
International Journal of Science and Engineering Applications

Volume 6 Issue 02, 2017, ISSN-2319-7560 (Online)

www.ijsea.com 49

NFRs Model for Nuclear Power Plants

Ehab Shafei

Operation Safety and Human

Factors Department

Nuclear and Radiological

Regulatory Authority

Cairo, Egypt

Hany Sallam

Operation Safety and Human

Factors Department

Nuclear and Radiological

Regulatory Authority

Cairo, Egypt

Mostafa Aref

Computer Science Department

Faculty of computer and

information sciences, Ain

Shams University

Cairo, Egypt

Abstract: Requirements analysis phase plays a vital role in drawing the performance and characteristics of critical software systems.

As the requirements were global, detailed and complementary as the system was successfully functioning, free of errors and flaws, and

adapted to environment dynamicity. In critical systems, such as Nuclear Power Plants (NPPs), implementing software functional

requirements (FRs) is not enough to ensure system safety. Non-functional requirements NFRs implementation beside FRs becomes

crucial for ensuring such function. NFRs performs other functions that are essentials for system availability, reliability, and

dependability. NFRs should be supportive, not precluding to FRs, and keep system complexity and cost as low as possible. To this

end, this paper proposes a model for NFRs which have importance in nuclear field based on safety system classification, and graded

approach which assign the quality attributes and constraints to a given system based on its importance to safety. This model helps in

enhancing the system overall safety without increasing the system complexity and implementation cost without need.

Keywords: critical software system, requirements analysis, Nuclear Power Plants

1. INTRODUCTION
Safety critical software systems are considered as computer-

based systems which of special concern in which failure of the

system could lead to significant economic, physical damage to

organizations or people injury. Such systems increasingly

deployed in many critical systems such as, nuclear power

plants, radiotherapy, aircrafts, and many medical devices.

These systems rely on the use of safety critical software in

controlling and monitoring critical devices. Success of such

systems depending on the software requirements analysis.

Requirements analysis is considered to be the most important

phase in the software development lifecycle. It is widely

recognized that, of all phases in software, it considered to be

the most crucial task in software engineering. System

requirements are divided into FRs, and NFRS. NFRs are often

more critical than FRs in the determination of a system's

perceived success or failure. According to Kotonya and

Sommerville, the NFRs define the overall qualities of the

resulting system that are often critical in nature, and

sometimes functional requirements may need to be sacrificed

to meet these non-functional constraints [1]. Ineffectively

dealing with NFRs has led to a series of failures in software

development [2], [3], as happened in well-known case of the

London Ambulance System [4], where the deactivation of the

system right after its deployment was strongly influenced by

NFRs noncompliance. Literature [5], [6], [7] has been

pointing out the difficulties of dealing with these requirements

and showing that errors due to NFRs are the most expensive

and difficult to correct.

Literature review also shows that, NFRs are often poorly

understood and not considered adequately in software

development due to the characteristics of NFRs, and

difficulties. Also because there is no consensus about them

[8]. Christoph Marhod et al. [9] show that there are many

problems related to representing NFRs more than FRs. These

problems causing the user non satisfaction and can expensive

downtime or even complete failure of the system [10].

Requirements should be complete and express the entire need

and purpose of the system and also should manage all

conditions and constraints under which it applies [11].

The paper is organized as follows: section 2 introduces the

related work. Section 3 represents the proposed NFRs model

for NPPs. The last section concludes the discussion, and

explores trends for future research work.

2. RELATED WORK
Critical software requirements analysis don't take into account

the requirements imposed as a result of integrating the

software with the environment and also other requirements

related to the performance and the quality of the software, and

the human interaction with the software. The following

different kinds of requirements may be incomplete because

different component parts of them are missing [12] such as

data requirements, interface requirements, quality

requirements, and constraints. In 1997, Gilb classified

requirements to functions, qualities, costs and constraints [13].

The last three are regarded to NFRs. Qualities denote “How

well the function will perform” and “any restrictions on the

freedom of requirements or design” relates to the constraints.

