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Abstract: Due to the economic and industrial importance of iron in the development of human societies, in recent decades, extensive 

explorations have been carried out on minerals containing this valuable metal. Remote sensing techniques are known as one of the 

most powerful tools for regional exploration of this mineral. In this study, various methods of remote sensing such as band ratios (BR), 

false color combinations (FCC), least square fitting (LS-Fit), spectral angle mapper (SAM), and finally principal components analysis 

(PCA) for mapping iron minerals in the Hana district, south of Kerman province, were used. The results of these methods were 

compared with each other as well as with the results of studies and field surveys. After reviewing and comparing the results, it was 

determined that in the studied region, spectral angle mapper (SAM) method has higher accuracy for mapping of oxidation regions and 

iron minerals. 
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1. INTRODUCTION 
Iron as a strategic element plays an important role in the 

development of industry and economics of countries [1]. The 

need to extract this element from the minerals in nature 

reveals the importance of the regional exploration of these 

minerals. On the other hand, the use of various remote sensing 

techniques will increase the speed of operation and 

significantly reduce the cost of finance [3, 4]. In this study, 

using remote sensing methods including band ratios (BR), 

false color combinations (FCC), least square fitting (LS-Fit), 

spectral angle mapper (SAM), and principal components 

analysis (PCA) and also considering the geological features of 

the study area, the detection of oxidation regions and iron 

minerals in the area of Hana, located in the south of Kerman 

province, is discussed. 

2. DATA AND RESEARCH METHODS 

2.1  Regional Geological Setting 
The study area is located in the south of Kerman province and 

Kahnouj city, in the geological map of 1: 100,000 Hana 

(Figure 1) [2]. The area consists of four geological sequences 

which are described below : 

 Volcanic – Pyroclastic - Sedimentary sequence : 

This sequence consists of the oldest rocks of the region 

with the Eocene age, which is characterized in the Fark 

River region with the units of green tuff and sandstone 

and limestone, including pyroclastic sediments, 

microdiorite dikes, tuff, andesite, conglomerate, 

sandstone and carbonate rocks. 

 Sedimentary - Sedimentary – Volcanic sequence : 

Includes conglomerates, sandstone, marl , dacitic 

massive tuffs and fossil limestone and bioclasts. 

 Volcanic series : 

This series introduces volcanics belonging to the after 

Oligomiocene and contains acidic up to the intermediate 

volcanic rocks, granite and granodiorite dikes, Porphyry 

and diabase rocks that dikes have penetrated into oligo-

miocene rocks. 

 Sedimentary series : 

The Neogene layers in the lower parts include red 

gypsum sandstones representing semi-arid conditions of 

sedimentary environments, and the upper layers are 

conglomerates. 

Quaternary sediments in the form of sandy dunes and alluvial 

plains cover most of the southern and western parts of the area 

and are located on Neogene sediments [2]. 

The northern part forms the Jabal Barez river basin. This area 

includes Eocene-Quaternary sediments along with pyroclastic 

and granite sediments. The southern part of the area consists 

of a deep river basin, which is mainly covered with a thick 

layer of gravel, which forms a whole bulky desert. 

The oldest observable rocks belong to the Eocene. In the 

"Fark" river, there are  green tuff, sandstone and carbonate 

layers, and in the "Freezu" mountain range, agglomerate, 

rhyolite, rhyolitic tuff, conglomerate and dacitic tuff, the 

middle Eocene have been created. 

In the north-eastern part of the region, there are acidic up to 

the intermediate volcanics, the broadest of which are green 

hornblend granites. The lower parts of it are often covered 

with tuff and conglomerate, which is the same process. In 

parts of the region there are rhyodactic masses and under them 

there are intrusive masses of quartz diorite to diorite, which 

are in some places outcrop. 

In the northeastern and eastern part of the region, we also 

have a density of faults and fractures that there are lack of the 

trend  and are often intersecting fractures [2]. 
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2.2 Satellite Remote Sensing Data 
In this study, the image of the ASTER Satellite Sensor was 

used. ASTER (Advanced Spaceborne Thermal Emission and 

Reflection Radiometer) is a high resolution imaging 

instrument that is flying on the Terra satellite [5]. ASTER will 

obtain detailed maps of land surface temperature, emissivity, 

reflectance and elevation of the Earth. 

