
International Journal of Science and Engineering Applications

Volume 2 Issue 5, 2013, ISSN-2319-7560 (Online)

www.ijsea.com 103

Agent-Driven Distributed Data Mining

 Rohini . P Sree Lakshmi.P

 Department of CSE Department of CSE
 Malla Reddy College of Engineering Malla Reddy College of Engineering

 Andhra Pradesh, India. Andhra Pradesh, India.

Abstract: Multi-Agent systems (Autonomous agents or agents) and knowledge discovery (or data mining) are two active

areas in information technology. A profound insight of bringing these two communities together has unveiled a tremendous

potential for new opportunities and wider applications through the synergy of agents and data mining. Multi-agent systems

(MAS) often deal with complex applications that require distributed problem solving. In many applications the individual and

collective behavior of the agents depends on the observed data from distributed data sources. Data mining technology has

emerged, for identifying patterns and trends from large quantities of data. The increasing demand to scale up to massive data sets

inherently distributed over a network with limited band width and computational resources available motivated the development of

distributed data mining (DDM).Distributed data mining is originated from the need of mining over decentralized data

sources. DDM is expected to perform partial analysis of data at individual sites and then to send the outcome as partial result

to other sites where it sometimes required to be aggregated to the global result.

 Keywords: Distributed Data Mining, Multi-Agent Systems, Multi Agent Data Mining, Multi-Agent Based

Distributed Data Mining.

1. INTRODUCTION
Data Mining (DM), originated from knowledge discovery

from databases (KDD), the large variety of DM techniques

which have been developed over the past decade includes

methods for pattern-based similarity search, cluster

analysis, decision-tree based classification, generalization

taking the data cube or attribute-oriented induction

approach, and mining of association rules [7]. DDM is a

branch of the field of data mining that offers a framework

to distributed data paying careful attention to the distributed

data and computing resources. Distributed data mining

(DDM) mines data from data sources regardless of their

physical locations. The need for such characteristic arises

from the fact that data produced locally at each site may not

often be transferred across the network due to the

Excessive amount of data and security issues. Recently,

DDM has become a critical component of knowledge based

systems because its decentralized architecture reaches

every network such as weather databases, financial data

portals, or emerging disease information systems has been

recognized by industrial companies as an opportunity of

major revenues from applications such as warehousing,

process control, and customer services, where large

amounts of data are stored.

In the DDM literature, one of two assumptions is

commonly adopted as to how data is distributed across

sites: homogeneously (horizontally partitioned) and

heterogeneously (vertically partitioned). Both viewpoints

adopt the conceptual viewpoint that the data tables at each

site are partitions of a single global table.

Data Mining still poses many challenges to the research

community. The main challenges in data mining are: 1)

Data mining has to deal with huge amounts of data located

at different physical locations. 2) Data mining is

computationally intensive process involving very large data

i.e. more than terabytes. So, it is necessary to partition and

distribute the data for parallel processing to achieve

acceptable time and space performance. 3) The data stored

for particular domain the Input data changes rapidly. In

these cases, knowledge has to be mined fast and efficiently

in order to be usable and updated.

2. NEED OF MULTI-AGENTS

Autonomous agents are computational systems that inhibit

some complex dynamic environment, sense and act

autonomously in this environment, and by doing so realize

a set of goals or tasks for which they are designed. Agents

are reactive i.e., they perceive their environment and

respond in a timely fashion to changes that occur.

Multi-Agent systems are used for all types of system

composed of multiple autonomous components showing

the following characteristics:

• each agent has incomplete capabilities to solve a

problem

• there is no global system control

• data is decentralized

• computation is asynchronous

Multi-Agent has the following features

• Dividing functionality among many agents provides

modularity, flexibility, modifiability, and

extensibility.

• Knowledge that is spread over various sources

International Journal of Science and Engineering Applications

Volume 2 Issue 5, 2013, ISSN-2319-7560 (Online)

www.ijsea.com 104

(agents) can be integrated for a more complete view

when needed.

