath

can randomly drop paths to prevent the model from

over-relying on certain fixed paths, thereby avoiding

overfitting. On the other hand, by forcing the network

to work under different path combinations, DropPath

enables the model to better adapt to different data

distributions and enhances its generalization ability.

For deep networks like ResNet, DropPath can

effectively alleviate the vanishing gradient problem, as

gradients can still propagate effectively through skip

connections even if some main paths are dropped. This

helps in training deeper networks. Moreover,

EfficientNet-B7 uses a compound scaling method to

proportionally balance depth, width, and resolution,

improving accuracy while minimizing resource usage.

In summary, these features enable the EfficientNet-B7

with DropPath regularization to more effectively

utilize network parameters and improve model

accuracy and generalization ability when handling

tasks such as image classification. The algorithm

flowchart of EfficientNet-B7 with DropPath

regularization：

http://www.ijsea.com/

International Journal of Science and Engineering Applications

Volume 14-Issue 04, 42 – 52, 2025, ISSN:- 2319 - 7560

DOI: 10.7753/IJSEA1404.1007

www.ijsea.com 45

Start

Data preprocessing, load dataset, data

cleaning, data augmentation, normalization

Build EfficientNet-B7, define model

architecture, integrate DropPath

Compile model, select optimizer, define loss
function, set evaluation metrics

Take a batch for forward propagation

Calculate loss value

Perform backward propagation

Parameter update, batch end? Save best model

Apply DropPath

NO

Model deployment, export model, deploy model
monitoring and maintenance

YES

Result analysis

Figure 2: Algorithm Flowchart of EfficientNet-B7 with

DropPath Regularization

2.2.1Forward Propagation

In neural networks, forward propagation refers to the

process where data is processed through various layers

of the network from the input layer to the output layer

to produce the final result. For the EfficientNet-B7

model with the introduction of the DropPath

regularization technique, the forward propagation

process is shown in Table 2:

Table 2: Forward Propagation Process

St

ep

Description Input

Dimensi

ons

Output

Dimensi

ons

Remar

ks

1 Input Layer N×H×W

×C

N×2H×2

W×64

3x3

convol

2 Skip

Varies Varies output

3 Skip

Connection

N×2H×2

W×64

Varies Add

convol

ution

DropPa

th

4 Global

Average

Polling

Varies N×Cout spatial

dimens

ions

5 Fully

Connected

Layer

N×Cout N×K Output

s

results

6 Activation

Function

N×K N×K Softma

x

Forward Propagation Steps:

Input Layer: The input data first passes through a

convolutional layer, including a 3x3 convolutional

layer with a stride of 2, to extract preliminary features

and reduce spatial dimensions.

MBConv Module: The input data flows through

multiple MBConv modules. Each MBConv module

includes:Expansion Convolution: Uses 1x1

convolution to increase the number of channels.

Depthwise Convolution: Performs convolution

operations separately on each input channel.

SE Module: Enhances the model's representational

ability by adaptively recalibrating channel features.

Projection Convolution: Uses 1x1 convolution to

reduce the number of channels, matching the feature

map size with the input. In each MBConv module's

residual connection, DropPath regularization is applied

to discard the entire module's output with a certain

probability.

Skip Connection: MBConv modules typically include

skip connections, which directly add the input to the

module's output.

Global Average Pooling: After all MBConv modules,

the feature map passes through a global average

pooling layer, reducing the spatial dimensions of each

channel to a single value.

http://www.ijsea.com/

International Journal of Science and Engineering Applications

Volume 14-Issue 04, 42 – 52, 2025, ISSN:- 2319 - 7560

DOI: 10.7753/IJSEA1404.1007

www.ijsea.com 46

Fully Connected Layer: The pooled features pass

through one or more fully connected layers to

ultimately output prediction results.

Activation Function: Typically, there is an activation

function at the end of the network, softmax, used to

convert the output into a probability distribution.

Output: Assuming the model is a classification model,

the goal is to classify the input image into K categories.

The final output layer's dimensions are N×K, where N

is the input batch size, and K is the number of

categories. Each output value represents the probability

that the input image belongs to a certain category.

