
International Journal of Science and Engineering Applications (IJSEA)

Volume 2 Issue 3, 2013, ISSN - 2319-7560 (online)

www.ijsea.com 49

Performance Enhancement of Network

Transmission by Change of Delay Parameter

to Increase Throughput

Manish Giri

 MIT Academy of

Engineering,

Pune, India

Kaustubh Jawalekar
MIT Academy Of

Engineering,

Pune, India

Manik Hendre
 MIT Academy of

 Engineering,

Pune, India

 Aakash Chaudhari
MIT Academy Of

Engineering,

Pune, India

Abhijeet Kolte
MIT Academy Of

Engineering,

Pune, India

Abstract: Congestion is a major problem which really degrades network performance. Its effect on the delay

is quite high which decrease the throughput in considerable amount. In this paper we have proposed a new

congestion scheme which will enhance performance of network transmission by considering delay and

throughput as main components. For this we are using Adaptive Explicit Congestion Notification method

which allows us to control the network transmission from source to a receiver in a hierarchical manner by

alterations in the receiving sending capacity. To achieve predictable average delays with adaptive explicit

congestion notification would require constant tuning of the parameters to adjust to current traffic conditions.

The sending and receiving ends are tuned according to its capacity and current network traffic condition once

ECN (Explicit congestion notification) notification packet comes into action. The aim of this paper is to solve

the parameter tuning problem of the AECN by dynamically setting up the network parameters to overcome

delay in network transmission and hence to increase throughput .We will be comparing the performance of

the ECN enabled system with the AECN enabled system. For this we are going to use JAVA , JNETPCAP

and WINPCAP API’s by which we can create TCP packets, alter the fields of headers, send and receive

packets etc.

Keywords: congestion window, Explicit, Packet, Marking, Notification

__

1. INTRODUCTION
The accumulation of the packets in the queue

results in the saturation at the end points in the

communication links. The TCP/IP protocol as a

primitive measure drops some packets to

overcome the overflow as in the active queue

management. Now if the end points are made

ECN capable, the receiver sends a notification

Packet of its status .The sender then has to tune

up considering the severity of the receiver ends to

what extent the rate can be decreased. Also

making use of ECN we can increase transmission

rate if senders sends data with a capacity less

than of its receiver.

International Journal of Science and Engineering Applications (IJSEA)

Volume 2 Issue 3, 2013, ISSN - 2319-7560 (online)

www.ijsea.com 50

1.1Explicit Congestion Notification

ECN is an extension to the Internet Protocol and

to the Transmission Control Protocol and is

defined in RFC 3168 (2001). ECN allows end-to-

end notification of network congestion without

dropping packets. ECN is an optional feature that

is only used when both endpoints support it and

are willing to use it. It is only effective when

supported by the underlying network on which

the transmission is active When ECN is

successfully negotiated, an ECN-aware router

may set a mark in the IP header instead of

dropping a packet in order to signal impending

congestion. The receiver of the packet echoes the

congestion indication to the sender, which

reduces its transmission rate as though it detected

a dropped packet.

1.2. Multilevel Approach of ECN

Marking of Bits:-

AECN uses two bits that is being

specified for the use of ECN, in the IP header bit

6 and 7 in the TOS octet in Ipv4, or the Traffic

class octet in Ipv6 to indicate four different levels

of congestion, instead of the binary feedback

provided by ECN.

Table 1. ECT and CE marking

00 is used for identifying non-ECN capable

packets and other combinations are used for

indicating different levels of congestion which

are then used to take proper action at TCP source

depending on level of congestion as given in

Table 1.

Sender and receiver side:-

Bit marking in IP header is reflected by receiver,

to the TCP ACK. We use 3 combinations of 2

bits 8, 9 in TCP header and other combination

used by source has to indicate that congestion

window reduced.