• Applications requiring distributed computing are

better supported by MAS.

• Agent technology supports distributed component

technology.

In a typical distributed environment analyzing distributed

data is a non-trivial problem because of many constraints

such as limited bandwidth (e.g. wireless networks), privacy

sensitive data, distributed compute nodes, only to mention a

few. The field of Distributed Data Mining (DDM) deals

with these challenges in analyzing distributed data and

offers many algorithmic solutions to perform different data

analysis and mining operations in a fundamentally

distributed manner that pays careful attention to the

resource constraints.

 Since MAS are also distributed systems, combining

DDM with MAS for data intensive applications is

appealing. DDM is expected to perform partial analysis of

data at individual sites and then to send the outcome as

partial result to other sites where it is sometimes required to

be aggregated to the global result. Quite a number of DDM

solutions are available using various techniques such as

distributed association rules, distributed clustering,

Bayesian learning, classification (regression), and

compression, but only a few of them make use of

intelligent agents at all. The main problems any approach to

DDM is challenged issues of autonomy and privacy. For

example, when data can be viewed at the data warehouse

from many different perspectives and at different levels of

abstraction, it may threaten the goal of protecting

individual data and guarding against invasion of privacy.

These issues of privacy and autonomy become particularly

important in business application scenarios where, for

example, different (often competing) companies may want

to collaborate for fraud detection but without sharing their

individual customers’ data or disclosing it to third parties.

DDM is a complex system focusing on the distribution of

data resources over the network as well as extraction of

data from those resources. The very core of DDM systems

is the scalability as the system configuration may be altered

time to time, therefore designing DDM systems deals with

great details of software engineer issues, such reusability,

extensibility, compatibility, flexibility and robustness. For

these reasons, agents’ characteristics are desirable for DDM

systems.

Autonomy of the system: A DM agent here is considered

as a modular extension of a data management system to

deliberatively handle the access to the data source in

agreement with constraints on the required autonomy of the

system, data and model. This is in full compliance with the

paradigm of cooperative information systems [6].

Multi-strategy DDM: For some complex application

settings an appropriate combination of multiple data mining

techniques may be more beneficial than applying just one

particular one. DM agents may choose depending on the

type of data retrieved from different sites and mining tasks

to be done. The learning of multi-strategy selection of DM

methods is similar to the adaptive selection of coordination

strategies in a multi-agent system as proposed.

Collaborative DM: DM agents may operate independently

on data they have gathered at local repositories, and then

combine their respective patterns or they may agree to

share potential knowledge as it is discovered.

Scalability of DM to massive distributed data: To reduce

network and DM application server load, DM agents

migrate to each of the local data sites in a DDM system on

which they may perform mining tasks locally, and then

either return with or send relevant pre-selected patterns to

their originating server for further processing. Experiments

in using mobile information filtering agents in distributed

data environments are encouraging [9].

Security: Any agent-based DDM system has to cope with

the problem of ensuring data security and privacy. Any

mining operation performed by agents of a DDM system

lacking sound security architecture could be subject to

eavesdropping, data tampering, or denial of service attacks.

Agent code and data integrity is a crucial issue in secure

DDM: Subverting or hijacking a DM agent places a trusted

piece of (mobile) software. In addition, data integration or

aggregation in a DDM process introduces concern

regarding inference attacks as a potential security threat.

However, any failure to implement least privilege at a data

source, that means endowing subjects with only enough

permissions to discharge their duties, could give any

mining agent unsolicited access to sensitive data. Finally,

selective agent replications may help to prevent malicious

hosts from simply blocking or destroying the temporarily

residing DM agents.

Trustworthiness: Data mining agents may infer sensitive

information even from partial integration to a certain extent

and with some probability. This problem, known as the so

called inference problem, occurs especially in settings

where agents may access data sources across trust

boundaries which enable them to integrate implicit

knowledge from different sources using commonly held

rules of thumb.

