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Abstract: Large language models (LLMs) have emerged as transformative tools in healthcare, leveraging advanced natural language 

processing to enhance clinical workflows, patient communication, and medical education. This survey paper provides a comprehensive 

analysis of LLMs’ applications, including named entity recognition, clinical decision support, and patient-friendly report generation, 

highlighting their ability to process unstructured medical data such as electronic health records and biomedical literature. Domain-specific 

models like BioBERT and ClinicalBERT, alongside generative models like GPT-3 and Med-PaLM, demonstrate superior performance in 

tasks requiring medical context, achieving high accuracy in predictive analytics and question answering. However, significant challenges 

impede their widespread adoption, including computational intensity, data biases, privacy concerns, and regulatory uncertainties. Ethical 

issues, such as perpetuating healthcare disparities, and technical limitations, like sensitivity to noisy data, necessitate innovative solutions 

like federated learning, differential privacy, and explainable AI. The paper also explores multimodal LLMs integrating text with imaging or 

genomic data, which promise holistic diagnostic capabilities. Future directions focus on developing lightweight, interpretable models and 

standardized frameworks to ensure equitable and safe deployment. By synthesizing current advancements, methodologies, and obstacles, 

this survey underscores the transformative potential of LLMs in healthcare while advocating for collaborative efforts among researchers, 

clinicians, and policymakers to address challenges and realize their full impact on improving patient outcomes and healthcare efficiency. 
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1. INTRODUCTION 
The rapid advancement of large language models (LLMs) has ushered 

in a new era of artificial intelligence applications in healthcare, 

transforming the way medical data is processed, analyzed, and 

utilized. LLMs, built on transformer architectures, leverage vast 

computational power and extensive training data to understand and 

generate human-like text, making them uniquely suited for handling 

the unstructured and complex nature of medical data, such as 

electronic health records (EHRs) and biomedical literature [17]. 

These models, ranging from general-purpose architectures like GPT-

3 to domain-specific variants like BioBERT, have demonstrated 

remarkable capabilities in tasks such as named entity recognition 

(NER), clinical decision support, and patient communication [38], 

[42]. As healthcare systems grapple with increasing data volumes and 

the need for efficient, accurate, and patient-centered solutions, LLMs 

offer unprecedented opportunities to enhance clinical workflows and 

improve patient outcomes. 

The evolution of LLMs in healthcare has been driven by their ability 

to adapt to domain-specific contexts through pre-training and fine-

tuning on medical corpora. Early models like BERT were adapted into 

BioBERT and ClinicalBERT by pre-training on PubMed and MIMIC 

datasets, enabling them to capture specialized medical terminology 

and context [38], [39]. These advancements have led to significant 

improvements in tasks such as relation extraction and automated ICD 

coding, reducing manual effort and improving diagnostic accuracy 

[40], [65]. More recently, generative models like GPT-3 and Med-

PaLM have expanded the scope of LLMs to include patient-friendly 

report generation and medical question answering, achieving near-

human performance in complex clinical tasks [42], [43]. This 

evolution underscores the potential of LLMs to bridge the gap 

between data-driven insights and practical healthcare applications. 

Despite their promise, the integration of LLMs into healthcare is 

fraught with challenges, including technical, ethical, and regulatory 

hurdles. The computational intensity of training and deploying LLMs, 

coupled with their sensitivity to noisy clinical data, limits their 

scalability in resource-constrained settings [63], [65]. Ethical 

concerns, such as biases in training data and lack of interpretability, 

raise risks of perpetuating healthcare disparities and undermining 

clinician trust [66], [67]. Privacy issues and the need for compliance 

with regulations like HIPAA and GDPR further complicate 

deployment, necessitating innovative approaches like federated 

learning and differential privacy [68], [69]. These challenges 

highlight the need for robust methodologies and frameworks to ensure 

the safe, equitable, and effective use of LLMs in clinical practice. 

This survey paper aims to provide a comprehensive overview of 

LLMs in healthcare, synthesizing their development, applications, 

challenges, and future directions. By examining the taxonomy, 

methodologies, key findings, and obstacles, the paper seeks to offer 

insights for researchers, clinicians, and policymakers navigating the 

integration of LLMs into healthcare systems. Through a detailed 

literature review, we explore the state-of-the-art models and their 

impact on clinical workflows, patient engagement, and medical 

education [38], [42], [43]. The paper also addresses critical 

challenges, such as bias, privacy, and regulatory compliance, 

proposing strategies to overcome them [66], [68], [70]. Ultimately, 

this survey underscores the transformative potential of LLMs while 

advocating for responsible development to ensure their safe and 

equitable deployment in healthcare. 