 Table 2. Receiver side CWR and ECE

marking

In TCP header it has the ECN-Echo (ECE) flag

and Bit 8 is designated as the Congestion

Window Reduced (CWR) flag. These two bits

are used both for the initializing phase in which

the sender and the receiver negotiate the

capability and the desire to use ECN, as well as

for the subsequent actions to be taken in case

there is congestion experienced in the network

during the established state.

CE(Congestion

Experienced)

Bit

ECT(ECN

Capable

Transport)

Bit

Congestion

state

0 0 ECN

Capable 0 1 No

congestion 1 0 Incipient

congestion 1 1 Moderate

Congestion Packet Drop Severe

congestion

CWR

Bit

ECE

Bit

Congestion CWND change

0 1 No

congestion

Increase cwnd

additively

1 0 Incipient

congestion

Decrease

multiplicatively

by β1
1 1 Moderate

Congestion

Decrease

multiplicatively

by β2
Packet Drop Severe

congestion

Decrease

multiplicatively

by β3

International Journal of Science and Engineering Applications (IJSEA)

Volume 2 Issue 3, 2013, ISSN - 2319-7560 (online)

www.ijsea.com 51

 When a router has decided from its

active queue management mechanism, to drop or

mark a packet, it checks the IP-ECT bit in the

packet header. It sets the CE bit in the IP header

if the IP-ECT bit is set. When such a packet

reaches the receiver, the receiver responds by

setting the ECN-Echo flag (in the TCP header) in

the next outgoing ACK for the flow. The receiver

will continue to do this in subsequent ACKs until

it receives from the sender an indication that it

(the sender) has responded to the congestion

notification. Upon receipt of this ACK, the

sender triggers its congestion Avoidance

algorithm by halving its congestion window,

cwnd, an updating its congestion window

threshold value

1.3. Evaluation of the proposed

module

In Adaptive MECN, the objective is to maintain

the queue near the target queue. If the average

queue doesn’t vary and remains constant at target

queue, then the probability of packet drop/mark

will remain fixed. Let this probability be ptarget.

Figure 1. Probabilities of marking packets

We set the target queue to be in between minth

and midth. Hence only the first probability curve

will be active, in this region. Hence the

probability ptarget is given by,

Ptarget =
Pmax

maxth-minth
 * Averagequeue - minth (1)

Since in the above equation, ptarget, minth,

maxth are all constant, we can say that,

 Average queue ∝
1

Pmax
 (2)

In any network, we do not have the control over

the traffic and the average queue increases or

decreases with the load. But the aim is to have

the avgqueue, always equal to the targetqueue.

Hence if the avgqueue, is greater than

targetqueue, at any instant, we need to increase

pmax which would decrease the avgqueue so that

it becomes equal to targetqueue and if the

avgqueue, is less than, at any instant, we need to

decrease pmax, to allow the queue, to grow,

which would give a better throughput. Thus to

keep a constant queue we need to adapt the

pmax.

Also we need to get the other parameters like wq,

maxth, midth and minth automatically. Adapt

pmax in response to measured queue lengths and

set wq, maxth, midth and minth automatically,

based on the link speed and target queue.

2. DESIGN AND

IMPLEMENTATION:

Algorithm:-

 For every (Time Interval) do

 If (avgqueue > ptarget and

pmax<=Time_Interval) do

Increase pmax by adding ∝∝∝∝ to it

EndIf

ElseIf(avgqueue<ptarget and pmax>=0.01)

Decrease pmax by multiplying β to itEnd ElseIf

End For.

International Journal of Science and Engineering Applications (IJSEA)

Volume 2 Issue 3, 2013, ISSN - 2319-7560 (online)

www.ijsea.com 52

 The overall Adaptive ECN, which is

implemented, has the following features:

Pmax is adapted to keep the average queue size

with a target range half way between minth and

maxth

Pmax is adapted slowly, over time scales greater

than a typical round-trip time and in small steps.

The time scale is generally 5-10 times the typical

RTT of the network.