Furthermore, the decentralization property seems

to fit best with the DDM requirement in order to avoid

security treats. At each data repository, mining strategy is

deployed specifically for the certain domain of data.

3. OPEN PROBLEMS STRATEGY
Several systems have been developed for distributed data

mining. These systems can be classified according to their

strategy to three types; central learning, meta-learning, and

hybrid learning.

3.1 Central learning strategy is when all the

data can be gathered at a central site and a single model can

be build. The only requirement is to be able to move the

data to a central location in order to merge them and then

apply sequential DM algorithms. This strategy is used

when the geographically distributed data is small. The

strategy is generally very expensive but also more accurate

[10]. The process of gathering data in general is not simply

a merging step; it depends on the original distribution.

Agent technology is not very preferred in such strategy.

3.2 Meta-learning strategy offers a way to mine

International Journal of Science and Engineering Applications

Volume 2 Issue 5, 2013, ISSN-2319-7560 (Online)

www.ijsea.com 105

classifiers from homogeneously distributed data. Meta-

learning follows three main steps. 1) To generate base

classifiers at each site using a classifier learning algorithms.

2) To collect the base classifiers at a central site, and

produce meta-level data from a separate validation set and

predictions generated by the base classifier on it. 3) To

generate the final classifier (meta-classifier) from meta-

level data via a combiner or an arbiter. Copies of classifier

agent will exist or deployed on nodes in the network being

used. Perhaps the most mature systems of agent-based

meta-learning systems are: JAM system [11], and BODHI

[11].

3.3 Hybrid learning strategy is a technique that

combines local and centralized learning for model building

[15]; for example, Papyrus [12] is designed to support both

learning strategies. In contrast to JAM and BODHI,

Papyrus can not only move models from site to site, but can

also move data when that strategy is desired. Papyrus is a

specialized system which is designed for clusters while

JAM and BODHI are designed for data classification. The

major criticism of such systems is that it is not always

possible to obtain an exact final result, i.e. the global

knowledge model obtained may be different from the one

obtained by applying the one model approach (if possible)

to the same data. Approximated results are not always a

major concern, but it is important to be aware of that.

Moreover, in these systems hardware resource usage is not

optimized. If the heavy computational part is always

executed locally to data, when the same data is accessed

concurrently, the benefits coming from the distributed

environment might vanish due to the possible strong

performance degradation. Another drawback is that

occasionally, these models are induced from databases that

have different schemas and hence are incompatible.

Autonomous agent can be treated as a computing

unit that performs multiple tasks based on a dynamic

configuration. The agent interprets the configuration and

generates an execution plan to complete multiple tasks. [7],

[14], [8], [6], and [9] discuss the benefits of deploying

agents in DDM systems. Nature of MAS is decentralization

and therefore each agent has only limited view to the

system. The limitation somehow allows better security as

agents do not need to observe other irrelevant surroundings.

Agents, in this way, can be programmed as compact as

possible, in which light-weight agents can be transmitted

across the network rather than the data which can be more

bulky. Being able to transmit agents from one to another

host allows dynamic organization of the system. For

example, mining agent ma, located at repository r1, posses

algorithm alg1. Data mining task t1 at repository r2 is

instructed to mine the data using alg1. In this setting,

transmitting alg1 to r2 is a probable way rather than

transfer all data from r2 to r1 where alg1 is available.

4. AGENT-BASED DISTRIBUTED
DATA MINING (ADDM)
ADDM is a novel data mining technique that inherits all

powerful properties of agents and, as a result, yields

desirable characteristics. In general, constructing an

ADDM system concerns with three key characteristics:

interoperability, dynamic system configuration, and

performance. Interoperability concerns with collaboration

of agents in the system, and external interaction which

allow new agents to enter the system seamlessly. The

architecture of the system must be open and flexible so that

it can support the interaction including communication

protocol, integration policy, and service directory.