 

2. LITERATURE REVIEW 
The advent of large language models (LLMs) has significantly 

transformed the landscape of healthcare informatics, enabling 

advanced natural language processing (NLP) capabilities for tasks 

such as clinical decision support, medical record analysis, and patient 

interaction. LLMs, such as BERT (Bidirectional Encoder 

Representations from Transformers) and its derivatives, have been 
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adapted for healthcare applications due to their ability to understand 

and generate human-like text. For instance, BioBERT, a domain-

specific adaptation of BERT, was pre-trained on large-scale 

biomedical corpora, including PubMed abstracts and PMC full-text 

articles, achieving superior performance in tasks like named entity 

recognition (NER) and relation extraction in biomedical texts [1]. 

Similarly, ClinicalBERT, fine-tuned on clinical notes from the 

MIMIC-III database, has demonstrated efficacy in extracting 

meaningful insights from unstructured electronic health records 

(EHRs) [2]. These models leverage transfer learning, allowing them 

to adapt pre-trained knowledge to specific healthcare tasks with 

minimal additional training. The ability of LLMs to process vast 

amounts of unstructured medical data has opened new avenues for 

improving diagnostic accuracy and operational efficiency in 

healthcare settings. 

Recent advancements in LLMs, such as GPT-3 and its successors, 

have further expanded their utility in healthcare by enabling 

generative capabilities for tasks like medical dialogue systems and 

automated report generation. GPT-3, with its 175 billion parameters, 

has been employed in generating patient-friendly explanations of 

medical conditions, enhancing patient-provider communication [3]. 

Studies have shown that fine-tuning GPT-3 on medical question-

answering datasets, such as MedQA, improves its ability to provide 

accurate responses to clinical queries, though limitations in factual 

accuracy remain [4]. Moreover, models like Med-PaLM, developed 

specifically for medical applications, have achieved near-human 

performance in answering USMLE-style questions, demonstrating 

the potential of LLMs to assist in medical education and decision-

making [5]. These generative models excel in synthesizing coherent 

narratives from complex medical data, which is particularly valuable 

for summarizing patient histories or generating discharge summaries. 

However, their reliance on large datasets and computational resources 

poses challenges for widespread adoption in resource-constrained 

healthcare environments. 

The integration of LLMs into clinical workflows has been explored 

extensively, particularly in the automation of EHR analysis and 

clinical decision support systems (CDSS). For example, transformer-

based models like T5 have been used to extract structured information 

from unstructured clinical notes, enabling automated coding of 

diagnoses and procedures [6]. This capability reduces administrative 

burdens and improves billing accuracy. Additionally, LLMs have 

been applied in predictive analytics, such as identifying patients at 

risk of adverse events. A study by Jiang et al. [7] demonstrated that a 

fine-tuned BERT model could predict hospital readmissions with an 

AUC of 0.85 by analyzing discharge summaries. However, the black-

box nature of these models raises concerns about interpretability, 

which is critical in clinical settings where transparency is necessary 

for trust and regulatory compliance [8]. Techniques like attention 

visualization and explainable AI (XAI) are being explored to address 

these concerns, but their integration into LLMs for healthcare remains 

an active area of research. 

Ethical and regulatory challenges associated with LLMs in healthcare 

have garnered significant attention in recent literature. Issues such as 

data privacy, bias, and accountability are critical, given the sensitive 

nature of medical data. LLMs trained on biased datasets may 

perpetuate disparities in healthcare delivery, particularly for 

underrepresented populations [9]. For instance, Obermeyer et al. [10] 

highlighted how biases in EHR data can lead to skewed predictions 

in risk assessment models. Furthermore, the use of LLMs in patient-

facing applications, such as chatbots for mental health support, raises 

concerns about the potential for harm due to incorrect or misleading 

advice [11]. Regulatory frameworks, such as the FDA’s guidelines on 

AI in medical devices, are evolving to address these challenges, but 

gaps remain in standardizing the evaluation of LLMs for clinical use 

[12]. Researchers advocate for robust validation protocols and 

continuous monitoring to ensure the safety and efficacy of LLM-

based healthcare applications. Table 1 shows the key LLMs used in 

healthcare.  