Gilb’s classification emerged due to the presence of unwanted

or undesirable requirements or if it's false, unclear, and/or not

possible to assess their satisfaction. IEEE Standard “IEEE

Std-830-1993” [14] attempting to classify and specify NFRs.

Glinz [15] classified NFRs as performance and quality related

requirements that could be described using four facets:

representation, satisfaction, kind, and role. In ISO 25010 [16]

software quality model is defined, which composed of eight

attributes. The attributes are reliability, performance,

suitability, efficiency, security, portability, maintainability,

and compatibility. According to the nature of the application

domain, some of these NFRs are prioritized. NFRs such as

security and reliability have more importance in safety critical

systems than other systems [17]. Each system has a specific

nature which requires suitable NFRs to be fulfilled according

to its function and environment. The NFRs presented in [18]

used in distributed control system in automation domain, the

presented NFRs are reusability, modularity, interoperability,

http://www.ijsea.com/

International Journal of Science and Engineering Applications

Volume 6 Issue 02, 2017, ISSN-2319-7560 (Online)

www.ijsea.com 50

resource utilization, reliability, time behavior, analyzability,

and installability. We are not aware of any other

comprehensive approach to the NFRs classification. .Critical

software NFRs should be not limited to the existing quality

attributes of NFRs but should be extended to include other

important NFRs specifically related to the system context,

platform, and environment in which system is integrated.

These NFRs represent the constraints that should be applied in

the system according to its critical level. That the software

should execute in a system context without contributing to

unacceptable risk.

3. NFRs MODEL
This section provides a model for NFRs which have

importance in NPPs based on safety system classification and

graded approach which assigns the quality attributes and a set

of suitable requirements to a given system based on its

importance to safety. This model helps in enhancing the

system overall safety without increasing in the system

complexity and implementation cost without need. As the

system environment is dynamic and has different modes of

operation, consequently different requirements for each mode

of operation are expected. As human or operator plays an

important role in system operation and management, this

requires a set of suitable requirements to improve and enhance

interface with the system to avoid operator errors. Since the

software is vulnerable to cyber-attacks which have severe

consequences on system's safety, so security has a special

concern and importance. Time is very important NFR, which

the system should take action on time as required. Software

input data, intermediate data (processed data), and output data

can lead to system failure, and consequently lead to accident

if they are not accurate, or incorrect. These NFRs may tend to

be related to one or more FRs but they aren’t FRs. These

NFRs are essential for the system to be able to perform its

functions safely.

The NFRs model for NPPs composites of two levels of NFRs,

quality attributes level, and a set of suitable requirements for

system application level as shown in Figure 1. The quality

attributes level includes the essential set of NFRs, which are

mandatory for such applications such as reliability,

robustness, usability, maintainability, testability, and

availability. The system application level, which includes

NFRs that represent the required requirements and constraints

according to the application nature in NPPs, and criticality of

the system. These NFRs are data, modes of operation, system

integration, security, and time. These NFRs should be

considered in the design and implementation phases to ensure

the safety of the system. Therefore, the designer of software

should be considered and commensurate with the identified

NFRs and related constraints.

 Figure 1 NFRs quality model

Each system in NPPs has a certain degree of criticality

according to the importance of safety function to be

performed, consequences of failure, period of time for

which, the system will be called upon to perform a safety

function and the calling frequency of the system to perform

the required safety function. Systems criticality has a direct

proportional relation with systems severity, which means

high critical systems have high severity in case of failure.

To design NFRs according to system importance to safety

and its criticality, we have to present the systems

classification schema in NPPs. Each system in NPPs

performing a specific function and accordingly it is

classified into one of three classes according to its function

in the plant and severity in case of failure. Table 1 shows

the relation between system criticality and system safety

classification in NPPs.