Communication protocol covers message encoding,

encryption, and transportation between agents. Integration

policy specifies how a system behaves when an external

component, such as an agent or a data site, requests to enter

or leave. Dynamic system configuration, handles the

dynamic configuration of the system, and is a challenge

issue due to the complexity of the planning and mining

algorithms. A mining task may involve several agents and

data sources, in which agents are configured to equip with

an algorithm and deal with given data sets. In distributed

environment, tasks can be executed in parallel, in

exchange, concurrency issues arise. Quality of service

control in performance of data mining and system

perspectives is desired; however it can be derived from

both data mining and agent’s fields.

Fig.4.1: ADDM System Architecture

An ADDM system can be generalized into a set

of components and viewed as depicted in figure 4.1.We

may generalize activities of the system into request and

response, each of which involves a different set of

components. Basic components of an ADDM system are as

follows.

Data: Data is the foundation layer of the architecture. In

distributed environment, data can be hosted in various

forms, such as online relational databases, data stream, web

pages, etc., in which purpose of the data might be varied.

Communication: The system chooses the related resources

from the directory service, which maintains a list of data

sources, mining algorithms, data schemas, data types, etc.

The communication protocols may vary depending on

implementation of the system, such as client-server, peer-

International Journal of Science and Engineering Applications

Volume 2 Issue 5, 2013, ISSN-2319-7560 (Online)

www.ijsea.com 106

to-peer etc.

User Interface: The user interface (UI) interacts with the

user as to receive and respond to the user. The interface

simplifies complex distributed systems into user-friendly

message such as network diagrams, visual reporting tools,

etc. On the other hand, when a user requests for data

mining through the UI, the following components are

involved.

Query optimization: A query optimizer analyses the

request as to determine type of mining tasks and chooses

proper resources for the request. It also determines whether

it is possible to parallelize the tasks, since the data is

distributed and can be mined in parallel.

Discovery Plan: A planner allocates sub-tasks with related

resources. At this stage, mediating agents play important

roles as to coordinate multiple computing units since

mining sub-tasks performed asynchronously as well as

results from those tasks. On the other hand, when a mining

task is done, the following components are taken place,

Local Knowledge Discovery (KD): In order to transform

data into patterns which adequately represent the data and

reasonable to be transferred over the network, at each data

site, mining process may take place locally depending on

the individual implementation.

Knowledge Discovery: Also known as mining, it executes

the algorithm as required by the task to obtain knowledge

from the specified data source.

Knowledge Consolidation: In order to present to the user

with a compact and Meaningful mining result, it is

necessary to normalize the knowledge obtained from

various sources. The component involves complex

methodologies to combine knowledge/ patterns from

distributed sites. Consolidating homogeneous

knowledge/patterns is promising and yet difficult for

heterogeneous case.

5. PROPOSED SCHEMA
Building and managing of large-scale distributed systems is

becoming an increasingly challenging task. Continuous

intervention by user administrators is generally limited in

large-scale distributed environments. System support is

also needed for configuration and reorganization when

systems evolve with the addition of new resources. The

primary goal of the management of distributed systems is

to ensure efficient use of resources and provide timely

service to users. Most of the distributed system

management techniques still follow the centralized model

that is based on the client-server model. Centralization have

presented some problems, such as: 1) it could cause a

traffic overload and processing at the manager node may

affect its performance;2) it does not present scalability in

the increase of the complexity of the network; 3) the fault

in the central manager node can leave the system without a

manager.

One model is the distributed management where

management tasks are spread across the managed

infrastructure and are carried out at managed resources.

The goal is to minimize the network traffic related to

management and to speed up management tasks by

distributing operations across resources. The new trend in

distributed system management involves using multi-agents

to manage the resources of distributed systems. Agents

have the capability to autonomously travel (execution state

and code) among different data repositories to complete

their task. The route may be predetermined or chosen

dynamically depending on the results at each local data

repository.