 

Table 1. Summarizes key LLMs used in healthcare, their training 

data, and primary applications 

 

Model Training Data Primary 

Applications 

Reference 

BioBERT PubMed, PMC NER, relation 

extraction 

[1] 

ClinicalBERT MIMIC-III 

clinical notes 

EHR analysis, 

clinical 

prediction 

[2] 

GPT-3 General web, 

fine-tuned on 

MedQA 

Medical 

dialogue, patient 

education 

[3], [4] 

Med-PaLM Medical 

corpora, 

USMLE 

datasets 

Medical 

question 

answering, 

education 

[5] 

T5 General and 

clinical text 

Automated 

coding, 

information 

extraction 

[6] 

 

Emerging trends in LLM research for healthcare focus on multimodal 

models and federated learning to address limitations in data 

availability and model generalization. Multimodal LLMs, which 

integrate text with other data types like medical images or genomic 

data, are gaining traction. For instance, models combining NLP with 

computer vision have shown promise in radiology report generation 

by analyzing both imaging data and clinical notes [13]. Federated 

learning, which allows models to be trained across decentralized 

datasets without sharing sensitive patient data, addresses privacy 

concerns and enables collaborative model development across 

institutions [14]. These approaches are particularly relevant for 

scaling LLMs in low-resource settings, where access to large, 

centralized datasets is limited. However, challenges such as 

computational complexity and the need for standardized data formats 

remain barriers to their widespread implementation. 

Looking ahead, the future of LLMs in healthcare lies in enhancing 

their robustness, interpretability, and accessibility. Research is 

increasingly focused on developing lightweight models that retain 

high performance while being deployable on edge devices, such as 

mobile health applications [15]. Additionally, efforts to create open-

source medical LLMs aim to democratize access to advanced NLP 

tools for healthcare providers worldwide. The integration of LLMs 

with knowledge graphs and real-time data streams could further 

enhance their utility in dynamic clinical environments [16]. 

Nevertheless, addressing ethical concerns, such as ensuring fairness 

and mitigating bias, will be critical to realizing the full potential of 

LLMs in healthcare. Collaborative efforts between researchers, 

clinicians, and policymakers are essential to establish guidelines that 

balance innovation with patient safety and equity. 
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3. TAXONOMY AND METHODS 
The application of large language models (LLMs) in healthcare 

necessitates a systematic taxonomy to classify these models based on 

their architectures, training paradigms, and specific use cases. 

Broadly, LLMs in healthcare can be categorized into three main types: 

general-purpose models fine-tuned for healthcare, domain-specific 

models pre-trained on medical corpora, and multimodal models 

integrating text with other data modalities. General-purpose models, 

such as GPT-3 and LLaMA, are initially trained on diverse internet 

corpora and subsequently fine-tuned on healthcare datasets like 

MIMIC-IV or PubMed to address tasks such as clinical note 

summarization and medical question answering [17]. Domain-

specific models, such as BioBERT and ClinicalBERT, are pre-trained 

on biomedical or clinical texts, enabling them to capture specialized 

vocabulary and context inherent to healthcare [18]. Multimodal 

models, which combine text with imaging or genomic data, are 

emerging as powerful tools for tasks like radiology report generation 

[19]. This taxonomy facilitates a structured understanding of LLMs’ 

capabilities and limitations in healthcare applications. 

Training methodologies for LLMs in healthcare typically involve a 

combination of pre-training, fine-tuning, and transfer learning to 

adapt models to specific clinical tasks. Pre-training is conducted on 

large-scale datasets, such as PubMed or EHR databases, to imbue 

models with domain knowledge. For instance, BioMedLM, a model 

pre-trained on biomedical literature, leverages self-supervised 

learning to predict masked tokens in medical texts, enhancing its 

performance in named entity recognition (NER) and relation 

extraction [20]. Fine-tuning further refines these models on task-

specific datasets, such as MedNLI for natural language inference in 

clinical texts [21]. Transfer learning enables the adaptation of pre-

trained models to new tasks with limited labeled data, a critical 

advantage in healthcare where annotated datasets are often scarce 

[22]. These methods ensure that LLMs can generalize across diverse 

clinical scenarios while maintaining high accuracy in specialized 

tasks. 

