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Abstract: This paper presents the necessary background on traffic flow theory and the existing macroscopic mathematical models for 

single-lane, one-dimensional space traffic flow. The derivation of traffic flow theory based on conservation of mass and the 

relationships between velocity and density are presented. The exact and weak solutions to the scalar traffic flow Partial Differential 

Equation, and the shock wave, rarefaction wave, and the admissibility of a solution are considered. 
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1. INTRODUCTION 
In traffic flow problem, nonlinear hyperbolic conservation 

laws have been studied for many years. Traffic flows are 

classified according to traffic conditions, roadway conditions 

and traffic network structures. Traffic flows are considered 

inhomogeneous when the roadway has different parameters at 

different locations. A mathematical model for fluid dynamic 

flows on road networks is based on conservation laws. In this 

paper, we considered the first order traffic flows model. The 

first order model is based on the conservations of cars and is 

described by a single equation in conservation form.  The 

main assumption of the car following models is that an 

individual car’s motion only depends on the car ahead. As 

traffic jams display sharp discontinuities, there is a 

correspondence between traffic jams and shockwaves. We 

used the conservation laws model on the roads with time 

varing traffic distribution coefficients. In order to obtain a 

unique solution of the Riemann problem at junctions, we need 

to assume some rules, so we can construct solutions via wav-

front tracking technique. To describe a road network as a 

finite collection of roads meeting at some junctions that play a 

key role, since the system at a junction is under-determined 

even after imposing the conservation of cars. Traffic models 

are represented by minimization of congestions, accidents, 

pollution, and the maximization of safety. Shock and 

rarefaction waves are the basic solutions to a Riemann 

problem for such a conservation law. 

The paper is organized as follows. In section 2, the model for 

traffic flow on a road network is described. Section 3 deals 

with weak solutions, scalar Riemann problem and Numerical 

Method use for the traffic flow problem. Finally we discuss 

the shock formation. 

2. VELOCITY FIELD  
Consider a car moving along a highway. Since there is no 

passing and cars cannot move through each   other, the   order  

of the cars is preserved, although they can move at slightly 

different speeds. Let the velocity of car ""i  be .i If the x-

axis coincides with the road and position of this car is )(txi  

at time ,t  then  

,,...,2,1,)( Ni
dt

dx
t i

i   

 with N  cars there are different velocities, 

,,..,1),( Niti   each depending on time. 

3. TRAFFIC DENSITY  

Traffic density ),( tx  is the average number of cars per 

unit length at the position x  and time t . The flow can be 

written as 

),,(),(),( txtxtxf                                       (1) 

where  is the density of cars,   is the mean velocity and 

f  is the traffic flow.  

As the density increases, the velocity of cars diminishes. Thus 

we make the hypothesis that the velocity of cars at any point 

of the road is a strictly decreasing function of the density:     

                    ).(   

If there are no other cars on the highway, then the car would 

travel at the maximum speed max , 

                  .)0( max   

max  is sometimes referred to as the “mean free speed” 

corresponding to the velocity cars would travel if they were 

free from interference from other cars. At a certain density 

cars stop before they touch to each other. The maximum 

density ,max  usually corresponds to what is called bumper-

to-bumper traffic:        

     .0)( max   

In our case the flux is the following   
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,1)(
max

max 











f                                                 

where we set for simplicity ,1 maxmax    thus it 

reads:                        

).1()(  f  

4. CAR FOLLOWING MODEL 
To derive the one-dimensional model, first assume cars 

cannot pass each other. Then the idea is that a car in one-

dimension can move and accelerate forward based on two 

parameters; the headway distance between the current car and 

the one in front, and their speed difference. Hence, it is called 

car following, where a car from behind follows the one in 

front, and this is the anisotropic property Suppose the nth car 

location is ,)(txn
 then the nonlinear model is given by                         

 .
)()(

)()(
)(

1

1

txtx

txtx
ctx

nn

nn

n











                                 (2)                                                 

The acceleration of the current car )(txn
 depends on the 

front car speed and location, c is the sensitivity parameter. 