The concept of multi-agents promises new ways

of designing applications that better use the resources and

services of computer systems and networks. For example,

moving a program (e.g., search engine) to a resource (e.g.,

database) can save a lot of bandwidth and can be an

enabling factor for applications that otherwise would not be

practical due to network latency.

Conceptually, a multi-agent can migrate its whole virtual

machine from host to host; it owns the code, not the

resources. Multi-agents are the basis of an emerging

technology that promises to make it very much easier to

design, implement, and maintain distributed systems. We

have found that multi-agents reduce network traffic,

provide an effective means of overcoming network latency,

and, perhaps most importantly, through their ability to

operate asynchronously and autonomously of the process

that created them help us to construct more robust and fault

tolerant systems. The purpose of the proposed multi-agent

system is to locate, monitor, and manage resources in

distributed systems. The system consists of a set of static

and mobile agents. Some of them reside in each node or

element in the distributed system. There are two multi-

agents named delegated and collector agents that can move

through the distributed system. The role of each agent in

the multi-agent system, the interaction between agents, and

the operation of the system

5.1 Structure of Multi-Agent Systems

The multi-agent system structure assumes that each node in

the system will have a set of agents residing and running on

that node [1]. These agent types are the following:

Client agent (CA) percepts service requests, initiated by the

user, from the system. The CA may receive the request

from the local user directly. In the other case, it will receive

the request from the exporter agent coming from another

node.

Service list agent (SLA) has a list of the resource agents in

the system. This agent will receive the request from the CA

and send it to the resource availability agent. If the reply

indicates that the requested resource is local then the

service list agent will deliver the request to the categorizer

agent. Otherwise, it will return the request to the CA.

Resource availability agent (RAA) indicates whether the

requested resource is free and available for use or not. It

also indicates whether the requested resource is local or

remote. It receives the request from the service list agent

and checks the status of the requested resource through the

access of the MIB. The agent then constructs the reply

depending on the retrieved information from the database.

Resource agent (RSA) is responsible for the operation and

International Journal of Science and Engineering Applications

Volume 2 Issue 5, 2013, ISSN-2319-7560 (Online)

www.ijsea.com 107

control of the resource. This agent executes the on the

resource. Each node may have zero or more RSAs.

Router agent (RA) provides the path of the requested

resource on the network in case of accessing remote

resources. Before being dispatched, the exporter agent will

ask the router agent for the path of the requested resource.

This in turn delivers it to the exporter agent.

Categorizer agent (CZA) allocates a suitable resource

agent to perform the user request. This agent percepts

inputs coming from the service list agent. It then tries to

find a suitable free resource agent to perform the requested

service.

Exporter agent (EA) is a mobile agent that can carry the

user request through the path identified by the RA to reach

the node that has the required resource. It passes the

requested resource id to the RA and then receives the reply.

If the router agent has no information about the requested

resource, the EA will try to locate the resource in the

system. There are also two additional mobile agent types

exist in the system.

Delegated agent (DA) is a mobile agent that is launched in

each sub network. It is responsible for traversing sub

network nodes instead of theexporter agent to do the

required task and carry results back to the exporter agent.

Collector agent (CTA) is a mobile agent that is launched

from the last sub network visited by the exporter agent. It is

launched when results from that sub network become

available. This agent goes through the reversed itinerary of

the exporter agent trip. The CTA collects results from the

delegated agents and carries it to the source node. All

mobile agents used here are of interrupt driven type.

5.2 Functionality of the System

The activity cycle of the multi-agent system resides in a

local data repository. The client agent receives the service

requests either from the user or from an exporter agent. The

client agent then asks the service list agent for the existence

of a resource agent that can perform the request. The

service list agent checks the availability of the required

resource agent by consulting a resource availability agent to

perform the requested service. The reply of the resource

availability agent describes whether or not the resource is

locally available and whether or not there is a resource

agent that can perform the requested service. If the resource

availability agent accepts the request, the service list agent

will ask the categorizer agent to allocate a suitable resource

agent to the requested service and the resource agent will

perform the requested service. Otherwise, the service list

agent informs the client agent with the rejection and is

passed to the exporter agent. The exporter agent asks the

router agent for the path of the required resource agent.