Supervised and unsupervised learning approaches are central to the 

development of LLMs for healthcare. Supervised fine-tuning is 

commonly used for tasks requiring labeled data, such as predicting 

patient outcomes from EHRs. For example, a fine-tuned BERT model 

achieved an F1 score of 0.92 in identifying adverse drug events from 

clinical notes [23]. Unsupervised methods, such as masked language 

modeling, are employed during pre-training to learn contextual 

representations from unannotated medical texts. Recent 

advancements include contrastive learning, where models like 

SimCSE are trained to maximize similarity between semantically 

related medical texts, improving performance in tasks like clinical 

text classification [24]. Hybrid approaches combining supervised and 

unsupervised learning are also gaining traction, particularly for tasks 

like automated ICD coding, where models leverage both labeled and 

unlabeled EHR data to improve accuracy [25]. These methods address 

the challenge of data scarcity while enhancing model robustness. 

The integration of LLMs into clinical workflows relies heavily on 

methods for model optimization and deployment. Techniques such as 

knowledge distillation and quantization are used to create lightweight 

models suitable for resource-constrained environments, such as 

mobile health applications or rural clinics [26]. Knowledge 

distillation involves training a smaller “student” model to replicate 

the behavior of a larger “teacher” model, reducing computational 

requirements without significant performance loss. For instance, a 

distilled version of ClinicalBERT was deployed on edge devices for 

real-time EHR analysis, achieving comparable accuracy to its larger 

counterpart [27]. Quantization reduces model size by lowering the 

precision of weights, enabling faster inference on low-power devices 

[28]. These optimization techniques are critical for scaling LLMs to 

diverse healthcare settings, particularly in low-resource regions 

where computational infrastructure is limited. Table 2 illustrates the 

key methods used in developing and deploying LLMs for healthcare.  

 

Table 2: Summarizes key methods used in 

developing and deploying LLMs for healthcare 
 

Method Description Applications Reference 

Pre-training Self-supervised 

learning on 

medical corpora 

NER, relation 

extraction 

[20] 

Fine-tuning Task-specific 

training with 

labeled data 

Outcome 

prediction, 

ICD coding 

[23] 

Contrastive 

Learning 

Maximizing 

similarity 

between related 

texts 

Text 

classification, 

semantic 

search 

[24] 

Knowledge 

Distillation 

Training smaller 

models from 

larger ones 

Edge 

deployment, 

mobile health 

apps 

[27] 

Quantization Reducing model 

size via low-

precision 

weights 

Real-time 

inference, 

resource-

constrained 

settings 

[28] 

 

Ethical considerations in the development of LLMs for healthcare 

have led to the adoption of methods like federated learning and 

differential privacy to address data security and fairness. Federated 

learning enables collaborative training across multiple institutions 

without sharing sensitive patient data, preserving privacy while 

leveraging diverse datasets. A study by Rieke et al. [29] demonstrated 

that federated learning improved the performance of an LLM-based 

mortality prediction model across hospitals by 15% compared to 

single-institution training. Differential privacy adds noise to training 

data to prevent the reconstruction of individual patient records, a 

critical safeguard for EHR-based models [30]. These methods 

mitigate risks associated with data breaches and ensure compliance 

with regulations like HIPAA and GDPR. However, they introduce 

computational overhead and may reduce model accuracy, 

necessitating careful trade-offs in their implementation. 

Evaluation and validation methods are critical for ensuring the 

reliability of LLMs in healthcare. Standard metrics like F1 score, 

AUC-ROC, and BLEU are used to assess model performance in tasks 

such as NER, classification, and text generation [31]. However, 

clinical applications demand additional validation to ensure 

generalizability and robustness. Cross-institutional validation, where 

models are tested on data from different hospitals, is increasingly 

employed to assess performance across diverse patient populations 

[32]. Adversarial testing, which evaluates model robustness against 

perturbed inputs, is also gaining attention to address vulnerabilities in 

clinical LLMs [33]. Furthermore, human-in-the-loop evaluation, 

where clinicians validate model outputs, is essential for ensuring 

clinical relevance and safety, particularly in high-stakes applications 

like CDSS [34]. These rigorous evaluation methods are vital for 

building trust in LLM-based healthcare tools. 
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Emerging methods in LLM development focus on enhancing 

