
International Journal of Science and Engineering Applications

Volume 4 Issue 4, 2015, ISSN-2319-7560 (Online)

www.ijsea.com 163

A Comparative Study Of Remote Access Technologies
and Implementation of a Smartphone App for Remote
System Administration Based on a Proposed Secure

RFB Protocol

Ernest D. Ganaa

School of Applied Science &

Technology

Department of Information &

Communication Technology

Wa Polytechnic

Wa, Ghana

Frimpong Twum

College of Science

Dept. of Computer Science

Kwame Nkrumah University of

Science & Technology

Kumasi, Ghana

J. B. Hayfron- Acquah

College of Science

Dept. of Computer Science

Kwame Nkrumah University

of Science & Technology

Kumasi, Ghana

Abstract: In this paper we proposed advanced technologies to provide tremendous support for network administrators by

implementing a secure remote system administration app that runs on android smartphones to aid them administer their servers

remotely when they (network administrators) are out stationed using their smartphones.

The android app developed in eclipse establishes a secure connection with a remote server running a PHP application. The app was

developed based on the Remote Frame Buffer (RFB) protocol. The RFB protocol, a display protocol has some security lapses

including being vulnerable to Man-In-The-Middle (MITM) attack using a few tools and techniques. This research therefore

incorporated a self-signed Secure Socket Layer (SSL) certificate in the android app to enable secure encrypted connections to be

established between the android app and the remote server to ensure end-to-end security against attacks such as Man-In-The-Middle

(MITM).

The whole system was deployed based on client-server architecture with the hand-held smart devices as clients, providing real-time

network access to network administrators to their remote servers.

The secure RFB protocol proposed and implemented in the android app was compared with other existing software for remote system

administration such as Remote Desktop (RDP), and RFB protocols using ICMP ping command. The results show that the average

response time of the RDP protocol was 436ms, that of the RFB protocol was 496ms and that of the android app which is based on a

proposed secure RFB protocol was 474ms.

Keywords: Remote access; Remote Frame Buffer; Remote Desktop Protocol; Android app; Remote server; Remote system

administration

1. INTRODUCTION
There are several situations where network administrators are

faced with the problem of monitoring and administering their

various computer networks while away from their offices. In

such circumstances, the network administrators depend on

third party reports to know the status of their networks. Some

even have to direct such third parties as to how to resolve

network issues on their behalf when they (network

administrators) are out stationed which most times leads to

networks jamming and other related issues.

This research looks at remote access technologies and how to

implement a smartphone app for remote system

administration so as to create some kind of virtual office(s) for

System Administrators who will like to always be tied up to

their networks even if they are out stationed.

Also, in today’s world, it is not a question of whether a remote

access software will be used, but which one of the available

remote access software will be selected by users and how the

selected product will be configured to minimize security risk.

It is against this background that this research seeks to

conduct a comparative study on remote access technologies in

short messaging system (SMS) to perform system

administration tasks.

This research work intends to build an android app based on a

proposed secure RFB protocol sitting on a smart device that

will communicate with a network server running a Hypertext

Pre-Processor program. The proposed android app which will

act as an interface to the network server will connect to the

server using Virtual Private Network (VPN) technology.

The server will perform the processing and send responses

back to the android app. As an example, android app will be

responsible for issuing basic commands like creating files and

as well as performing basic server management task such as

creating users, setting user privileges, etc.

2. AIM OF RESEARCH
The aim of this research is to do a comparative study of

remote access technologies and implement a smartphone app

for remote system administration based on a proposed secure

RFB protocol.

The specific objectives are as follows:

 To investigate what remote access technologies are

available

 To examine the current usage of remote access

technologies

http://www.ijsea.com/

International Journal of Science and Engineering Applications

Volume 4 Issue 4, 2015, ISSN-2319-7560 (Online)

www.ijsea.com 163

 To evaluate the security of current remote access

technologies

 To implement a smartphone app for remote system

administration based on a proposed secure RFB

protocol

 To evaluate the performance of existing remote

access technologies as against a proposed secure

RFB protocol.

3. SYSTEM OVERVIEW
The purpose of the system is to allow system administrators

monitor and administer their computer networks remotely

using their android smartphones.

With this system, a system administrator can create a user

remotely, create, view and modify text files remotely, check

network status, shutdown a server and set user privileges.