Table 1 Npp systems safety classification

Safety class

System criticality

(severity)

Class 1

(safety systems)
High

Class 2

(Safety related)
Medium

Class 3

(Non safety)
Low

The three safety classes are:

a) Safety class 1: contains safety systems which

perform safety function such as reactor protection

system, and whose failure would lead to

consequences of high severity;

b) Safety class 2: contains safety related systems which

perform safety related functions such as safety related

monitoring and alarm system (fire alarm system,

seismic information and control system). These

systems do not impact safety directly, but may

cause the NPP trips. In case of its failure would lead to

consequences of medium severity;

c) Safety class 3: contains independent systems such

as information processing and monitoring system

for non-safety systems that do not impact NPP

safety or trips (radiation monitoring system). The

failure of these systems would lead to consequences

of low severity.

For each safety class, there is a set of quality NFRs and a

set of suitable application requirements which are designed

according to system criticality. Table 2 illustrates the

system classification in NPPs and associated suitable

NFRs. Also the application constraints which have to be

applied in the software design and implementation, and

should be commensurate with the class of the target

system, which can be key elements of meeting safety of the

system.

In safety systems (safety class 1), based on the fact that these

systems perform safety function such as RPS, which brings

the reactor to a safe state when the safety setting value is

reached by shutdown the reactor. All presented NFRs should

be exist in this system. That the system should be: reliable to

be trusted, available all the time because it performs safety

Quality

requirements level

Application

requirements level

http://www.ijsea.com/

International Journal of Science and Engineering Applications

Volume 6 Issue 02, 2017, ISSN-2319-7560 (Online)

www.ijsea.com 51

function. The system also should be maintainable in case of

failure occurred, testable at any time to check its operability,

robust to have the ability to cope with errors during execution,

and usable by the operator in easy way. While, safety critical

system performs its function in reactor operation mode, it also

continues to monitor the reactor variables after the reactor

shutdown to inform the operator about the reactor state and

values of the variables, so the requirement of modes of

operation should be well addressed in the design, and

implementation phases. While the safety critical system is an

embedded system and operates in a dynamic environment, so

the integration and compatibility between its components

(software, computer system hardware, sensors, actuators,

network, and operators) is very important and should be taken

into consideration during the software failure analysis, design,

implementation, and testing. As any digital system, critical

software system is vulnerable to cyber-attacks, where such

software system processes sensitive data and executes safety

function, software security becomes an essential and crucial

NFR. Software security is concerned about preventing

unauthorized access to the running programs, and related data

used since such access could result in a system

malfunctioning due to intentional change to system settings

and data values. For these reasons, software security should

be addressed in the design, implementation, and test phases of

the software. As this system performs a safety functions, so its

safety decision should be taken in the required time, the time

is very crucial constraint for successful safe operation. The

critical software system function depends on input and output

data, so the data constraints should be considered in different

software development phases to ensure the safety and

reliability of the system.

In safety, related systems such as a fire alarm control and

information system, this system is safety related, and does not

impact safety directly but may cause NPP trip. It has a

medium importance to safety, so not all NFRs have to be

considered in the software development lifecycle, such as

modes of operation, and some of these NFRs may be

considered partially i.e. not all constraints should be

considered such as security, time, and data. While these

systems operate in all operation states not specific for certain

one, so NFR operation modes are not considered. Also, these

systems do not deal with sensitive data and the probability to

be attacked is medium, so security can be assured by any

commercial security programs or security hardware. Not all

constraints of time and data addressed in this system.

In non-safety systems, such as radiation information and

monitoring system. These systems do not affect the NPP

safety, and if these systems failed, there are alternative

methods (detection devices) which can perform the same

function. Not all NFRs addressed in the development of these

systems such as availability, maintainability, robustness,

modes of operation, system integration, and security, and

some of them addressed partially such as time, and data. For

example, security can be assured through physical security or

even by system password because the system does not have

sensitive data and not vulnerable to cyber-attacks. While

radiation values can be monitored by another system, so the

data requirements and constraints are important to be

addressed, they are addressed partially. Time also is partially

addressed to monitor the radiation value at the required time.