interpretability and integrating real-time data for dynamic healthcare 

applications. Explainable AI (XAI) techniques, such as SHAP 

(SHapley Additive exPlanations) and attention-based visualization, 

are employed to elucidate model decision-making processes, 

addressing the black-box nature of LLMs [35]. For example, SHAP 

was used to interpret predictions of a BERT-based model for sepsis 

detection, improving clinician trust [36]. Real-time integration with 

clinical data streams, such as vital signs or lab results, is another 

frontier, with models like Med-PaLM 2 leveraging APIs to provide 

up-to-date recommendations [37]. These methods enhance the 

practical utility of LLMs in fast-paced clinical environments but 

require robust infrastructure for seamless data integration and real-

time processing. Future research is likely to focus on standardizing 

these methods to ensure scalability and interoperability across 

healthcare systems. 

 

4. KEY FINDINGS 
The application of large language models (LLMs) in healthcare has 

yielded significant advancements in processing and analyzing 

unstructured medical data, particularly in electronic health records 

(EHRs) and biomedical literature. Studies have demonstrated that 

domain-specific models like BioBERT and ClinicalBERT outperform 

general-purpose LLMs in tasks such as named entity recognition 

(NER) and relation extraction, achieving F1 scores above 0.90 in 

extracting clinical entities from unstructured texts [38]. These models 

leverage pre-training on large biomedical corpora, such as PubMed 

and MIMIC-IV, to capture domain-specific semantics, enabling 

precise identification of medical terms and relationships [39]. For 

instance, BioBERT’s ability to identify drug-disease associations has 

improved drug repurposing efforts, reducing manual review time by 

up to 40% in some studies [40]. These findings underscore the 

importance of domain adaptation in enhancing the accuracy and 

utility of LLMs for healthcare applications. 

LLMs have shown remarkable promise in clinical decision support 

systems (CDSS), particularly in predictive analytics and diagnostic 

assistance. Fine-tuned models, such as those based on BERT and GPT 

architectures, have achieved high accuracy in predicting patient 

outcomes, such as hospital readmissions and mortality risk. A study 

by Zhang et al. [41] reported that a BERT-based model predicted 30-

day readmissions with an AUC of 0.87, surpassing traditional 

statistical models. Similarly, Med-PaLM demonstrated near-human 

performance on USMLE-style questions, correctly answering 85% of 

medical queries, highlighting its potential as an educational and 

diagnostic tool [42]. These findings suggest that LLMs can augment 

clinical decision-making, though their integration into real-world 

workflows requires careful validation to ensure reliability and 

generalizability across diverse patient populations. 

The generative capabilities of LLMs, particularly models like GPT-3 

and its successors, have transformed patient-provider communication 

and medical education. These models excel in generating patient-

friendly explanations of complex medical conditions, improving 

health literacy among patients. A study by Liu et al. [43] found that 

GPT-3-generated summaries of radiology reports were rated as 90% 

comprehensible by patients, compared to 60% for original reports. 

Additionally, LLMs have been used to develop virtual tutors for 

medical students, providing interactive learning experiences that 

adapt to individual learner needs [44]. However, limitations in factual 

accuracy and the risk of generating misleading information remain 

significant challenges, necessitating human oversight to ensure 

clinical safety [45]. These findings highlight the dual role of LLMs in 

enhancing communication and education while emphasizing the need 

for robust validation mechanisms. 

Ethical challenges, including bias and privacy concerns, have 

emerged as critical issues in the deployment of LLMs in healthcare. 

Research has shown that LLMs trained on biased datasets can 

perpetuate disparities in healthcare delivery, particularly for 

underrepresented groups. For example, a study by Chen et al. [46] 

revealed that a BERT-based risk prediction model underestimated 

mortality risk for minority patients due to biased training data. 

Federated learning has been proposed as a solution to enhance privacy 

by training models across decentralized datasets without sharing 

sensitive patient information, with studies reporting a 10-15% 

improvement in model performance across institutions [47]. 

Differential privacy techniques have also been effective in protecting 

patient data, though they may reduce model accuracy by up to 5% 

[48]. These findings emphasize the need for ethical frameworks to 

guide the development and deployment of LLMs in healthcare. 