The system was developed based on a proposed secure RFB

protocol with self-signed Secure Socket Layer (SSL)

certificate incorporated into this RFB protocol to ensure end-

to-end encrypted connections between the smart device

(client) and server.

The system can be used to monitor and administer only one

server at a time.

Figure 1. Block Diagram of System. Source Authors’ Construct 2015

Figure 2. Architecture of system. Source Authors’ construct 2015

3.1 System Architecture
The system is client-server architecture with the smartphone

as the client and the remote computer to be administered as

the server.

The android app runs on a smartphone and it is responsible for

issuing commands to the remote server. The android app acts

as an interface to the remote server.

The restful PHP application runs on the remote server

machine and is responsible for processing and returning all

requests to the smart device. The database keeps track of all

administrators who logon to the system and the activity

performed for audit trail purposes.

Figure 1 shows the block diagram of the system, figure 2

shows the system architecture and figure 3 shows the flow of

the system.

Mobile

Phone

Remote Server

PHP processes

Commands

Send Command

Send Response

Keeps track of users and

activity performed

http://www.ijsea.com/

International Journal of Science and Engineering Applications

Volume 4 Issue 4, 2015, ISSN-2319-7560 (Online)

www.ijsea.com 164

Figure 3: Flow of system. Source: Authors’ construct 2015.

3.2 Evaluation of existing Remote Access

Technologies
The All remote access systems or applications are developed

based on existing and or appropriate technology or

technologies. Some existing technologies available for

developing remote access systems are:

i. The Remote Frame Buffer (RFB) protocol

The RFB protocol is a simple protocol for sending graphics to

be displayed on a remote display or screen. RFB protocol

places very little demand on the remote display in terms of

processing power and memory demands since all processing

is done at the server side. This protocol is a true thin client

protocol because it has very low bandwidth requirements and

shifts all processing demands to the RFB server instead of the

RFB client (Kerai, 2010). The major interest in designing this

protocol is to make very few requirements of the client in

terms of processing (Richardson, 2010).

The two remote endpoints in the RFB protocol are referred to

as the RFB client or viewer and the RFB server (Baig et al.,

2012). It works by simply taking rectangles of screen data

from the RFB server with a given position and size and puts

them into its frame buffer so that they appear in the correct
place on the RFB client’s screen (Masthan et al., 2013).

Despite the fact that RFB protocol uses encrypted passwords

and network, any communication over the network is

vulnerable and can be attacked by a Man-In-The-Middle

(MITM) by using a few tools and techniques (Kerai, 2010).

Also, the applications of VNC which are developed based on

RFB protocol are generally slower, offer fewer features and

security options than Remote Desktop (RD) which is based on
the RDP protocol (Masthan et al., 2013).

Virtual Network Computing (VNC) was developed based on
the RFB protocol (Baig et al., 2012).

ii. The Remote Desktop Protocol (RDP)

RDP is a proprietary protocol designed by Microsoft for

remote input and display of host running the windows

operating systems which is based on the Multipoint

Application Sharing (T.128) recommendation by

Telecommunication Union (Youming, 2013).

By default, the data that travels between the terminal server

and the client is protected by the RC4 symmetric encryption

algorithm which provides three levels (high level, medium

level and low level) of security (Kerai, 2010). The high level

security encrypts data sent from the client to the server using a

128 bit key and does same to data sent from server to client,

the medium level security encrypts both data sent from client

and server using a 56 bit key if the client is using at least

windows 2000 and low level security only encrypts data sent

from client to server using 56 bit key or 40 bit key.

According to Montoro (2005), though the data sent between

the server and client is encrypted, the RDP protocol may be

prone to Man-In-The-Middle attack because there is no

verification of the identity of the server when setting up the

encryption keys for a session.

The MITM attack works as follows:

 When the client connects to the server, by DNS

spoofing (making a DNS entry point to another IP

Perform User Task

Return Feedback to

User

Stop

Start

Phone Initialisation

User Authentication

Enter Server Name,

IP & Port Number

Attempt Connecting

Prompt User for Task

Verify Self-Signed

SSL Certificate

Failed to verify SSL

SSL Verified

http://www.ijsea.com/

International Journal of Science and Engineering Applications

Volume 4 Issue 4, 2015, ISSN-2319-7560 (Online)

www.ijsea.com 165

address than it was supposed to point to) or ARP

poisoning (entering a fake IP address in a host ARP

table) which causes diversion of traffic to a different

host, the client is fooled to connect to the MITM

instead and the MITM in turn sends a request to the

server. This involves maliciously modifying the

relation between an IP address and its matching

MAC address (Behboodian & Razak, 2011)

 Through this, the server then sends its public key, in

clear text through the MITM and the MITM now

sends the packet further to the client, but

exchanging the public key with another one for

which it knows the private part.