Integrating the above yields 

.))()((ln)( 1 nnnn dtxtxctx  
 Since by 

the definition of the density (number of cars per unit area) 

,)()(
),(

1
1 txtx

tx
nn 


                        (3) 

and the integration constant nd
 
is chosen such that at jam 

density ,max  the velocity is zero. Then for steady-state we 

get                                                         

.ln
m

c



                                                        (4) 

It can be seen that 0  traffic densities are low, car 

speed is the maximum allowed speed, hence we can assume 

,max   which is the maximum allowed speed. 

4.1 Traffic Flow 
The average number of cars passing per time unit is called the 

traffic flow ).,( txff   Suppose there is a road with cars 

moving with constant velocity ,0  and constant density 
0  

such that the distance between the cars is also constant as 

shown in the Figure. 1(a). Now let an observer measure the 

number of cars per unit time t  that pass him (i.e. traffic flow f 

). In t  time, each car has moved t0  distance, and hence 

the number of cars that pass the observer in t  time is the 

number of cars in t0  distance, see in Figure. 1(b).        

Since the density 0  is the number of cars per unit area and 

there is t0  distance, then the traffic flow is given by  

                     .00f                                    (5) 

This is the same equation as in the time varying case,                     

        ).,(),(),( txtxf                                         (6)                     

To show this, we consider the number of cars that pass point 

0xx   in a very small time t . In this period of time the 

cars have not moved far and hence ),( tx  and 

),( tx can be approximated by their constant values at 

0xx   and
0tt  . Then, the number of cars passing the 

observer occupies a short distance, and they are 

approximately equal to, ttxtx ),(),(   where the 

traffic flow is given by Equation 6. 

Observer

Observer

)(a

)(bt0  

Figure .1 (a) Constant Flow of Cars 

             (b) Distance Traveled in Hours for a Single Car t   

4.2 Conservation Law 
The models for traffic, whether they are one-equation or 

system of equations, are based on the physical principle of 

conservation. When physical quantities remain the same 

during some processes, these quantities are said to be 

conserved. Putting this principle into a mathematical 

representation will make it possible to predict the densities 

and velocities patterns at future time. In our case, the number 

of cars in a segment of a highway ],[ 21 xx  is our physical 

quantities, and the process is to keep them fixed (i.e., the 

number of cars coming in equals the number of cars going out 

of the segment). Consider a stretch of highway on which cars 

are moving from left to right as shown in Figure 2. It is 

assumed here that there are no exit or entrance ramps. The 

number of cars within ],[ 21 xx  at a given time t  is the 

integral of the traffic density given by 


2

1

.),(
x

x
dxtxN                                                     (7) 

The number of cars can still change (increase or decrease) in 

time due to cars crossing both ends of the segment. Assuming 

no cars are crated or destroyed, and then the change of the 

number of cars is due to the change at the boundaries only. 

Therefore, the rate of change of the number of cars is given by 

    ),,(),(  outin ff
dt

dN
                           (8)                                                                                               

since the number of cars unit time is the flow ).,( f  

Combining Equations 7, and 8, yields the integral 

conservation law 

  
2

1

).,(),(),(
x

x
outin ffdxtx

dt

d
   (9) 
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This equation represents the fact that  change  in  number 

of cars is due to the flows at the boundaries. Let the end points 

are independent variables  (not fixed with time), then  the fulll 

derivative is replaced by partial derivative to get   

  


 2

1

).,(),(),(
x

x
outin ffdxtx

t
      

(10) 

The change in the number of cars with respect to distance is 

given by 

 ,),(),(),(
2

1
 




x

x
outin dx

x

f
ff    (11) 

and by setting the last two equations equal to each other, we 

get 

 