The integration of multimodal LLMs, which combine text with other 

data types like medical imaging or genomic data, has opened new 

avenues for comprehensive healthcare applications. Models 

integrating NLP and computer vision have shown promise in 

radiology, where they generate detailed reports by analyzing both 

images and clinical notes. A study by Wang et al. [49] reported that a 

multimodal LLM achieved a BLEU score of 0.75 in radiology report 

generation, significantly outperforming text-only models. Similarly, 

LLMs combined with genomic data have improved the prediction of 

disease susceptibility, with one model achieving an AUC of 0.90 for 

breast cancer risk assessment [50]. These findings indicate that 

multimodal approaches can enhance diagnostic accuracy and enable 

holistic patient assessments, though they require significant 

computational resources and standardized data formats. Table 3 

shows the key findings regarding LLMs in healthcare.  

 

Table3: Summarizes key findings on LLMs in 

healthcare 
 

Application Key Finding Performance 

Metric 

Reference 

NER and 

Relation 

Extraction 

BioBERT 

achieves F1 > 0.90 

in clinical entity 

extraction 

F1: 0.90–0.95 [38], [40] 

Predictive 

Analytics 

BERT predicts 

readmissions with 

high accuracy 

AUC: 0.87 [41] 

Medical 

Question 

Answering 

Med-PaLM 

answers 85% of 

USMLE questions 

correctly 

Accuracy: 

85% 

[42] 

Patient 

Communica

tion 

GPT-3 summaries 

improve patient 

comprehension by 

30% 

Comprehensio

n: 90% 

[43] 

Multimodal 

Application

s 

Multimodal LLMs 

enhance radiology 

report generation 

BLEU: 0.75 [49] 

 

The scalability of LLMs in resource-constrained healthcare settings 

has been a focus of recent research, with knowledge distillation and 

quantization emerging as effective methods. Knowledge distillation 

has enabled the deployment of lightweight models on edge devices, 
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maintaining 95% of the performance of larger models while reducing 

computational requirements by 70% [51]. Quantization has further 

reduced model size, enabling real-time inference in mobile health 

applications with minimal latency [52]. These advancements are 

particularly significant for low-resource regions, where access to 

high-performance computing is limited. However, the trade-off 

between model size and accuracy remains a challenge, with some 

studies reporting a 3-5% performance drop in distilled models [53]. 

These findings highlight the potential for scalable LLM deployment 

while underscoring the need for optimization strategies tailored to 

specific healthcare contexts. 

Interpretability remains a critical barrier to the widespread adoption 

of LLMs in clinical settings, where transparency is essential for trust 

and regulatory compliance. Explainable AI (XAI) techniques, such as 

SHAP and attention visualization, have been employed to elucidate 

model predictions, with studies showing that SHAP improved 

clinician understanding of sepsis prediction models by 25% [54]. 

However, current XAI methods are often computationally intensive 

and may not fully capture the complexity of LLM decision-making 

[55]. Human-in-the-loop validation, where clinicians review model 

outputs, has proven effective in ensuring clinical relevance, with one 

study reporting a 20% reduction in diagnostic errors when LLMs 

were paired with human oversight [56]. These findings suggest that 

combining XAI with human validation is essential for bridging the 

interpretability gap in clinical LLMs. 

The robustness of LLMs in handling diverse and noisy clinical data 

has been a significant finding, though challenges persist. Cross-

institutional validation studies have shown that LLMs trained on 

diverse datasets maintain performance across different healthcare 

systems, with one BERT-based model achieving consistent F1 scores 

of 0.88 across five hospitals [57]. However, adversarial testing has 

revealed vulnerabilities, with models showing a 10-15% performance 

drop when exposed to perturbed inputs, such as misspellings in 

clinical notes [58]. Techniques like data augmentation and adversarial 

training have been proposed to improve robustness, with studies 

reporting a 7% improvement in model stability [59]. These findings 

indicate that while LLMs are robust in controlled settings, their 

performance in real-world, noisy environments requires further 

enhancement. 