 The client upon receiving this sends a random salt,

encrypted with the server’s public key, to the

MITM. The MITM decrypts the clients random salt

with its private key, encrypts it with the real servers

public key and sends it back to the server.

 The MITM now knows both the server and the

client salt, which is enough information to construct

the session keys used for further packets sent

between the client and the server.

This vulnerability occurs because the client by no means will

try to verify the public key of the server. In other protocols

such as the Secure Shell protocol (SSH), most client

implementations solve this MITM attacks by allowing the

user to answer a question whether a specific server’s key

fingerprint is valid (Montoro, 2005).

Microsoft confirmed the above problem and fixed the new

versions of Remote Desktop Clients. Recent clients now

check the Terminal Server’s identity to verify its public key

before allowing connections. The implication of this is that

Remote Desktop has a very strong security, but of course, as

time passes by, attackers develop more sophisticated tools to

break through. Nam et al. (2012) also stated that ARP

(Address Resolution Protocol) poisoning can be resolved by

delivering the public key and the MAC address of the server

to the client, however this is to be set by the network

administrator manually.

Remote Desktop Protocol (RDP) 6.0 supports Secure Socket

Layer (SSL) and Transport Layer Security (TLS) protocols

which encrypt data sent between a server and a client (Boling,

2007). Quite a number of the Windows operating systems

such as Windows Server 2003 SP1, Windows Server 2008,

Windows XP, Windows Vista, Windows 7 and Windows 8

support SSL/TLS for RDP 6.0.

Despite the MITM security problem, RDP is designed to

support different types of network topologies, multiple LAN

protocols and just like VNC, RDP works on TCP/IP

connections (Kerai, 2010).

4. The Proposed Secure RFB Protocol and

Implementation of an Andriod Smartphone

App for Remote System Administration
Based on the fact that the RFB protocol, a display protocol

has some security lapses including being vulnerable to Man-

In-The-Middle (MITM) attack using a few tools and

techniques, the study in trying to secure the RFB protocol

implemented a self-signed Secure Socket Layer (SSL)

certificate on top of the RFB protocol. The purpose of this is

to enable secure encrypted connections to be established

between the android app and the remote server to ensure end-

to-end security against attacks such as Man-In-The-Middle

(MITM)

Secure Socket Layer (SSL) certificate is a cryptographic

protocol that creates an encrypted communication channel

between a server and client that makes internet traffic

indecipherable to third parties that might intercept them

(Roosa & Schultze, 2010).

A self-signed certificate is one that is signed by the individual

who created it rather than a trusted Certificate Authority

(Code Project, 2014). This research used a self-signed

certificate because they are very convenient in mobile

development since mobile apps in most cases interact with

only one server unlike web browsers. Also, if well

implemented, they work like certificates from a certificate

authority.

This is how the self-signed certificate was created on the

server the android app will be communicating with:

 A KeyStore is created using “bcprov-jdk15on-

146.jar” which is a java class. This class can be

downloaded from www.bouncycastle.org/download/

bcprov-jdk15on-146.jar. This file will be stored in

“C:\androidproject”. This file is used to generate

the KeyStore.

 A keytool is then used to generate the key “keytool

–genkey -alias androidproject –keystore

C:\androidproject/androidprojectsssl.keystore –

validity 365.

 The above generated key is then exported from the

.KeyStore file to .cer file using the command “-

export –alias androidprojects –keystore

C:\androidprojects\androidprojectssl.keystore –file

C:\androidproject\androidprojectsslcert –cer”

 The keystore file is then saved in

“/androidappdir/raw/”

 A class called MyAndroidClient is then written to

hardcode the self-signed generated certificate in the

android app.

In implementing this self-signed certificate created above in

the android app, the study sets up a custom TrustManager that

will trust the above self-signed certificate. This custom

TrustManager is then provided with custom SSLContext as

demonstrated in the code snippet shown in figure 4 below.

