
International Journal of Science and Engineering Applications

Volume 4 Issue 6, 2015, ISSN-2319-7560 (Online)

www.ijsea.com 350

Accessing and Modifying Sqlite Remotely for Catering Multi
Client Access

Sharayu Lokhande

Department of Computer Engineering

Army Institute of Technology, Pune

 Vaishali Ganganwar

Department of Computer Engineering

Army Institute of Technology, Pune

Abstract: SQLite is a lightweight database management system and a Stable serverless database with almost zero difficulty in installations.

SQLite does not support client server facility due to the write lock issue. For expedite multi-client access to the central database, multiple

instances of the database on the central system can be created and later integrating these instances to give the resultant product. Accessing

these instances remotely would be a solution to the write lock issue. As a result of creating multiple instances of the database on the same

system, there might be a heavy traffic which could lead to reduce performance. To handle this cloud computing concept of High Availability

which refers to a system or component that is continuously operational for a desirably long length of time.

Keywords— Remotely Access, SQLite, High Availability

1. INTRODUCTION

A lightweight database system is a high- performance,

application-specific Database Management system. It differs from a

general- purpose (heavyweight) [1] DBMS in that it omits one or

more features and specializes in the implementation of its features to

maximize performance. Although heavyweight monolithic and

extensible DBMS might be able to emulate LWDB capabilities, they

cannot match LWDB performance.

SQLite is a software library that implements a SQL engine. It has

been used with great success as on-disk file format: allows the

developer to handle data in a simple way, but also have the use of

database features (such as undo, redo, etc.). In embedded device

environment, in which there is low-concurrency and there are little or

medium size datasets, SQLite is the right choice. If we want to save

the data in a common place, i.e., Remote Server until now there is no

easy mechanism to implement this.

The need for storing information in remote server exists to have

centralized access to data by the users. The idea of storing

information in remote server is implemented using Web Services

(plugin) which can save the data in the Remote database like SQL

Server and retrieve as and when required. When a project is

developed, a group of developers/testers are involved. They will need

concurrent information for development which can be done using a

centralized database. For example feedback is collected from

different customers for a product and it is more feasible to store it in

a centralized repository that can be used by the entire for

improvements and further development. So we require a remote

access to SQLite [2]

to be used by all of them.The relevant changes need to be reflected

and others discarded. SQLite has write lock issues which have to

resolve by creation of different instances of the database. Testers can

access and debug the problems directly and provide the information

without having to install the entire system or database files.

1.1 High availability
Virtualization, a technique to run several operating systems

simultaneously on one physical server, has become a core concept in

modern data centers, mainly driven by benefit of application

isolation, resource sharing, fault tolerance, portability and cost

efficiency. A special middleware, hypervisor, abstracts from physical

hardware resources and provides so called virtual machines acting

like real computers with their own (virtual) hardware resources. High

availability system [3] design approach and associated service

implementation that ensures a prearranged level of operational

performance will be met during a contractual measurement period.

Enabling high availability we can detect any point of failure to

propagate reliable crossover, if needed. High availability is a

characteristic of a system. The definition of availability is Ao = up

time / total time. If (total time - down time) is substituted for up time

then you have Ao = (total time - down time) / total time. Determining

tolerable down time is practical. From that, the required availability

may be easily calculated. Here a small network has made with a

master, slave (replica of master) backing up data, controller and a

user virtual machine. Controller will be constantly checking the

master for downtime and doing crossover to slave in case tolerable

down time is exceeded. For this purpose we will use open source

tools like heartbeat, pacemaker and DRBD.

Fig. 1 Virtualization

http://www.ijsea.com/

International Journal of Science and Engineering Applications

Volume 4 Issue 6, 2015, ISSN-2319-7560 (Online)

www.ijsea.com 351

2. SOLUTION FOR SQLITE

Plugin as an interface has been used for remote accessing of SQLite.

A connection to the remote system is made through ssh. As soon as

the remote system is accessed the database is copied to the local

system and launched through SQLite manager. Now the remote

database will be in synch throughout. In case of read operation the

local system will not be updated (by copying remote database) as no

updations have been made. In case of modification/updation of

Database, an instance for it is created corresponding to the developer/

tester which will be used for further development by this particular

tester/developer. The local database will be copied again to the

remote system. The final product is developed at the remote system

by using data from these instances.

Fig. 2 SQLITE Architecture

3. SOLUTION FOR HIGH AVALABILITY

A controller which sends heartbeat or pace-maker (OS tool) to

master, slave and checks the response time.

Availability is calculated by Ao = (total time - down time) / total

time. Determining tolerable down time is practical. Using this

threshold value is determined. If response time exceeds threshold

value, controller shifts from master to slave. All further queries are

directed to slave by the controller.

In case master is updated then the last copied time is checked for the

slave and synched with the master. For this purpose an open source

tool (like DRBD is used). Heartbeat is a daemon that provides

services of clustering; this allows the exchange of messages between

the machines running Heartbeat and check the health of them.