2.2.2 Backward Propagation

Backward propagation is a key algorithm in the training

process of the improved EfficientNet-B7 neural

network, used to calculate the gradients of the loss

function with respect to the network parameters and use

these gradients to update the network parameters. The

backward propagation process is shown as follows:

Table 3. Backpropagation Process

step Description Remarks

1
Initialize

Gradients

Prepare to start

backward

propagation

2

Calculate

Output Layer

Gradients

Use the

derivative of

the loss

function

3

Calculate

Output Layer

Weights and

Bias Gradients

Use the

derivative of

the activation

function

4

Calculate

Gradients

Layer by Layer

Backwards

Use the chain

rule

5

Handle

Activation

Functions

Softmax

activation

function

6

Handle

Convolutional

Layers

Convolve the

input feature

map and the

gradient of the

loss with

respect to the

output feature

map

7
Handle

DropPath

Skip the

dropped paths

8
Parameter

Update

Adam

optimizer

9
Repeat the

Process

Until a

predetermined

number of

training epochs

is reached or

other stopping

conditions are

met

Initialization of Gradients: Before starting

backpropagation, the gradients of all network

parameters need to be initialized to zero. This is

because gradient information will be accumulated

gradually during the backpropagation process.

Calculation of Output Layer Gradients: Starting from

the output layer, calculate the gradient of the loss

function with respect to the activation values of the

output layer. This usually involves the derivative of the

loss function. For example, for cross-entropy loss, it is

necessary to calculate the difference between the true

labels and the predicted probabilities. Then, calculate

the gradient of the output layer activation values with

respect to the output layer weights. This involves the

derivative of the activation function. If the output layer

uses the softmax activation function, then the

derivative of the softmax function needs to be

calculated. For an activation function f, its gradient g is:

g=
∂f

∂z
。Here, z is the input to the activation function。

Softmax(zi) =
ezi

∑ ezjK
j=1

http://www.ijsea.com/

International Journal of Science and Engineering Applications

Volume 14-Issue 04, 42 – 52, 2025, ISSN:- 2319 - 7560

DOI: 10.7753/IJSEA1404.1007

www.ijsea.com 47

z is a vector containing K elements, and zi is the i-th

element of the vector, where K is the total number of

classes. The softmax function ensures that the K output

values are all positive and their sum is 1.

Layer-by-Layer Gradient Calculation: Calculate

gradients from the output layer to the previous layers

layer by layer. For each layer, calculate the gradient of

the loss with respect to the activation values of that

layer, and then calculate the gradient of the activation

values with respect to the weights and biases of that

layer. This process involves the chain rule, which

means calculating the gradient of the previous layer

based on the known gradients.

Handling Activation Functions and Convolutional

Layers: For the softmax activation function, calculate

its derivative. For convolutional layers, calculate the

gradient of the convolutional kernel, which involves

performing a convolution operation on the input feature

map and the gradient of the loss with respect to the

output feature map. The gradient of the weights w for a

convolutional layer involves the following convolution

operation:

∂L

∂W
= ∑

∂L

∂ (x, y)y
^

.
∂ (x, y)y

^

∂Wx,y

where x,y represent the position of the output feature

map.

Special Case of Applying DropPath: At locations

where DropPath is introduced, since some paths are

randomly dropped during the forward propagation, the

gradients of these paths should be zero during

backpropagation. This means that when calculating

gradients, these dropped paths need to be skipped. D

represents the output of the DropPath layer, and its

gradient is:

∂L

∂D
= ∫

if D ≠ 0
otℎerwise

∂L
∂D

0

Parameter Update: Once the gradients of all parameters

have been calculated, the network parameters can be

updated using the Adam optimizer. The optimizer

adjusts the parameters based on the gradients and

learning rate to minimize the value of the loss function.

Repeat the Process: Repeat the above process in each

training epoch until the predetermined number of

training epochs is reached or other stopping conditions

are met. In practical applications, backpropagation is

usually combined with various optimization algorithms

and regularization techniques to improve the accuracy

and generalization ability of the model.

3. Flower Dataset

Google Cloud provides a commonly used flower

dataset with 104 species, stored in .tfrec binary

format. The dataset is available in four different sizes:

192x192, 224x224, 331x331, and 512x512.As shown

in Table 4, the flower dataset in different sizes is

listed.