Table 2 NPP safety systems classification and associated

NFRs

 Class 1 Class 2 Class 3

Reliability x x x

Availability x x

Maintainability x x

Robustness x x

Testability x x x

Usability x x x

Modes of

operation x

System

integration x x

Security x partially

Data x partially partially

Time x partially partially

In this paper, we focus on discussing a set of suitable NFRs

for safety class 1 systems in NPPs such as system integration,

security, mode of operation, time, and data, which represent

crucial requirements for class 1 systems in NPPs. These

requirements are essential for these systems and should be

fulfilled in the systems to improve the safety. Each one of

these NFRs may be further decomposed into a set of

constraints. These NFRs, and related constraints are explained

in the following subsections.

3.1 System Integration
Each critical system embedded in critical environment

includes software system which controls the operation of the

system and the monitoring and supervision system which

receive information from the critical software system and send

control signal to the critical software. In such environment the

integration and compatibility between the system components

(software, computer system hardware, sensors, actuators,

network, and operators) is very important and should be taken

into consideration during the software failure analysis, design,

implementation, and testing. The integration between these

components of that system may lead to accidents if the design

didn't consider the constraints related to this integration. That

there is an affective relation between software and other

components in the critical systems and should take into

account the integration between software and the following

components:

a) Hardware: through hardware interface module which

can take inputs from sensors and give outputs to

actuators, and other subsystems. During the

development of software, the logical and physical

characteristics of the interface between the critical

software and the hardware components of the critical

system should be identified. This may include the

NFRs
Safety class

http://www.ijsea.com/

International Journal of Science and Engineering Applications

Volume 6 Issue 02, 2017, ISSN-2319-7560 (Online)

www.ijsea.com 52

supported device types, the nature of the data and

control interactions between the software and the

hardware, and communication protocols to be used. For

each sensor, the received values from the sensor in

terms of data ranges, units, precision, error bounds,

meaning, etc should described. For each actuator,

describe the sent values to the actuator in terms of data

ranges, units, precision, error bounds, meaning, etc.

Also constraints and specifications for computer system

hardware should be considered which includes physical

devices that assist in the transfer of data, and perform

logic operations such as busses, memory cards, and

Central Processing Units (CPU). Based on the fact that

the operating system has a crucial rule in the software

operation. There are related constraints that should be

considered such as process and stack management,

exception handling, flow control, memory scheduling

and allocation. These constraints have repercussion on

the function safety.

b) Network: The network and infrastructure for each

software system should be identified in terms of

networking traffic, data transfer rates, error checking

mechanism, input and output communication ports,

interrupts, message format and throughput, exception

handling and error recovery, and finally synchronization

mechanisms.

c) Operator: through a human interface (human system

interaction)

 In safety critical systems, the main goal of the user

interface is to allow operators to carry out activities such

as monitor and supervise the system effectively and

safely. The human system interaction has a great impact

upon the human performance, which needs to be well

designed. Many spectacular system failures are caused

by human and user interface design errors. Many of

accidents and events referenced to misinterpretation of

system parameters consequently operators taking

incorrect action, which leads to an accident as in Three

Mile Island [19], the much publicized London

Ambulance Service, and Therac-25 accidents, were

attributable to poor operator Graphical User Interface

(GUI) design as well as unreliable control software [20],

[21]. High interface usability is aiming to make the

operator more comfortable and reduce anxiety. The

interface requirements should describe the logical

characteristics of each interface between the critical

software and operators. Establish criteria for monitoring

the transmission of data between systems, including the

identification of error conditions. This includes also

sample screen images, any GUI standards or product

family style guides that are to be followed, screen layout

constraints, standard buttons and functions (e.g., help)

that will appear on every screen, keyboard shortcuts,

error message display standards, emergency windows,

and so on. Define the software components for which an

operator interface is needed. The system should interact

with the user in an effective way that the system should

notify the operators (send feedback) to operators that it

takes a suitable time to complete an action. If the system

cannot meet the required response time limits should

keep users informed about what is going on for example

if the required action takes more than one second, the

system should notify the operator, and if it takes more

than 10 seconds to allow the user to interact according

to certain procedure. The following requirements and

constraints are related to operator interfaces which

should be considered:

1. The software interface should have the capability to

handle a large amounts of information by means of

scrolling, overlapping windows, and hierarchies of

displays;