The idea here is to do certificate pinning with this self-signed

SSL certificate by hard-coding the certificate known to be

used by the server in the android app so that the app will then

ignore the smartphone’s trust store and rely on its own trust

store thereby terminating connections that do not match with

this self-signed certificate.

http://www.ijsea.com/

International Journal of Science and Engineering Applications

Volume 4 Issue 4, 2015, ISSN-2319-7560 (Online)

www.ijsea.com 166

Figure 4. Code snippet for implementing self-signed SSL

certificate

import java.io.InputStream;
import java.security.KeyStore;

import android.content.Context;

public class MyAndroidClient extends DefaultHttpClient {

 private static Context context;

 public static void setContext(Context context) {
 MyAndroidClient.context = context;
 }

 public MyAndroidClient(HttpParams params) {
 super(params);
 }

 public MyAndroidClient(ClientConnectionManager httpConnectionManager, HttpParams params) {
 super(httpConnectionManager, params);
 }

 @Override
 protected ClientConnectionManager createClientConnectionManager() {
 SchemeRegistry registry = new SchemeRegistry();
 registry.register(new Scheme("http", PlainSocketFactory.getSocketFactory(), 80));
 registry.register(new Scheme("https", newSSLSocketFactory(), 443));
 return new SingleClientConnManager(getParams(), registry);
 }

 private SSLSocketFactory newSslSocketFactory() {
 try {
 InputStream in =
MyAndroidClient.context.getResources().openRawResource(R.raw.androidprojectssl);
 try {
 trusted.load(in, "g@n@@1984".toCharArray());
 } finally {
 in.close();
 }
 SSLSocketFactory sf = new SSLSocketFactory(trusted);
 sf.setHostnameVerifier(SSLSocketFactory.STRICT_HOSTNAME_VERIFIER);
 return sf;
 } catch (Exception e) {
 throw new AssertionError(e);
 }
 }
}

http://www.ijsea.com/

International Journal of Science and Engineering Applications

Volume 4 Issue 4, 2015, ISSN-2319-7560 (Online)

www.ijsea.com 167

5. Evaluating the performance of the RDP,

RFB, and the Proposed Secure RFB

Protocol
The performance of the proposed secure RFB protocol

implemented in the android app was compared with existing

remote access software which are based on the RDP, and the

RFB protocols respectively using ICMP ping command.

Figure 5 below shows the ICMP ping results for the RDP

protocol.

Figure 5: RDP protocol ICMP ping results

Figure 6 below shows the ICMP ping results for the RFB

protocol.

Figure 6: RFB protocol ICMP ping results

Figure 7 shows the ICMP ping results for the secure RFB

protocol

Figure 7: The Proposed Secure RFB protocol android app

ICMP ping results.

6. Conclusions, Recommendation, and

Acknowledgment
From the study, it was revealed through literature that by

default the data that travels through the terminal server and

client in the case of the RDP protocol is protected by the RC4

symmetric encryption algorithm which provides 3 levels of

security. It was further revealed through literature that

applications based on RFB protocol offer fewer features and

security options than remote desktop which is based on the

RDP protocol.

The study has successfully implemented a smartphone app for

remote system administration based on a proposed secure

RFB protocol. Self-signed SSL certificate was incorporated

into the RFB protocol to make it a secure RFB protocol to

ensure that secure encrypted connections are established

between the smartphone and the server.

This research also revealed that the average response time of

the RDP protocol (Remote Desktop) was 436ms, the average

response time of the RFB protocol (VNC) was 496ms and the

average response time of the android app which is based on a

secure RFB protocol was 474ms.

It is recommended that in the future the android app be made

to be able to monitor and administer at least two remote

servers at a time.

We thank God for his mercies given to us to complete this

work.

7. REFERENCES
[1] Baig S, Rajasekar M. & Balaji P. (2012) Virtual

Network Computing Based Remote Desktop

Access. International Journal of Computer Science

and Telecommunications. Volume 3, Issue 5. pp.

127.

[2] Behboodian N. & Razak S. A. (2011) ARP

Poisoning Attack Detection and Protection in

WLAN via Client Web Browser. International

Conference on Emerging Trends in Computer and

Image Processing. pp. 20.