Once the path is determined, the exporter agent will be

dispatched through the network channel to the destination

node identified by that path. If the router agent has no

information about the location of the required resource

agent, the exporter agent will search the distributed system

to find the location of the required resource agent and

assign the required task to it.

 As shown in Fig. 5.2.2, the exporter agent traverses

the sub networks of the distributed system through its trip.

At each sub network, a delegated agent is launched to

traverse the local nodes of that sub network doing the

required task and carrying results of that task.

 Fig. 5.2.1: Agents activity.

The agents of the social interface described in Fig. 5.2.1 are

implemented at each node in the system. There are two

approaches to collect results of the required task and send

these results back to the source.

In traditional agent-based management systems that use

mobile agent, the exporter agent will wait at each visited

sub network until the delegated agent finishes its work and

obtains results. Then, the exporter agent will take these

results and go to the next sub network in its itinerary. The

exporter agent will return to its home sub network after

visiting all the sub networks determined in the itinerary.

The home sub network of the exporter agent is the sub

network from which it was initially dispatched. The waiting

of the exporter agent prevents execution of tasks to be

started in the other sub networks. This approach is used in

most of the previously developed management systems in

which operation is based on mobile agents. In the proposed

multi-agent management system, the exporter agent does

not wait for results from each sub network. It resumes its

trip visiting other sub networks, and at each sub network,

another delegated mobile agent is launched to carry out

management tasks instead of the exporter agent. The

exporter agent will be killed at the last visited sub network

in its itinerary. When results from the last visited sub

network become available, another mobile agent called

collector agent is launched or dispatched from this sub

network to collect results from it and other sub networks.

The collector agent goes through the reversed itinerary of

the exporter agent trip carrying results to the home sub

network. In this manner, operations can be done in a

parallel fashion at different sub networks because there is

no delay of the task submission to local data repositories of

these sub networks.

CA

SLA
Check

Ask

Reply

RAA DATA

REPOSITORY

CZA
RSA

Rejec

t Allocate Resource

EA

RA

 Ask

Path

Request

Dispatch

International Journal of Science and Engineering Applications

Volume 2 Issue 5, 2013, ISSN-2319-7560 (Online)

www.ijsea.com 108

.

Fig. 5.2.2: Network architecture of ADDM.

6. CONCLUSION

Distributed management for distributed systems is

becoming a reality due to the rapid growing trend in

internetworking and the rapid expanding connectivity. This

paper describes a new multi-agent system for the

management of distributed systems. The system is

proposed to optimize the execution of management

functions in distributed systems. The proposed system can

locate, monitor, and manage resources in the system. The

new technique in that system allows management tasks to

be submitted to sub networks of the distributed system and

executed in a parallel fashion. The proposed system uses

two multi- agents. The first is used to submit tasks to the

sub networks of the distributed system and the other

collects results from these sub networks. The proposed

system is compared against traditional management

techniques in terms of response time, speedup, and

efficiency. A prototype has been implemented using

performance management as the case study. The

performance results indicate a significant improvement in

response time, speedup, efficiency, and scalability

compared to traditional techniques. The use of JVM in the

implementation of the proposed system gives the system a

certain type of portability. Therefore, it is desirable to use

the proposed system in the management of distributed

systems. The proposed system is limited to be applied to

high-speed networks that have bandwidth 100 Mb/s or

more. Also, the system cannot work when a failure occurs.

Future research will be related to the security of mobile

agents and of hosts that receive them in the context of

public networks. Mobile agents should be protected against

potentially malicious hosts. The hosts should also be

protected against malicious actions that may be performed

by the mobile code they receive and execute. So, a detailed

design and implementation of the whole secure system

should be considered as a future work. Also, the high

complexity of distributed systems could increase the

potential for system faults. Most of the existing

management systems assume that there is no fault in the

system. It would be interesting to develop a fault tolerant

management system that introduces safety in the system

and attempts to maximize the system reliability without

extra hardware cost.