Pmax is constrained to remain with range of

[0.01,Time_Interval]

Instead of multiplicatively increasing and

decreasing pmax here the policy used is additive-

increase multiplicative-decrease (AIMD) policy.

The robustness of this algorithm comes from its

slow and infrequent adjustment of pmax. The

price of these slow modifications is that after a

sharp change in the level of congestion, it could

take some time, before pmax adapts to its value.

But also adapting α and β makes this process

faster and decrease the response time of the

system.

2.1 Setting the Parameters:

The range for pmax: The upper bound of 0.5 on

pmax can be justified because, when operating

under the gentle mode, this would mean that the

packet drop rate varies from 0 to pmax, when

average queue varies from minth to maxth and

varies from pmax to 1.0, if queue changes from

maxth to 2*maxth. For scenarios with very small

drop rates, MECN will perform fairly robustly

with pmax set to the lower bound 0.01, and no

one is likely to object to an average queue size

less than the target range.

Parameters α and β:

The α is an increase factor which can be given as,

∝ = const *
avg - target

target
 * Pmax

And β is a decrease factor which can be given as,

β = 1- X *
target - avg

target

 where,

X = const *
target

target - min

Here the const varies from 0 to 1. According to

networks speed or condition we are going to set

its value. It takes 0.49/α intervals for pmax to

increase from 0.01 to 0.5; this is 24.5 seconds, if

α is set as 0.01. Similarly, it takes at least log

0.02/ β intervals for pmax to decrease from 0.5 to

0.01; with the default values, which is 20.1

seconds. Therefore if there is a sharp change in

the router load, then it may take as long as 24.5

seconds for the average queue to reach the target

range. This time is really a long time in network.

Hence we believe that α and β should also be

adapted, according to the position of the average

queue, with respect to the target queue. So the

value of α and β are also recalculated every 0.5

seconds when the pmax calculation is done. We

scale the value of β from 0.83 to 1.0 when

average queue, varies from 0 to target queue.

Thus use the formula given below to adapt β.

β = 1 – (0.17 *
(target - avg)

(target - min)
) (3)

Setting midth, maxth and wq: To reduce the

need for other parameter-tuning, we also give

some guidelines for setting the midth, maxth and

wq. The maxth is set to three times the minth. In

this case the target average queue size is centered

around 2 * minth. We believe that, the target

queue should be kept in the low congestion

region (i.e. between minth and midth), to

maximize the throughput, but at the same time

the midth should not be too far from the

targetqueue, so that when the average queue rises

above target, a quick response to congestion is

achieved, when the second probability curve,

International Journal of Science and Engineering Applications (IJSEA)

Volume 2 Issue 3, 2013, ISSN - 2319-7560 (online)

www.ijsea.com 53

comes into action. This belief, led us to setting

the midth slightly above the targetqueue.

Thus midth was set at 2.25 * midth

(targetqueue=2*minth).

If the queue size changes from one value to

another it takes -1/ln (1-wq) packet arrivals for

the average queue to reach 63% of the way to the

new value. Thus we refer to -1/ln (1-wq) as the

time constant of the estimator for the average

queue size. We set wq as a function of the link

bandwidth. For MECN in automatic mode, we set

wq to give a time constant for the average queue

size estimator of one second.

Thus we set,

wq =1 – exp (
-1

C
) (4)

where C is the link capacity in packets/second,

computed for packets of the specified default

size.

3. CONCLUSION

In today's TCP networks, explicit congestion

notification (ECN) is the only explicit mechanism

which delivers congestion signals to the source.

We present a traffic management scheme based

on an enhanced ECN mechanism. In particular,

we used adaptive ECN, which conveys more

accurate feedback information about the network

congestion status than the current ECN scheme.