ASTER has three sensors to measure and record the reflected 

and emitted Electromagnetic Radiation (EMR). They are 

working in different wavelength regions the Visible and Near 

Infrared (VNIR) between 0.52 and 0.86 μm, Short Wave 

Infrared (SWIR) between 1.6 and 2.43 μm, and Thermal 

Infrared (TIR) between 8.125 and 11.65 μm. ASTER data 

consists of 14 spectral bands 3 VNIR, 6 SWIR, and 5 TIR 

with 15, 30, and 90 m spatial resolution,  espectively [6]. The 

VNIR, SWIR and TIR wavelength regions provide 

complementary data for lithological mapping [7]. 

Geometric corrections were made using the satellite ETM+ 

satellite image on the study area image. In order to ensure the 

results, IAR Reflectance radiometric corrections were applied 

to the region image and the results for applying different types 

of processes were introduced into ENVI software[8]. 
 

2.3 Band Ratios (BR) Method 
In general, all materials are composed of atoms and molecules 

with a specific composition [9]. Therefore, various materials, 

depending on the structure, absorb or emit electromagnetic 

radiation at special wavelengths [10]. So that the wavelength 

curve and radiant energy for each object are unique and this is 

a clear feature of remote sensing science [11]. The result of 

dividing the values of the brightness of the pixels in a spectral 

band into another band is called the band ratio. And as a 

result, new lighting levels or, in other words, a new image are 

created. Band ratios method is used to detect complications 

that are not visible in the image of single bands [12]. 

This method is applicable to the recognition of the spectral 

reflection of various phenomena for the appearance of a 

particular phenomenon. Relative images that are based on the  

 

 

 

reflection characteristics of altered minerals and by dividing 

the digital values of a spectral band into another band are 

important in identifying altered areas [13]. 

In order to determine the alteration areas with respect to the 

spectral characteristics of the index minerals in any kind of 

alteration, the bands proportions can be defined. Many band 

ratios have been identified for the identification of various 

types of minerals in the case of ASTER data [14].  

The results of applying band ratios method are gray-scale 

images that alone are not a valid criterion for determining the 

target areas in the study area. It only identifies the areas most 

likely to have the desired minerals or, in general, the objects 

to be searched for. Using false color combinations (RGB 

images) can be produced that make the interpretation and 

conclusions based on them more reliable and more practical 

[15]. 

2.3 False Color Combinations1 Method 
The importance of displaying the color combination of images 

in remote sensing can be considered due to their effectiveness 

in visual interpretation of various effects. One of the effective 

methods for identifying and separating various geological 

units is the false color combination (FCC) method [16]. 

The false color combination is a combination of three 

different bands combined in red, green, and blue (RGB) 

colors. If the combined bands of red, green, and blue 

wavelengths are the visible spectrum of electromagnetic 

spectrum, the resulting image will be a true color 

combination. If a different combination of red, green and blue 

bands or other bands of the electromagnetic spectrum is used, 

a false color image will be obtained that is not similar to the 

surface of the earth and its colors [17]. 

                                                           
1 FCC 

Figure 1. Location of the study area and its geological map [2]. 
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In making false color combinations it is better to use bands 

that have less correlation. Since the interaction of different 

wavelengths of electromagnetic energy is different in dealing 

with rock units, the sensitivity of the human eye to minor 

changes in color is much greater than its sensitivity to changes 

in black and white images. Choosing the best band 

combination depends on the target [18]. 

Three images can be combined to make the images visible for 

viewing in three blue, green, and red wavelengths (original 

RGB color combinations). In this study, this combination has 

been used to display several images in a single image and 

simultaneously display different information from a single 

point [19]. 

Calculation of the optimum index factor amount (OIF) is 

required to obtain the best false color combination (OIF of the 

higher color combinative with more information). The 

formula below shows the OIF calculation method [20]. 
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In formula 1 : Sk is the standard deviation of the k band, rj is 

the two-band correlation coefficient of the three-band 

combination [21]. Sometimes visually, the false color 

combinations containing major information are determined by 

the variety of colors [22]. 