Table 4. Flower Dataset

Size Set Count
File

Format

192x192

Test

Val

Train

0-15 .tfrec

224x224

Test

Val

Train

0-15 .tfrec

331x331

Test

Val

Train

0-15 .tfrec

512x512

Test

Val

Train

0-15 .tfrec

4. Flower Classification Based on

EfficientNet-B7 Model

Flower classification based on the EfficientNet-B7

model is approached from four aspects. The first step is

to define the dataset, showing the sizes of the training,

validation, and testing datasets, and randomly sampling

to display images from the dataset. The second step

involves setting up the EfficientNet-B7 model in

preparation for model training. The third step trains the

EfficientNet-B7 model using flower training samples

to achieve flower classification and analyzes the results.

http://www.ijsea.com/

International Journal of Science and Engineering Applications

Volume 14-Issue 04, 42 – 52, 2025, ISSN:- 2319 - 7560

DOI: 10.7753/IJSEA1404.1007

www.ijsea.com 48

The final step evaluates the model, assessing its

performance using F1 score, precision, and recall.

4.1 Defining the Dataset

The commonly used flower dataset, comprising 104

species, is available on Google Cloud in the form of

`.tfrec` binary storage files. For this experiment, the

512x512 size dataset is selected for classification

validation. The dataset is divided into training,

validation, and testing sets in the ratio of 70%, 15%,

and 15%, respectively. Image pixel values are

normalized to the range [0,1] to accelerate model

training. To enhance the model's generalization

capability, data augmentation can be applied to the

training data.

4.2 Setting Up the EfficientNet-B7

Model

Model Architecture Selection: EfficientNet-B7 is one

of the largest models in the EfficientNet series, offering

high performance and computational efficiency. It

optimizes the network's depth, width, and input

resolution through compound scaling techniques,

making it suitable for complex image classification

tasks.

Loading Pre-trained Weights: EfficientNet-B7

typically comes with pre-trained weights on the

ImageNet dataset. These weights can serve as initial

model parameters, facilitating faster convergence and

improved performance on new tasks. When loading

pre-trained weights, one can choose whether to include

the model's top (i.e., fully connected layer).

Freezing Convolutional Layers: To leverage the pre-

trained model's feature extraction capabilities while

reducing training time and computational resources,

the convolutional layers of the pre-trained model are

usually frozen. Freezing means that the weights of

these layers will not be updated during training. With

frozen convolutional layers, the model can focus on

learning the new classification task without relearning

basic image features.

Modifying the Model Top : The original top of the

model is designed for the ImageNet dataset and

typically includes a global average pooling layer and a

fully connected layer with 1000 outputs (the number of

ImageNet classes). To adapt the model to a new

classification task (such as flower classification), the

model top needs to be modified as follows:

 1. Global Average Pooling Layer: Converts feature

maps into fixed-size feature vectors for input to the

fully connected layer.

 2. Dropout Layer: Adds a Dropout layer to reduce

overfitting. During training, the Dropout layer

randomly discards some neurons, enhancing the

model's generalization ability.

 3. Custom Fully Connected Layer: Adds a new fully

connected layer based on the number of classes in the

new task (e.g., 104 classes for flower classification)

and uses the softmax activation function to output

classification probabilities.

Compiling the Model: After defining the model

structure, it needs to be compiled, specifying the

optimizer, loss function, and evaluation metrics:

 1. Optimizer: Choose a suitable optimizer, such as

the Adam optimizer, to update the model's weights.

 2. Loss Function: For multi-class classification tasks,

the categorical cross-entropy loss function is

commonly used.

 3. Evaluation Metrics: Accuracy is typically used as

the metric to evaluate model performance.

Model Summary: To better understand the model's

structure and number of parameters, the model

summary can be printed. The summary includes the

name, output shape, and number of parameters for

each layer, as well as the total number of parameters,

trainable parameters, and non-trainable parameters in

the model. Table 5 below shows the structure of the

EfficientNet-B7model.

http://www.ijsea.com/

International Journal of Science and Engineering Applications

Volume 14-Issue 04, 42 – 52, 2025, ISSN:- 2319 - 7560

DOI: 10.7753/IJSEA1404.1007

www.ijsea.com 49

Table 5. EfficientNet-B7 Model Architecture

Layer (type) Output

Shape

Param

 lambda (None, 224,

224, 3)

0

keras_layer (None, 2560) 64097680

dense (None, 3) 7683

Total params: 64,105,363

Trainable params: 63,794,643

Non-trainable params: 310,720

Model Architecture:

1. Lambda Layer (lambda_1)：Output Shape:(None,

512, 512, 3),Number of Parameters: 0,Description: The

Lambda layer is typically used to implement custom

operations. The output shape (None, 512, 512,

3)indicates that the layer produces a 4-dimensional

tensor. Here, `None` represents the batch size, which

can be dynamically adjusted as needed. `512, 512`

indicates the height and width of the image, meaning

the input image is resized to 512×512 pixels. The `3`

represents the number of channels (for RGB images).