7. REFERENCES:

[1] T.C. Du, E.Y. Li, and A. Chang,―Mobile agents in

distributed network management,‖ Commun. ACM, vol.

46, no. 7, pp. 127–132, July 2003.

[2] H. Ku, G.W.R. Ludere, and B.Subbiah, ―An

intelligent mobile agent framework for distributed network

management,‖in Proc. Globecom’97Phoenix, pp. 160–

164.

[3] N. R. Jennings and S. Bussmann, ―Agent-based

control systems—Why are they suited to engineering

complex systems?‖ IEEE Control Syst.Mag., vol. 23, no.

3, pp. 61–73, Jun. 2003.

[4] R. B. Patel, Neeraj Goel, ―Mobile Agents in

Heterogeneous Networks: A Look on Performance,‖
Journal of Computer Science,2(11): 824-834, 2006.

[5] O'Hare G.M.P., Marsh D., Ruzzelli A.,
R. Tynan,―Agents for Wireless Sensor Network Power
Management‖, in Proceedings of International Workshop
on Wireless and Sensor Networks (WSNET-05), Oslo,
Norway IEEE Press, 2005.

[6] S. Bailey, R. Grossman, H. Sivakumar, and A.
Turinsky. Papyrus: a system for data mining over local and
wide area clusters and super-clusters. In

Supercomputing ’99: Proceedings of the 1999 ACM/IEEE
conference on Supercomputing (CDROM), page 63, New
York, NY, USA, 1999. ACM

[7] R. J. Bayardo, W. Bohrer, R. Brice, A.Cichocki, J.

Fowler, A. Helal, V. Kashyap, T. Ksiezyk, G. Martin, M.

Nodine, and Others.InfoSleuth: agent-based semantic

integration of information in open and dynamic

environments. ACM SIGMOD Record, 26(2):195–206,

1997.

[8] F. Bergenti, M.P. Gleizes, and F.Zambonelli.
Methodologies And Software Engineering For Agent
Systems: The Agent oriented Software Engineering
Handbook. Kluwer Academic Publishers, 2004.

[9] R. Bose and V. Sugumaran. IDM: an intelligent
software agent based data mining environment. 1998 IEEE
International Conference on Systems, Man, and
Cybernetics, 3, 1998.

[10] J. Dasilva, C. Giannella, R. Bhargava, H.Kargupta,
and M. Klusch. Distributed datamining and agents.
Engineering Applicationsof Artificial Intelligence,
18(7):791–807,

Subnet1

 BACKBONE

CTA

Subnet2

 EA

Subnet3

DA

DA

DA

Subnet4

DA

Subnet

DA

International Journal of Science and Engineering Applications

Volume 2 Issue 5, 2013, ISSN-2319-7560 (Online)

www.ijsea.com 109

October 2005.

[11] S. Datta, K. Bhaduri, C. Giannella, R. Wolff,and H.
Kargupta. Distributed data mining in peer-to-peer
networks. Internet Computing,IEEE, 10(4):18–26, 2006.

[12] U. Fayyad, R. Uthurusamy, and Others. Data mining
and knowledge discovery in databases.
Communications of the ACM,39(11):24–26, 1996.

[13] Vladimir Gorodetsky, Oleg Karsaev, and Vladimir
Samoilov. Multi-agent technology for distributed data
mining and classification.In IAT, pages 438–441. IEEE
Computer
Society, 2003.

[14] Sven A. Brueckner H. Van Dyke Parunak.
Engineering swarming systems.Methodologies and
Software Engineering for Agent Systems, pages 341–376,
2004.

[15] W. Davies and P. Edwards. Distributed Learning: An
Agent-Based Approach to Data-Mining. In Proceedings of
MachineLearning 95 Workshop on Agents that Learn from
Other Agents, 1995.