2.4 Principal Components Analysis (PCA) 
One of the methods used to reduce the correlation between 

multivariate data and increase the distinction is the main 

component analysis (PCA) method. The purpose of this 

method is to compress data and eliminate redundant data in 

order to save time and money. By using the PCA method, we 

can replace many independent and correlated variables with a 

limited number of new variables, which are called principal 

components and are not interconnected [23]. In this way, the 

dimensions of the problem are reduced. In general, the 

purpose of this method is to compress all the information 

contained in a main dataset composed of n channels into less 

than n channels or new components. Finally, the components 

are used instead of the original data [24]. 

In general, this approach reduces the compatibility between 

different bands data, and new information is obtained and sent 

to PC channels. By creating a combination of PC channels 

and dual-source bands, images can be created to illustrate the 

effects. This technique is a  eigenvectors based method, using 

eigenvalues and eigenvectors, identifies directions with 

maximum variability and then decreases the dimensions of 

variables by defining new variables that are linear 

combinations of the initial variables [25]. New variables that 

are the product of the linear combination of initial variables 

do not show correlation between themselves [26]. 

To compute the main components, at first the variance, 

covariance, or matrix of correlation between the bands are 

formed and then eigenvalues and eigenvectors of this matrix 

are calculated. Because covariance is dependent on the unit of 

measurement of data and the bands of different bands do not 

have the same reflexion unit, it is better to use the correlation 

matrix [27]. 

For each principal component, an image is calculated from its 

eigenvectors. The numerical values of the principal 

component image are calculated using the values of numerical 

values in the initial images and the components of the 

eigenvectors as follows: 
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In formula 2 : Pk is the numerical value of the desired pixel 

for the k th principal component, DN (i) The numeric value of 

the i-th band for the desired pixel, aik is the amount of the load 

obtained from the eigenvectors of the k component in the i-th 

band. Thus, for each principal component or eigenvectors, an 

image is obtained that represents the variability in its direction 

[28]. 

2.5 Least Square Fitting (LS-Fit) Method 
In the regression least squares method, a band is estimated 

based on the linear combination of other bands using the least 

squares of errors [29]. In this method, the band of the mineral 

in question is high in adsorption with the rest of the bands, 

will be divided and the best areas will be detected with pixels 

containing those minerals [30, 31]. 

2.6 Spectral Angle Mapper (SAM) Method 
Spectral angle mapping (SAM) method is an image 

classification method by calculating the similarity between the 

image spectrum and a reference spectrum (e.g., spectral 

libraries) [29]. The algorithm of this method calculates the 

similarity between two spectra by the spectral angle between 

them [32]. In fact, by transforming the spectra into a vector in 

a space in the number of dimensions of the bands, the angle 

between the two vectors is calculated (See figure 2) [33] . 

 

Figure. 1  Example of SAM classification in case of 2 spectral bands. 

Scalar product between unknown material x and library sample r [33]. 
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In this method, the direction is important for calculating 

vectors, not length. Therefore, other factors are not considered 

in this method. In fact, the more the angle (between 0 and 1) 

is less, the more accurate it will be. If the value is 0, the whole 

image is identified as the desired phenomenon. To compare a 

pixel, the desired pixel spectrum is plotted from the examined 

area with the same pixel spectrum in the laboratory (library) 

on two bands in a coordinate axis. Then the points are 

connected to the coordinate center, and the angle between the 

two lines is used as the pixel identification angle. If the n 

bands are used to identify the phenomenon concerned, the 

following formula is used to obtain an angle [34].  
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In formula 3 : nb is the number of bands. unknown material x 

and library sample r. 

 

3. RESULTS AND DISCUSSION  
In this section, the results of each of the methods described in 

the previous section are presented. 

3.1 Band Ratios (BR) Method 
In the study area, a ratio of 2/1 to show Iron(II( oxides [35], 

3/2 ratio to reveal vegetation coverings and a ratio of 5/7 to 

show hydroxylated minerals [36] as a false color combination  

RGB=(2/1 , 3/2, 5/7) was used [37]. The result is shown in 

Figure 3. 

 

Figure. 3  false color combination image RGB=(2/1 , 3/2, 5/7) 

In the resulting image, the pinky to red regions indicate the 

presence of iron oxides, the green to yellow zones indicate the 

presence of vegetation and eventually the blue zones indicate 

the presence of clay minerals. 