Looking forward, the future of LLMs in healthcare lies in their 

integration with real-time data streams and the development of open-

source models to democratize access. Real-time integration with 

clinical data, such as vital signs or lab results, has enabled dynamic 

decision support, with Med-PaLM 2 achieving a 90% accuracy rate 

in real-time sepsis detection [60]. Open-source initiatives, such as the 

release of BioMedLM, have lowered barriers to entry for smaller 

institutions, with adoption rates increasing by 30% in low-resource 

settings [61]. However, standardization of data formats and regulatory 

frameworks remains a hurdle, with ongoing efforts to establish global 

guidelines for LLM deployment in healthcare [62]. These findings 

highlight the transformative potential of LLMs while emphasizing the 

need for collaborative efforts to address technical and ethical 

challenges. 

 

5. CHALLENGES 
The deployment of large language models (LLMs) in healthcare is 

hindered by significant technical challenges, particularly related to 

computational resources and model robustness. LLMs, such as GPT-

3 and Med-PaLM, require substantial computational power for 

training and inference, often necessitating high-performance GPUs or 

TPUs that are inaccessible to many healthcare institutions, especially 

in low-resource settings [63]. This resource intensity limits 

scalability, with studies estimating that training a single large model 

can cost upwards of $1 million and emit significant carbon emissions 

[64]. Furthermore, LLMs struggle with robustness when processing 

noisy or incomplete clinical data, such as misspellings or inconsistent 

terminology in EHRs. A study by Patel et al. [65] found that BERT-

based models experienced a 12% drop in performance when tested on 

datasets with simulated noise, highlighting vulnerabilities in real-

world clinical environments. Addressing these technical barriers 

requires the development of lightweight models and robust training 

strategies, such as adversarial training, to enhance resilience to data 

variability. 

Ethical challenges, particularly around bias and fairness, pose 

significant obstacles to the equitable use of LLMs in healthcare. 

Models trained on biased datasets, such as EHRs that underrepresent 

minority populations, can perpetuate disparities in clinical 

predictions. For instance, Obermeyer et al. [66] demonstrated that a 

widely used risk prediction algorithm underestimated risk for Black 

patients due to biased training data, a concern equally applicable to 

LLMs. Additionally, the lack of transparency in LLM decision-

making processes exacerbates trust issues among clinicians and 

patients. Explainable AI (XAI) techniques, such as SHAP, have been 

proposed to improve interpretability, but their computational 

complexity and incomplete explanations limit their practical utility 

[67]. These ethical challenges necessitate rigorous dataset curation 

and the integration of fairness-aware algorithms to ensure equitable 

healthcare delivery. 

Data privacy and security remain critical challenges in deploying 

LLMs, given the sensitive nature of medical data. The use of large-

scale EHR datasets for training raises concerns about patient 

confidentiality, particularly under regulations like HIPAA and GDPR. 

Federated learning has been proposed to address this by enabling 

collaborative training without sharing raw data, but its 

implementation introduces complexities, such as increased 

communication costs and potential model performance degradation 

[68]. Differential privacy offers another solution by adding noise to 

training data, but a study by Lee et al. [69] reported a 5-8% reduction 

in model accuracy when applying stringent privacy measures. 

Balancing privacy with model utility remains a significant hurdle, 

requiring innovative approaches to secure data handling and 

compliance with evolving regulatory standards. Table 4 illustrates the 

key challenges in deploying LLMs in healthcare.  

 

Table 4: Summarizes key challenges in deploying 

LLMs in healthcare 
 

Challenge Description Implications Reference 

Computationa

l Resources 

High 

GPU/TPU 

requirements 

for 

training/infere

nce 

Limits 

scalability in 

low-resource 

settings 

[63], [64] 

Model 

Robustness 

Sensitivity to 

noisy or 

incomplete 

clinical data 

Reduced 

performance in 

real-world 

scenarios 

[65] 

Bias and 

Fairness 

Biased 

datasets 

perpetuate 

healthcare 

disparities 

Inequitable 

clinical 

predictions 

[66] 
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Data Privacy Risk of 

breaching 

patient 

confidentiality 

Regulatory non-

compliance, 

reduced trust 

[68], [69] 

Regulatory 

Compliance 

Lack of 

standardized 

AI evaluation 

frameworks 

Delays in 

clinical 

deployment 

[70] 

 

Regulatory compliance presents a formidable challenge, as the 

integration of LLMs into clinical practice must align with stringent 

healthcare regulations. The U.S. Food and Drug Administration 

(FDA) and other regulatory bodies have yet to establish 

comprehensive guidelines for evaluating AI-based tools like LLMs, 

leading to uncertainty in deployment [70]. For example, the black-

box nature of LLMs complicates validation processes, as regulatory 

agencies require evidence of safety and efficacy. A study by Topol et 

al. [71] highlighted that only 10% of AI-based healthcare tools, 

including LLMs, have received regulatory approval due to 

insufficient validation protocols. Additionally, the dynamic nature of 

LLMs, which may require continuous updates with new data, poses 

challenges for maintaining compliance over time. Developing 

standardized evaluation frameworks and post-market surveillance 

systems is critical to ensuring the safe integration of LLMs into 

clinical workflows. 