We have designed a TCP source reaction that

takes advantage of the extra feedback information

that have received from receiving end in the form

of notification packet and tunes better, its

response to the congestion than the current

schemes. So to enhance the networks

transmission by using the Adaptive ECN

technique we attain feasible solutions to avoid the

network congestion. The further work is to

implement this technique in real time system

and to observe the behavior of the systems.

4. REFERENCES
[1]Random Early Detection Gateways for

Congestion Avoidance Sally Floyd and Van

Jacobson, Lawrence Berkeley Laboratory,

University of California

[2] Network Working Group K. Ramakrishna,

Request for Comments: 3168 TeraOptic

Network.

[3] ECN protocols and the TCP paradigm, Teunis

J. Ott ,June 30 1999[5] Bayesian Packet

Loss Detection for TCP mahur Fonseca and

Mark Crovella

[4] An ECN-based end-to-end congestion-control

framework: experiments and evaluation

Koenraad Laevens Peter Key Derek

McAuley

[5] The Power of Explicit Congestion

Notification Aleksandar Kuzmanovi

Department of Compute Science

Northwestern University

[6] S. Floyd and V. Jacobson, “Random early

detection gateways for congestion

avoidance,” IEEE/ACM Transactions on

Networking, vol. 1 no. 4, pp. 397–413,

August 1993

[7] Promoting the Use of End-to-End Congestion

Control in the Internet Sally Floyd and

Kevin Fall : IEEE/ACM Transactions on

Networking, vol. 7, no. 4, pp. 458–472,

1999. [Online]. Available:

citeseer.nj.nec.com/article/floyd99promotin

g.html

[8] Adaptive Multi-level Explicit Congestion

Notification, Mukundan Sridharan, Arjan

Durresi, Raj Jain Dept. of Computer

and Information Science, The Ohio State

University, Columbus, OH

International Journal of Science and Engineering Applications (IJSEA)

Volume 2 Issue 3, 2013, ISSN - 2319-7560 (online)

www.ijsea.com 54

[9] S. Floyd, “Red: Discussions of setting

parameters,”http://www.aciri.org/floyd/RED

parameters.txt, November 1997.

[10]V. Jacobson, K. Nichols, and K. Poduri,

“Red in a different light,”1999. [Online].

Available:citeseer.nj.nec.com/jacobson99red

.html

[11] T. Ziegler, S. Fdida, and C. Brandauer,

“Stability criteria for red with bulk-data tcp

traffic,” Technical report, August 2001.

[Online]. Available: http://www-rp.lip6.fr/

sf/WebSF/PapersWeb/red.net2000.pdf

[12] K. Ramakrishnan and S. Floyd. The addition

of explicit congestion notification to IP,

Sept. 2001. Internet RFC 3168

[13] A. Kuzmanovic. The power of explicit

congestion notification (extended version).

Northwestern University Technical Report,

May 2005.

[14] L. Le, J. Aikat, K. Jeffay, and F. Smith. The

effects of active queue management on web

Performance. In Proceedings of ACM

SIGCOMM ’03, Karlsruhe, Germany, Aug.

2003.

[15] L. Le, J. Aikat, K. Jeffay, and F. Smith.

Differential congestion notification: Taming

the elephants. In Proceedings of IEEE ICNP

’04, Berlin, Germany, Oct. 2004.

[16] R. Mahajan, S. Floyd, and D. Wetherill.

Controlling high-bandwidth flows at the

congested router. Proceedings of IEEE

ICNP ’01, Riverside, CA, Nov. 2001.

[17] V. Paxson and M. Allman, Computing

TCP’s retransmission timer, Nov. 2000.

Internet RFC 2988.

[18] Jain, R., “A Delay-Based Approach for

Congestion Avoidance in Interconnected

Heterogeneous Computer Networks”,

Computer Communication Review, V.19

N.5, October 1989, pp. 56-71.

[19] Jain, R., “Congestion Control in Computer

Networks: Issues and Trends”, IEEE

Network, May 1990,pp. 24-30.