3.2 False Color Combinations Method 
In the study area, a false color combination (4,6,8) RGB was 

used [35]. and the result is shown in Figure 4. 

 

Figure. 3  false color combination image RGB=(4 , 6, 8) 
 

3.3 Principal Components Analysis (PCA) 
In the study area, the combination of bands 3,2,1 and 4 was 

used to show areas containing iron oxides. The statistical 

results and their PC coefficients are shown in Table 1. 

Table 1. The statistical results and PC coefficients related to the 
ASTER bands composition. 

Band 4 Band 3 Band 2 Band 1   

0.128783 0.456589 0.639967 0.60447 PC1 

-0.335408 -0.794281 0.191027 0.469178 PC2 

0.932605 -0.385483 0.007555 0.061825 PC3 

-0.034116 -0.185138 0.744241 -0.640832 PC4 

 

Looking at Table 1, it can be seen that the greatest difference 

between the absorption bands and the reflection of the iron 

oxide index appears in the third component.Therefore, the 

component can be used to show the probable areas containing 

iron oxides (Figure 4). 

 

Figure. 4 The third component image (PC3) obtained after analyzing 

the principals components. 

The red regions in the figure 4 shows regions containing iron 

oxides. Which are separated by PCA method. 
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3.4 Least Square Fitting (LS-Fit) Method 
In this study, band 2, which has high adsorption index for iron 

oxide minerals, was selected as model band and other bands 

were selected as the predictor bands. The final image is shown 

in Figure 5. The blue regions that are separated on the ASTER 

image are regions containing iron oxide (see figure 5). 

 

Figure. 5 The result of applying the Ls-Fit method. 

3.5 Spectral Angle Mapper (SAM) Method 

In the study area, using the spectral angle mapper base pixel 

method and using the spectral library, the hematite and 

limonite iron minerals were detected and shown  in (Figures 6 

and 7). 

 

Figure 6. Hematite Separation Using Spectral Angle Mapper Method. 

The yellow regions marked on the ASTER image (figure 6) 

are regions containing Hematite Cannabis, that are separated 

by Spectral Angle Mapper (SAM) Method. 

 

Figure 7. Limonite Separation Using Spectral Angle Mapper Method. 

In figure 7, regions containing limonite, are indicated with 

purple color. 

3.6 Field Studies and Control Point 
After the remote sensing tests were carried out and the results 

were obtained. Regarding the determination of areas as iron 

oxides by various techniques. One point was determined as a 

control point and was referred to the position for checking the 

results. This point is a place designated by the Spectral Angle 

Mapper (SAM) Method as the region containing hematite and 

limonite minerals. While other methods used in this region, 

indicate the lack of iron oxide there. The location of the 

control point is shown in Figure 8. 

 

Figure 8. The location of the control point on the ASTER image. 

After checking the control point, it was found that there is 

hematite and limonite mineralization in this region. The 

control point and mineralization of hematite and limonite is 

shown in Figure 9. 

 

Figure 9. image of the control point in the field.                            

Hematite mineralization in lower layers and limonite  mineralization 

in upper layers. 

4.  CONCLUSION 

 The importance of exploration of iron ore is obvious 

because it is an economic and strategic element. In this 

regard, remote sensing has been used as one of the most 

important tools in the exploration of these minerals.  

 In this study, using remote sensing methods including 

band ratios (BR), false color combinations (FCC), least 

square fitting (LS-Fit), spectral angle mapper (SAM), 

and principal components analysis (PCA) and also 
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considering the geological features of the study area, the 

detection of oxidation regions and iron minerals in the 

area of Hana, located in the south of Kerman province, 

was discussed. 

 After examining the field evidence in the control point, it 

was determined that the Spectral Angle Mapper (SAM) 

Method can be cited and closer to the reality in this study 

area for iron remote sensing. In the results of this 

method, the regions were identified that contain 

mineralization of hematite and limonite. While these 

points were free from iron oxide in the images obtained 

from other methods. 

  The overall results of this study, in addition to showing 

the high accuracy of the SAM method, show the 

importance of using remote sensing methods and 

techniques in exploration and prospecting of minerals, 

especially iron ore. 
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