2. Error message should be visible, explicit, readable,

precise, and constructive advice;

3. Human reaction and decision times (grace period)

should be identified;

4. Menus techniques, colors, underlining and blinking

on displays should be identified carefully and

designed;

5. The alarms should be monitored easily and

according to its criticality, by using color coding to

distinguish the importance of alarms; the first

priority of alarms is represented by red, the second

by yellow, and the third by green;

6. Help menus, and emergency procedures menu

should be clear, visible and not complicated;

7. Layout of controls and displays should be designed

carefully;

8. The graphic module configuration should be

identified and designed to be responsible for picture

display parts, such as flow charts, trends, and

alarms.

3.2 Operation Modes
Many of critical systems in NPPs have different modes such

as startup mode, normal operation mode, maintenance mode,

and shutdown mode. For each operation mode, there are many

safety requirements. This type of NFRs should cover the

different operating modes, and specify the protective action

that should be taken in case of incidents. Each mode of

operation determines the data to be processed, data to be

monitored for operators, and certain allowed operator action.

That some of operator actions can be locked. Critical software

system should have the ability to perform self-management

for procedures, and functions depending on different modes of

critical system. Also should have the ability to switch between

different procedures and functions and initiate other functions

according to critical system modes of operation. These are not

functional requirements in themselves, but constraints

associated with each mode of operation such as:

a) Identify sufficient error logging, that in case of software

failure or critical system failure, the critical software

should have the ability to detect such failures.

b) Requirements regarding to modification request

procedures according to different critical system

operation mode;

c) The allowed and not allowed operations in each mode

such as safety setting valued modification is forbidden

in operation mode;

d) Time period required for moving from one mode to

another;

e) Error handling in each mode should be identified;

f) Alarm or action triggers for each mode should be

identified;

g) Establish system health check procedures.

3.3 Data
The NF data requirement should be identified based on a set

of constraints as shown in Figure 5. These constraints are very

important for critical software systems in NPPs. According to

the input data, there is a decision will be taken, this decision

may be related to a safety function such as shutdown the

nuclear reactor. Also, the data have importance in the

calculations which are performed in the reactor. So, the input

http://www.ijsea.com/
http://www.google.com.eg/url?sa=t&rct=j&q=&esrc=s&source=web&cd=7&cad=rja&uact=8&ved=0CFoQFjAG&url=http%3A%2F%2Fwww.epa.gov%2Fradiation%2Frert%2Ftmi.html&ei=Nt8GVJGMCsGX1AWFiYHoBw&usg=AFQjCNGct2_URfZiMLaDW-CRokTHTBmXhA&bvm=bv.74115972,d.d2k
http://www.google.com.eg/url?sa=t&rct=j&q=&esrc=s&source=web&cd=7&cad=rja&uact=8&ved=0CFoQFjAG&url=http%3A%2F%2Fwww.epa.gov%2Fradiation%2Frert%2Ftmi.html&ei=Nt8GVJGMCsGX1AWFiYHoBw&usg=AFQjCNGct2_URfZiMLaDW-CRokTHTBmXhA&bvm=bv.74115972,d.d2k

International Journal of Science and Engineering Applications

Volume 6 Issue 02, 2017, ISSN-2319-7560 (Online)

www.ijsea.com 53

data should be accurate, in range, arrive in the required time,

and represented correctly. In addition to the retention of the

data which should be identified. These constraints should be

identified and checked during the software design, and

operation. The representation of the data is important also for

the operator to easily monitor the plant and take the

appropriate action according to the data represented.

Figure 5 Data constraints

The constraints of data attribute are illustrated as follows:

a) Timing: the input data should be received on time not

after or before the required time;

b) Accuracy: the accepted degree of data accuracy should

be identified. The data to be correct, its values should be

in the right value and represented in a consistent and

unambiguous form;

c) Representation: the convenient way data representation

for operator usage should be identified to make an easy

and fast evaluation for system status;

d) Retention: define the length of time data needs to be

retained after it is no longer considered active. Define

whether the data are required to be available real time or

can be stored in an archive;

e) Range: the input data range with both limits, high and

low should be identified and checked.