The parameter count is 0, indicating that this layer has

no trainable parameters.

2. KerasLayer (keras_layer_1):Output Shape: (None,

2560),Number of Parameters: 64,097,680,Description:

KerasLayer is a layer that encapsulates a pre-trained

model and is part of EfficientNet-B7. The output shape

`(None, 2560)` indicates that the layer produces a 2-

dimensional tensor. `None` represents the batch size,

and `2560` represents the feature dimension of the

output, which is the number of features from the output

layer of the EfficientNet-B7 model. The total number

of parameters in this layer is 64,097,680, including

both trainable and non-trainable parameters.

3. Dense Layer (dense_1):Output Shape: (None,

104)，Number of Parameters: 266,344，Description:

The Dense layer is a fully connected layer commonly

used to map features to target classes. The output shape

`(None, 104)` indicates that the layer produces a 2-

dimensional tensor. `None` represents the batch size,

and `104` represents the number of output classes,

indicating that this is a 104-class classification task.

The total number of parameters in this layer is 266,344.

Summary of Model Parameters:Total Parameters are

64,364,024.This is the total number of parameters in

the model, including both trainable and non-trainable

parameters.Trainable Parameters are 64,053,304 These

are the parameters that can be updated during training,

typically including weights and biases.Non trainable

Parameters are 310,720These are fixed parameters in

the model, usually from the pre-trained model weights.

They do not update during training.Summary of Model

Architecture:Input Layer: The input image is resized to

a 512×512 RGB image.Pre-trained Model Layer: A

pre-trained model (such as EfficientNet-B7) is used,

with an output feature dimension of 2560.Fully

Connected Layer: The features from the pre-trained

model are mapped to 104 classes.

This architectural design fully leverages the powerful

feature extraction capabilities of the pre-trained model

and applies them to a specific classification task

through the fully connected layer.

4.3 Training the EfficientNet-B7

Model

Model Training:

1. Initiating Training:The model.fit() method is used to

start model training. It specifies the training dataset, the

number of steps per epoch, the total number of training

epochs, the validation dataset, the number of validation

steps, and the callback functions.

2. Dynamic Learning Rate Adjustment:At the

beginning of each epoch, the `LearningRateScheduler`

callback function calls the `lrfn` function to update the

learning rate. In this experiment:

 LR_START: The initial learning rate is set to 0.00001.

 LR_MIN: The minimum learning rate is set to

0.00001.

 LR_MAX: The maximum learning rate is set to

0.00005×`strategy.num_replicas_in_sync`.`strategy.n

um_replicas_in_sync` represents the number of

replicas in distributed training and is used to adjust the

learning rate based on the number of devices.

LR_RAMPUP_EPOCHS: The number of epochs for

learning rate ramp-up is set to 4. During these epochs,

http://www.ijsea.com/

International Journal of Science and Engineering Applications

Volume 14-Issue 04, 42 – 52, 2025, ISSN:- 2319 - 7560

DOI: 10.7753/IJSEA1404.1007

www.ijsea.com 50

the learning rate linearly increases from `LR_START`

to `LR_MAX`.

LR_SUSTAIN_EPOCHS: The number of epochs to

sustain the learning rate is set to 0. During these epochs,

the learning rate remains at `LR_MAX`.

LR_EXP_DECAY: The exponential decay factor for

the learning rate is set to 0.8. After the ramp-up and

sustain phases, the learning rate will decay

exponentially.

The following figure illustrates a learning rate schedule

that changes over time or training epochs.

 Figure 3. Learning Rate Schedule

The chart shows three phases of change in the learning

rate:

Linear Increase Phase: At the beginning of training, the

learning rate starts from a small initial value (the left

endpoint in the figure). As training progresses, the

learning rate increases linearly until it reaches a set

maximum value (the peak in the figure). This phase

usually lasts for several epochs, with the goal of

allowing the model to quickly escape local minima in

the early stages of training.

Stable Phase: Once the learning rate reaches the

maximum value, it remains at this level for a period of

time (the horizontal line segment in the figure). During

this phase, the model continues to train using the higher

learning rate to further optimize the weights.

Exponential Decay Phase: After reaching the

maximum value and maintaining it for a while, the

learning rate begins to decay exponentially (the

downward curve in the figure). This means that the

learning rate gradually decreases with each epoch,

typically reduced by a certain decay factor (e.g., 0.8).