[3] Boling D. (2007) Windows Embedded CE 6.0 R2

Remote Desktop Protocols and Internet Explorer.

pp. 6. Retrieved from:

http://download.microsoft.com/download/5/8/e/5
8e0c008-fc15-4a3b-9728-
c0103bab6473/Windows%20Embedded%20CE%20
6.0%20R2%20Remote%20Desktop%20Protocol%20
and%20Internet%20Explorer_whitepaper.pdf.

[4] Code Project (2014) Android Security-
Implementation of Self-Signed SSL Certificate for
your App. Retrieved from:
www.codeproject.com/articles/826045/android-
security-implementation-of-self-signed-SSL

[5] Kerai P. (2010) Tracing VNC and RDP Protocol

Artefacts on Windows Mobile and Windows

Smartphone for Forensic Purpose. In Proceedings of

International Cyber Resilience Conference.

Australia. pp. 58. Retrieved from:

http://ro.ecu.edu.au/icr/7

http://www.ijsea.com/
http://download.microsoft.com/download/5/8/e/58e0c008-fc15-4a3b-9728-c0103bab6473/Windows%20Embedded%20CE%206.0%20R2%20Remote%20Desktop%20Protocol%20and%20Internet%20Explorer_whitepaper.pdf
http://download.microsoft.com/download/5/8/e/58e0c008-fc15-4a3b-9728-c0103bab6473/Windows%20Embedded%20CE%206.0%20R2%20Remote%20Desktop%20Protocol%20and%20Internet%20Explorer_whitepaper.pdf
http://download.microsoft.com/download/5/8/e/58e0c008-fc15-4a3b-9728-c0103bab6473/Windows%20Embedded%20CE%206.0%20R2%20Remote%20Desktop%20Protocol%20and%20Internet%20Explorer_whitepaper.pdf
http://download.microsoft.com/download/5/8/e/58e0c008-fc15-4a3b-9728-c0103bab6473/Windows%20Embedded%20CE%206.0%20R2%20Remote%20Desktop%20Protocol%20and%20Internet%20Explorer_whitepaper.pdf
http://download.microsoft.com/download/5/8/e/58e0c008-fc15-4a3b-9728-c0103bab6473/Windows%20Embedded%20CE%206.0%20R2%20Remote%20Desktop%20Protocol%20and%20Internet%20Explorer_whitepaper.pdf
http://www.codeproject.com/articles/826045/android-security-implementation-of-self-signed-SSL
http://www.codeproject.com/articles/826045/android-security-implementation-of-self-signed-SSL
http://ro.ecu.edu.au/icr/7

International Journal of Science and Engineering Applications

Volume 4 Issue 4, 2015, ISSN-2319-7560 (Online)

www.ijsea.com 168

[6] Masthan K, Kumar S. K. & Prasad H. V. (2013)

Virtual Network Computing of User Appliances.

International Journal of Computer Science and

Mobile Computing. Volume 2, Issue 8. pp. 132.

[7] Montoro M. (2005) Remote Desktop Protocol, the

Good the Bad and the Ugly. pp. 1-2. Available

from: www.oxid.it.

[8] Nam Y. S, Jurayev S, Kim S, Choi K. & Choi S. G

(2012) Mitigating ARP poisoning-base man-in-the-

middle attacks in wired or wireless LAN. EURASIP

Journal on Wireless Communication and

Networking. pp. 2.

[9] Richardson T. (2010) The RFB Protocol. pp. 3.

Retrieved from: www.realvnc.com.

[10] Roosa S. B. & Schultze S. (2010) The “Certificate

Authority” Trust Model for SSL: A Defective

Foundation for Encrypted Web Traffic and a Legal

Quagmire. Intellectual Property & Technology Law

Journal. Volume 22, Number 11. pp. 3.

[11] Youming L. (2013) Virtual Networking for Mobile

Cloud Computing. Master's Thesis, Aalto

University-Finland. pp. 19. Retrieved from:

https://into.aalto.fi/download/attachment/.../Lin_
Youming_thesis.pdf?

http://www.ijsea.com/
http://www.oxid.it/
http://www.realvnc.com/
https://into.aalto.fi/download/attachment/.../Lin_Youming_thesis.pdf
https://into.aalto.fi/download/attachment/.../Lin_Youming_thesis.pdf