3.4 Time

The time as NFR has a vital role in critical real time software

systems for NPPs. These systems should response to any

designed or undesigned action within a certain period of time.

There are constraints of time that should be considered in the

design and implementation phase to guarantee that the system

response within the specified time as shown in Figure 6 such

as response time, startup time, processing time, and hardware

failure detection time. These constraints should be

continuously checked during the runtime of the software to

update the operator in case of any degradation occurred.

Figure 6 Time requirements and constraints

3.5 Security
With the growing trend in using safety critical software as an

embedded system in many critical applications in NPPs,

where such software systems contain sensitive data and

perform a safety function, software security becomes an

essential, and crucial NFR. Software security is concerned

about preventing unauthorized access to the running

programs, and related data used for such access could result in

a system malfunctioning due to intentional interference. The

consequence of such interference could be an accident or

system fail to perform its intended protective action. So

Software security aims to maintain and preserve

confidentiality, integrity, and availability as shown in Figure

7. The result or impact of the attack might include:

a) Denial of service/loss of function: blocking the

operator’s ability to observe and/or respond to changing

system conditions, speeding the system down and may

affect the system availability.

b) Interception: intercepting and modifying data streams

passed between systems or corrupting the data and this

may affect the system behavior and consequently its

safety.

c) Unobserved system monitoring and data collection:

unauthorized file access and data recording, including

the message (information) intercept.

d) Operator spoofing leading to incorrect action: injecting

anomalous readings into a control panel, causing the

operator to take incorrect action.

e) Direct manipulation of computer systems: giving the

attacker independent control over processes and

machinery.

Figure 7 security requirements

Based on the fact that attacks may come in each phase of

software as a result of drawbacks and shortage in these phases

such as design errors, and source code bugs. So critical

software system should be developed in secured environment

and each phase of software development should be designed,

implemented, and executed under suitable security measures

for each phase. Security for critical software should provide in

terms of secure models, secure coding practices, and secure

development procedures. Also security should be assured

during deployment and maintenance phases. Exploitable

faults and other weaknesses are eliminated to the greatest

extent possible by efficient design, and well-intentioned

engineers. The security design should be based upon certain

threats/threat types, identified security goals, security

requirements and security functions as shown in Figure 8.

Assurance for such objectives are achieved by implementing

the identified security functions. Security controls such as

auditing, reviewing, and testing should not be limited to the

requirements, design, implementation, and test phases of the

software lifecycle. It is important to continue performing code

reviews, auditing and security tests, during deployment,

operations, and in case of updating to ensure that updates do

Data
Representation

 Retention

Range

Accuracy

Timing

Time

Response time

Startup time

Processing time

Hardware failure detection time

http://www.ijsea.com/

International Journal of Science and Engineering Applications

Volume 6 Issue 02, 2017, ISSN-2319-7560 (Online)

www.ijsea.com 54

not add security weaknesses or malicious logic to the

software.

Figure 8 Security design flow

4. CONCLUSION
This paper established the base for designing and

implementing NFRs applied for NPPs critical software

systems and presented a new model for NFRs. More NFRs

means more quality, but on the side leads to more coast and

more systems complexity, based on this fact, selecting and

implementing NFRs for a given system should be decided by

its the importance to the system and how much the selected

NFRs will improve the system’s quality. For this reason, in

this paper designing and implementing NFRs for NPPs were

engineered by using the graded approach as a well-known

approach in the nuclear field. Different NPPs systems are

classified into three classes, safety, safety related, and non-

safety according to severity of consequences if one of an NPP

systems failed to perform its required function. The new

NFRs model based on a graded approach to assign NFRs for

each class and justify the required constraints associated with

each attribute specially for safety class. This model is

characterized by correlating between the system function

importance to safety and supportive NFRs to be designed and

implemented in the system to improve the system

performance quality without more unrequired excessive

complexity.

5. REFERENCES
[1] K. Gerald and S. Ian, Requirements engineering: Process

and Techniques, Wiley 2000.