2

1

.0),(),(
x

x
dx

x

f
tx

t



               (12) 

 

This equation states that the definite integral of some quantity 

is always zero for all values of the independent varying limits 

of the integral. The only function with this feature is the zero 

function. Therefore, assuming ),( tx  and ),( txf  are 

both smooth, the one-dimensional conservation law is found 

to be 

.0),(),( 








vf

x
tx

t
                     (13) 

 

                  Figure 2. One Dimension Flow  

4.3 Weak Solutions 
The function   is needed to interpret as  a solution  in a 

weak  sense  of the  initial-value  problem   Equation 14.   In 

particular, assume we use method of characteristics to see that 

even for smooth initial conditions the strong  solutions  cannot 

be extended in time indefinitely. In  fact, even   smooth  initial 

conditions can lead to discontinuous solutions in finite time. 

In this case, it can be used test function ).(1

0 C  

1

0C  is the space function that are  continuously  differentiable 

with compact support. ),( tx  is  identically zero  outside of 

some bounded set, and so the support of the function   lies in a 

compact set. 









 )),,0[(

,),0[:

0C


                                                    

(14) 

by parts and we call   is a test function. Then multiply the 

equation 0)(  xt f   by   and integrate: 

0))((
00




 

  txt dtdxf   

0
000











t

t dxdtdx   

.0)(
0

  
 


dtdxf x  

Using the initial condition )()0,( 0 xx    on 

,}0{  t we have 

.0)0,()( 0
0

  




 


dxxdtdxf xt         (15) 

4.4 Scalar Riemann Problem 
Scalar Riemann problem is the Cauchy  problem for the scalar 

conservation law where the initial  data is a   piecewise 

constant function with   only two values. In  both cases  there 

will be  two different   values on both sides of 0x  at time 

0t . In one case the left hand side value will be lower in 

the other it will be higher than the right hand side value. 

The initial value problem  

            

,)0,(

,0)(),(

0















x

x
ftx

t  

with the piecewise constant initial function 










,0,

,0,
)0,(

xif

xif
x

r

l




  

is called Riemann's problem for the scalar conservation law. 

lr  ,  are the left and right initial states, with 

.rl    

)(i  If ,rl    from the lax entropy condition of the for 

convex fluxes, the unique entropy solution of the Riemann 

problem is 

     










,,

,,
),(

stxif

stxif
tx

r

l




                                (16) 

where 0,  tx  and s  is given by the Rankine-

Hugoniot condition;  
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2

)( rls
 

                                                             (17) 

is the shock speed, the speed at which the discontinuity travels 

t

x

l

r

0

stx t

x

r
l

0
 

                         Figure 3. Shock Wave 

 )(ii  If ,lr    the unique entropy solution of the 

Riemann’s problem 





















 

),(

),()()()(

,)(

),( 1

rr

rl

ll

f
t

x
if

f
t

x
fif

t

x
f

f
t

x
if

tx







         (18) 

  where .0,  tRx  

)(iii  If rl   , there exists a unique entropy solution of 

the Riemann problem, that is the constant state 

.),( rltx    

Therefore in each case we can give an  explicit  expression  of 

the solution of the Riemann's problem. 

In  the  first  case  the  two   constant states l   and  r  are 

separated by a shock wave with constant speed s.  In the other 

case the two states  are separated by a  rarefaction wave. The 

rarefaction solution is continuous    in ).,0(  From a 

physical point of  view it   corresponds  to expensive states of 

fluids and it is commonly known as the rarefaction wave. 