Heartbeat is used for checking if all the nodes are running is

recommended to use a dedicated interface for it. Pacemaker is a

resource manager that provides a full management of the resources

provided by the cluster.

4. GLUSTERFS

GlusterFS [5] is an open source, distributed file system capable of

scaling to several petabytes and handling thousands of clients.

GlusterFS clusters together storage building blocks over Infiniband

RDMA or TCP/IP interconnect, aggregating disk and memory

resources and managing data in a single global namespace.

GlusterFS [6] is based on a stackable user space design and can

deliver exceptional performance for diverse workloads.

 Attributes of GlusterFS include:

Scalability and Performance

High Availability

Global Namespace

Elastic Hash Algorithm

Elastic Volume Manager

Standards-based

By considering the advantage of two different features to provide a

highly available, scalable NFS and CIFS service. First, the use DNS

round robin to have each client use one of the Gluster servers[6] for

their mounts. Then, CTDB will provide virtual IPs and failover

mechanisms to ensure that, in the case of a server failure, failover is

transparent to clients. Define DNS entries for two load balanced

services, called glusternfs and glustercifs. Virtual IPs combined with

CTDB IP failover; it allows having both load balancing and high

availability.

Set a low TTL for the records so, if a virtual IP is down while a

client is trying to mount, the client can retry using a different one. To

configure CTBD start with a single volume called vol1, configured

as distributed + replicated (2 replicas), and export it using NFS and

CIFS.

5. DRBD AND DRB DLINKS

5.1 DRBD
One mechanism for sharing data between two machines is to use an

external RAID array. The primary drawback to this is cost, with

typical array configurations costing no less than $2,000. DRBD is

a”Distributed Replicated Block Device”

that allows similar results to be achieved on local discs using a

network connection for replication. DRBD can be thought of as a

RAID-1 (mirrored drives) system that mirrors a local hard drive with

a drive on another computer. DRBD includes mechanisms for

tracking which system has the most recent data, ”change logs” to

allow a fast partial re-sync, and startup scripts that reduce the

likelihood that a system will come up in

”split brain” operation.

 Fig. 3 Overview of DRBD concept

A dedicated network using a direct cross-over network connection is

set up between the machines.

5.2 DRBDLINKS

In a typical system running DRBD[8], there will be many directories

and files that reside on the shared data partition. A way to handle the

http://www.ijsea.com/

International Journal of Science and Engineering Applications

Volume 4 Issue 6, 2015, ISSN-2319-7560 (Online)

www.ijsea.com 352

data in the HA Cluster is- Link the normal system files and

directories into the shared partition. This means that configuration

file and data reside in their familiar locations on the primary system.

However, links must be set up when the service starts on the primary

and returned to normal when the service is not operating. These links

can be maintained in the heartbeat startup and shutdown scripts using

the standard ln, mv, and rm commands. The DRBD shared partition

will be mounted on”/shared”. DRBDLINK Configuration install

the”drbdlinks” package Configure the ”/etc/drbdlinks.conf” file setup

the directories mentioned in /etc/drbdlinks.conf file in the shared

partition restart the DRBD close the database to ensure a good copy

of the data is made configure heartbeat resource to start and stop

DRB- DLinks by modifying the ”/etc/ha.d/haresources” file
DRBDLinks moves the system ”httpd” file to the httpd.drbdlinks”

and makes a link to the version in ”/shared.

6. CONCLUSION

Environment, in which there is low- concurrency and there are little

or medium size datasets, SQLite is the right choice[1]. The drawback

of SQLite can be removed by the proposed solution by creating

instances and then integrating the modules. HA is implemented with

the help of open source tools such as heartbeat, DRDB, GlusterFS,

corosync which helps in achieving availability at all times

overcoming any failure at the server end.

7. REFERENCES

[1] D. C. Igweze and E. O. Nwachukwu, Lightweight

 Database System (Lwdbs): An Overview

[2] Kiran Dhokale, Namdeo Bange,Shelake Pradeep, Sachin

 Malave,Implementation Of Sql Server Based On Sqlite

 Engine On Android Platform

[3] High availability clustering of virtual machines-

 possibilities and pitfalls may 2006 Wiesbaden/germany

 version 1.01

[4] The Expedient Approach for High Availability in Web

 Server Services for HPC Attained by Clustering using

 Virtualization International Journal of Computer

 Applications, Volume 95 No.20, June 2014

[5] GlusterFS: http://www.gluster.org/documentation/

 Architecture/internals/Dougw:ANewbie0

 sGuidetoGlusterInternals=; V olume95No:20; June2014

[6] http://blog.gluster.org/about/

[7] http://www.linuxlinks.com/article/20130411160756441/Gl

 usterFS.html

[8] https://www.smartseohosting.com/GlusterFS

http://www.ijsea.com/
http://blog.gluster.org/about/
https://www.smartseohosting.com/GlusterFS