[2] K.K. Breitman, J.C.S.P. Leite, and A. Finkelstein, “The

World’s Stage: A Survey on Requirements Engineering

Using a Real-Life Case Study,” J. the Brazilian

Computer Soc., vol. 6, no. 1, pp. 13-38, July 1999.

[3] D.R. Lindstrom, “Five Ways to Destroy a Development

Project,” IEEE Software, pp. 55-58, Sept. 1993

[4] A. Finkelstein and J. Dowell, “A Comedy of Errors: The

London Ambulance Service Case Study,” Proc. Eighth

Int’l Workshop Software Specification and Design, pp.

2-5, 1996

[5] F.P. Brooks Jr., “No Silver Bullet: Essences and

Accidents of Software Engineering,” Computer, no. 4,

pp. 10-19, Apr. 1987.

[6] A. Davis, Software Requirements: Objects Functions and

States. Prentice Hall, 1993.

[7] L.M. Cysneiros and J.C.S.P. Leite, “Integrating Non-

Functional Requirements into Data Model,” Proc. Fourth

Int’l Symp. Requirements Eng., June 1999.

[8] Jane Cleland-Huang, Raffaella Settimi, Oussama

BenKhadra, Eugenia erezhanskaya, Selvia Christina,

Goal-Centric Traceability for Managing Non-Functional

Requirements, ICSE'05, May 15-21, 2005, St. Louis,

Missouri, USA. Copyright 2004 ACM 1-581 13-963-

2/05/0005.

[9] Christoph Marhold1, Clotilde Rohleder12, Camille

Salinesi2, Joerg Doerr3, Clarifying Non-Functional

Requirements to Improve User Acceptance – Experience

at Siemens.

[10] Brooks Jr., F.P., "No Silver Bullet: Essences and

Accidents of Software Engineering," IEEE Computer., 4,

(Apr. 1987),10-19.

[11] Ralph R. Young, The requirements Engineering

Handbook, Artech House, 2004.

[12] Ben Swarup Medikonda, Seetha Ramaiah Panchumarthy,

"A Framework for Software Safety in Safety Critical

Systems", SIGSOFT Software Engineering Notes, Vol.

34, No.2, March 2009.

[13] Gilb T., Towards the Engineering of Requirements”,

Requirements Engineering Journal, vol. 2, no. 3, pp. 165-

169, 1997.

[14] IEEE, IEEE Recommended Practice for Software

Requirements Specification. IEEE standard 830-1993,

1993.

[15] Glinz M., “Rethinking the Notion of Non-Functional

Requirements”, in Proceedings of the 3rd World

Congress for Software Quality, Munich,Germany, pp.

55-64, 2005.

[16] ISO/IEC 25010, Systems and software engineering -

Systems and software Quality Requirements and

Evaluation, 2011.

[17] I. Sommerville, Software Engineering.: Addison Wesley,

2006.

[18] Timo Frank, Martin Merz, Karin Eckert, Thomas

Hadlich, Birgit Vogel-Heuser, Alexander Fay, Christian

Diedrich, " Dealing with non-functional requirements in

Distributed Control Systems Engineering”, 978-1-4577-

0018-7/11/$26.00, IEEE ETFA'2011.

[19] Timo Frank, Martin Merz, Karin Eckert, Thomas

Hadlich, Birgit Vogel-Heuser, Alexander Fay, Christian

Diedrich, " Dealing with non-functional requirements in

Distributed Control Systems Engineering”, 978-1-4577-

0018-7/11/$26.00, IEEE ETFA'2011.

[20] Ben Swarup Medikonda, Seetha Ramaiah Panchumarthy,

“A Framework for Software Safety in Safety Critical

Systems”, SIGSIFT software Engineering Notes, Vol.34,

No.2, 2009.

[21] M.Ben Swarup, P. Seetha Ramaiah, “A Software Safety

Model for Safety Critical Applications”, International

Journal of Software Engineering and Its Applications,

Vol.3, No.4, 2009.

http://www.ijsea.com/