 

t

x

r

0

l

 

x0

t

l
r

)( rt
x f 

)( lt
x f 

 

            Figure 4. Rarefaction Wave 

4.5 Shock Speed 
The propagating shock Equation 18 is a weak solution to 

Burgers’ Equation only if the speed of propagation is given by 

Equation 17. The same discontinuity propagating at a 

different speed would not be a weak solution. The speed of 

propagation can be determined by conservation. If M  is 

large compared to st  then by Equation.10,  


M

M
dxtx

_
),(  must increase at the rate  

)()(
2

1

)()(),(

rlrl

M

M
rl ffdxtx








                          

(19) 

)()(
2

1

)()(),(

rlrl

M

M
rl ffdxtx








                (20) 

for Burger’s equation. On the other hand, the Equation 16 has 

r

M

M
l stMstMdxtx  )()(),(              (21) 

so that  

 
M

M
rlsdxtx

dt

d
).(),(                (22) 

         For arbitrary flux function )(f  this  same  argument 

gives the following    relation  between the shock speed s  the 

states   l  and ,r   called  the  Rankine- Hugoniot (R-H ) 

jump condition:       

.)()()( lrlr sff                                 (23)   

  For a scalar conservation law the shock speed is 

     

rl

rl ff
s










)()(
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      
 
f


                                                                      (24)                                                                                                                               

where    indicates the jump in some quantity across the 

discontinuity. Note that any jump is allowed, provided the 

speed is related Equation 24. 

 For systems of equations, rl    and 

)()( lr ff    are both vectors while s   is still a scalar. 

We cannot always solve for s  to make Equation 23 holds. 

Only certain jumps rl    are allowed, those for which 

the vectors )()( lr ff    and rl    are linearly 

dependent. 

 For a linear system 

),()()( lrlr sff                                  (25)                                                                                             

 rl    must be an eigenvector of the matrix  and s  is 

the associated eigenvalue. For a linear system, these 

eigenvalues are the characteristic speeds of the system. Thus 

discontinuities can propagate only along characteristics, a fact 

that we have seen for the scalar case. 

tt 1

1t

xx 11x

sspeedwithshock

l 

r 

 

Figure 5. Region of Integration for Shock Speed Calculation 

4.6 Vehicle Path     
The velocity of vehicles is independent of traffic wave 

velocity. Once a vehicle a distance D encounters   traffic wave 

which moves with velocity ,max  the car will begin to 

move. The density in the expansion fan is   

  .
2

),(
max

max

max 











 


t

xt
tx




                     (26) 

The velocity of a car is .1
max

max 











  

The path )(tx of the car thus satisfies 

.)
2

(
1

1
max

max

max

max

max 



















 


t

xt

dt

dx







   

  

 

5. CALCULATED RESULT FOR     

SHOCK SPEED 

Let 









300
160


f  in miles/ hours units. We 

suppose that 0t  the density on road is given by   

              

 
















.1,160

10,3140

0,40

)0,(

xfor

xforx

xfor

x  

.Since 









300
160)(


 , the characteristics are 





















.1,10

,10,)
3

2
(60

,0,30

00

000

00

xforxt

xforxtx

xforxt

x  

In the transition region characteristics are thus given by 

.
3

2
60 00 xtxx 








 . At time ,

60

1
t  these 

characteristics intersect at 
3

2
x  mile, and a shock forms. 

The shock velocity is given by 

 
 

.20

)300/)16040(1(60

)()(

mph

ff

dt

d

lr

rl
shock















 

Consider what happens to the car at 1x  when .0t  

The speed of the car is initially 

.52)300/401(60 mph  At ,
60

1
t  it has 

reach 0x  and the shock forms at. .
3

2
x Since the car’s 

path is given by 140  txcar  and the shock path 

by 3/2)60/1(20  txshock  the car will  meet the 

shock when shockcar xx   or 
15

1
t hours. Once through 
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the shock, the car moves at velocity 

.28)
300

160
1(60 mph . 

               

                                                         

 

 

 

 

 

 

 

 

 

 

     Figure 6. Shock Formation from the Initial Density  

6. CONCLUSIONS 
In this paper, we focused on road networks, where on each 

road the scalar conservation laws model and car following 

models determines the evolution of the car traffic. Then we 

calculated for the shock speed. 
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