The generalizability of LLMs across diverse healthcare settings 

remains a persistent challenge, particularly when models are applied 

to populations or institutions different from those in their training 

data. Cross-institutional studies have shown that LLMs trained on 

data from a single hospital may underperform when applied to others 

due to variations in clinical practices and patient demographics [72]. 

For instance, a BERT-based model trained on U.S.-based EHRs 

exhibited a 10% performance drop when tested on European datasets, 

underscoring the need for diverse training corpora [73]. Addressing 

this challenge requires large-scale, multi-institutional datasets and 

transfer learning techniques to enhance model adaptability. 

Collaborative efforts to create global data-sharing frameworks, while 

addressing privacy concerns, will be essential to improving the 

generalizability and real-world impact of LLMs in healthcare. 

 

 

6. CONCLUSION 
The exploration of large language models (LLMs) in healthcare 

reveals their transformative potential in enhancing clinical 

workflows, patient communication, and medical education. Models 

like BioBERT, ClinicalBERT, and Med-PaLM have demonstrated 

remarkable capabilities in tasks such as named entity recognition, 

clinical decision support, and patient-friendly report generation, 

significantly improving the efficiency and accuracy of healthcare 

delivery. Their ability to process vast amounts of unstructured 

medical data, such as electronic health records and biomedical 

literature, has streamlined administrative tasks and supported 

clinicians in making informed decisions. Moreover, the generative 

capabilities of LLMs have empowered patient-centered applications, 

fostering better health literacy and engagement. These advancements 

underscore the pivotal role of LLMs in addressing longstanding 

challenges in healthcare informatics, paving the way for more 

personalized and data-driven medical practice. 

 

Despite their promise, the deployment of LLMs in healthcare is 

fraught with challenges that must be addressed to ensure their safe 

and equitable integration. Technical limitations, such as high 

computational demands and sensitivity to noisy data, restrict 

scalability, particularly in resource-constrained settings. Ethical 

concerns, including bias in training data and lack of interpretability, 

pose risks of perpetuating healthcare disparities and undermining 

clinician trust. Privacy issues and the absence of standardized 

regulatory frameworks further complicate adoption, as healthcare 

systems must comply with stringent data protection laws. These 

challenges highlight the need for a balanced approach that prioritizes 

robustness, fairness, and transparency to fully realize the benefits of 

LLMs in clinical environments. 

 

Looking ahead, the future of LLMs in healthcare lies in overcoming 

these challenges through innovative methodologies and collaborative 

efforts. Advances in knowledge distillation and quantization can 

enable the development of lightweight models suitable for low-

resource settings, while federated learning and differential privacy 

can address privacy concerns. Integrating multimodal LLMs with 

imaging and genomic data holds promise for holistic patient 

assessments, enhancing diagnostic precision. Furthermore, improving 

interpretability through explainable AI techniques and human-in-the-

loop validation will be critical for building trust and ensuring 

regulatory compliance. Open-source initiatives can democratize 

access to these technologies, enabling smaller institutions to leverage 

LLMs effectively. 

 

LLMs represent a paradigm shift in healthcare, offering 

unprecedented opportunities to enhance clinical practice and patient 

outcomes. However, their successful integration requires addressing 

technical, ethical, and regulatory hurdles through interdisciplinary 

collaboration among researchers, clinicians, and policymakers. By 

fostering standardized evaluation frameworks, diverse training 

datasets, and ethical guidelines, the healthcare community can 

harness the full potential of LLMs while ensuring safety and equity. 

As these models continue to evolve, they hold the promise of 

transforming healthcare into a more efficient, accessible, and patient-

centered system, ultimately improving the quality of care worldwide. 
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