The decay phase helps the model make finer weight

adjustments in the later stages of training, avoiding

large steps that could cause it to overshoot the optimal

solution.

This learning rate schedule strategy helps the model to

adopt different learning strategies at different stages of

training, thereby improving training efficiency and

model performance.

3. Monitoring the Training Process:After each epoch,

print the training loss , training accuracy , validation

loss and validation accuracy .

4. Training Completion:After 13 training epochs, the

model's training loss gradually decreases, and the

training accuracy gradually increases. The validation

loss and validation accuracy also show similar trends,

indicating that the model's performance on the

validation set is gradually improving. Figures 4 and 5

show the changes in loss and accuracy during the

training process of the improved model.

 Figure 4. Loss Values of the EfficientNet-B7 Model

It can be seen from this figure that the model performs

well during the training process, successfully reducing

the loss. The introduction of the DropPath

regularization technique in the improved model has

achieved good fitting effects on both the training and

validation data.

http://www.ijsea.com/

International Journal of Science and Engineering Applications

Volume 14-Issue 04, 42 – 52, 2025, ISSN:- 2319 - 7560

DOI: 10.7753/IJSEA1404.1007

www.ijsea.com 51

 Figure 5. Accuracy of the EfficientNet-B7 Model

It can be seen from this figure that the model performs

well during the training process, successfully

increasing the accuracy and achieving good

classification results on both the training and validation

data. However, the specific performance still needs to

be further evaluated through other metrics such as

precision, recall, and F1 score.

4.4 Performance Evaluation of the

EfficientNet-B7 Model

As shown in Figure 6, the confusion matrix evaluates

the performance of the EfficientNet-B7 model using

three metrics: precision, recall, and F1 score.

Figure 6. Confusion Matrix

In the figure, the rows represent the actual class labels,

while the columns represent the predicted class labels

by the model. As can be seen from the confusion matrix,

the model achieves an F1 score of 0.952, precision of

0.952, and recall of 0.955 in the classification task,

demonstrating its excellent performance in

classification.

5 Conclusion

This paper takes flowers as the research subject and

proposes an improved flower classification model

using the EfficientNet-B7 convolutional neural

network with the incorporation of the DropPath

regularization term, based on the flower dataset

provided on Google Cloud, which includes 104 species.

The model reduces the training time and effectively

solves the classification task of iris flowers. It can be

widely applied to the recognition of other plant species.

6.References
[1] Fröhlich, B. and Plate, J. (2000). The cubic mouse:

a new device for three-dimensional input. In

Proceedings of the SIGCHI Conference on

Human Factors in Computing Systems.

[2] Guru, D.S., Sharath Kumar, Y.H., Manjunath, S.

(2011). Textural features in flower classification.

Math. Comput. Modell. 54(3–4), 1030–1036.

[3] Mabrouk, A., Najjar, A., Zagrouba, E. (2014).

Image flower recognition based on a new method

for color feature extraction. In: VISAPP 2014 -

Proceedings of the 9th International Conference

on Computer Vision Theory and Applications, vol.

2.

[4] Huang, G., Liu, Z., Van Der Maaten, L.(2017).

Densely connected convolutional networks. In:

2017 Proceedings of the IEEE Conference on

Computer Vision and Pattern Recognition. IEEE.

[5] Shaparia, R., Patel, N., Shah, Z. (2017). Flower

classification using texture and color features.

[6] Antonelli, A., et al.(2020). State of the world’s

plants and fungi 2020. Royal Botanic Gardens,

Kew.

[7] Narvekar, C., Rao, M. (2020). Flower

classification using CNN and transfer learning in

CNN-agriculture perspective. In: 2020 3rd

International Conference on Intelligent

Sustainable Systems (ICISS), pp. 660–664.

[8] Alipour, N., Tarkhaneh, O., Awrangjeb, M., Tian,

H.(2021). Flower image classification using deep

convolutional neural network. Pp. 1–4.

http://www.ijsea.com/

International Journal of Science and Engineering Applications

Volume 14-Issue 04, 42 – 52, 2025, ISSN:- 2319 - 7560

DOI: 10.7753/IJSEA1404.1007

www.ijsea.com 52

[9] Tan, M., Le, Q. (2019). EfficientNet: rethinking

model scaling for convolutional neural networks.

arXiv:1905.11946v5.

[10] Alipour, N., Tarkhaneh, O., Awrangjeb, M., Tian,

H. (2021). Flower image classification using deep

convolutional neural network. Pp. 1–4.

http://www.ijsea.com/

