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Abstract: The stochastic analysis of composite structures with partially restrained (PR) connections under seismic loads present some 

interesting and challenging issues to practicing engineers. This paper proposes an efficient, robust, and accurate method for stochastic 

finite element analysis of concrete–steel composite structures allowing for PR connections. These are followed by suitable numerical 

example which indicates that employment of such a stochastic finite element analysis. The Kocaeli earthquake in 1999 is considered as 

a ground motion. The connections parameters and material properties are random variables. It is essential to properly consider the PR 

connections in the stochastic dynamic analysis and design of the steel-concrete composite structures since design forces change 

significantly. The assumption that the connections are rigid, which is routinely used in the application, is not proper. The effect of the 

variability connection stiffness on the composite structures responses is sufficiently important for consideration in structural safety. 
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1. INTRODUCTION 
This paper presents the effect of the variability in connection 

stiffness and material (elastic module) properties on stochastic 

responses of a composite structure modeled with PR beam-to-

column connections by using stochastic finite element method 

(SFEM) and Monte Carlo simulation (MCS) method. A 

computer program for PR connections composite 3-D frame 

systems was developed in FORTRAN language and 

incorporated into a general-purpose computer program [1, 10] 

for dynamic deterministic and stochastic analysis of medium 

and large-scale three-dimensional frames. Then, this program 

is combined to MCS method. Firstly, the stochastic dynamic 

analysis results acquired from all the random variables (elastic 

module and connection rigidities) are compared with each 

other separately, and secondly the efficiency and accuracy of 

the proposed are validated by comparison with results of MCS 

method. Finally, the results of stochastic finite element  

analyses of the composite structure with fully rigid joints have 

been compared with the results obtained from two type PR 

connections. Elastic module and connection rigidities are 

chosen as random properties. This means these values 

changes in the borders of a standard deviation.  In spite of 

extensive research into deterministic analysis of PR 

connections composite construction [2-9], the stochastic 

dynamic analysis and design of this type of construction form 

cannot be fully utilized by engineers unless an efficient, 

robust and accurate method of analysis is available. 

2. Theory 
The stiffness matrix formulation of composite 3-D frames 

with type PR connections and PSFEM dynamic analysis 

formulation are given references [10]. 

2.1. Stiffness matrix formulation of 3-D composite frame 

with PR connections 

 

The stiffness matrix formulation of composite system with 

type PR connections is given according to References [10-13].  

In the stochastic finite element method (SFEM), the 

deterministic finite element formulation is modified using the 

perturbation technique or the partial derivative method to 

incorporate uncertainty in the structural system. Since the 

basic variables are stochastic, every quantity computed during 

the deterministic analysis, being a function of the basic 

variables, is also stochastic. Therefore, the efficient way to 

arrive at the stochastic response may be to keep account of the 

stochastic variation of the quantities at every step of the 

deterministic analysis in terms of the stochastic variation of 

the basic variables. 

There are two fundamental ways to solve the stochastic 

problem (i) analytical approach and (ii) numerical approach. 

Among analytical approaches, the perturbation method is 

widely used because of its simplicity. Numerical method such 

as Monte Carlo Simulation is generally applicable to all types’ 

stochastic problems and is often used to verify the results 

obtained from analytical methods. A detailed discussion of 

these methods is presented below: 

 

2.2. Perturbation based stochastic finite element method 

(PSFEM) formulation 

 

The perturbation method is the most widely used technique 

for analyzing uncertain system. This method consists of 

expanding all the random variables of an uncertain system 

around their respective mean values via Taylor series and 

deriving analytical expression for the variation of desired 

response quantities such as natural frequencies and mode 

shapes of a structure due to small variation of those random 

variables. The basic idea behind the perturbation method is to 

express the stiffness and mass matrices and the responses in 

terms of Taylor series expansion with respect to the 

parameters centered at the mean values [1].  

 

2.3. Monte Carlo Method (MCS) 

The Monte Carlo Simulation generates a set of random values 

of X according to its probability distribution function. The set 
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can be written as X= {x1, x2,…, xN}, where N is the number of 

simulation. For each values of X, the stiffness and mass 

matrices are computed. At the end of N simulations, we have 

a random set of displacement and stress values

        
N

qqqq  ,...,,,
321 ,

        N321 ,...,,, 
   for Xi [14]. From this finite 

set of solutions, the expected values of displacement and 

stress are computed using the following formulas; 

                                                                                                                   

   



N

i
iq q

N 1

1



                                                          

(1) 

                                                                                                                     

   


 
N

1i
i

N

1

                                                             (2) 

3. Numerical Example 

Variations in material and geometrical properties and capacity 

of connections affect the uncertainty in structural response of 

steel-concrete composite systems. Therefore, the attentions 

should be focused to compare the stochastic dynamic 

responses of structural systems made of composite cross-

sections for different random variables. An eight-story 

composite residential building was considered in this study. A 

typical floor plan is shown in Fig.1. The composite residential 

building has 8 stories and typical floor height is 3.0 m. 

Framing of the building is irregular in plan where there are 7 

axes in X-direction and 3 axes in Y-direction. In order to 

study the stochastic dynamic response of the steel-concrete 

composite beam and column with type PR connections shown 

in Fig. 2, the elastic module of the material characteristic, E 

and the connection stiffness k are modelled as random 

variables. The composite columns (Fig. 2c) and composite 

beams (Fig. 2d) are consisting of a concrete part (Ec = 

3.0x107 kPa, Gc = 1.25x107 kPa, 
3/2500 mkgc 

 , 

20.0 ) stiffened by a steel one  (Es = 2.1x108 kPa, Gs = 

8.75x107 kPa, 

3/7850 mkgs 
) (reference material). 

The column has a box shaped closed composite cross section 

as shown in Fig. 2c. The cross-section properties are 

computed as AE =AG = 0.0251 m2, Iy = 5.364x10-4 m4, Iz = 

1.986x10-4 m4, It = 8.295x10-4 m4. The composite beams 

are formed as a box shaped composite cross section, with 

uniform Poisson’s ratio 20.0  and damping ratios 

05.0
. The cross-section properties is computed as AE 

=AG = 0.147 m2, Iy = 0.0014 m4, Iz = 0.0064 m4, It = 0.063 

m4 (Fig. 2d). The shear deformation coefficient for two 

sections is selected as ay=az=0. 

 

 

Figure 1.Three dimensional finite element model of building 

 

Figure 2. (a) Typical X-Z sectional view  (b) Typical Y-Z 

sectional view (c) The dimensions of composite column cross-

section. (d) The dimensions of composite beam cross-section. 

The probability density function of random variables is 

assumed as normal (or Gaussian) distribution. The Mode 

Superposition Method considering the Wilson-Ɵ algorithm is 

used for solving the dynamic equilibrium equations. 1999 

Kocaeli earthquake is the largest natural disasters of the 20th 

century in Turkey after 1939 Erzincan earthquake. For the 

Kocaeli earthquake, the official death toll was more than 15 

000, with approximately 44 000 people injured and thousands 

left homeless. For that reason, YPT330 component of 

Yarimca station records of 1999 Kocaeli Earthquake (Fig. 3) 

is utilized as ground motion [15]. This ground motion 

continued up 35.0 s is applied to the system in a horizontal 

direction. The dynamic responses of the composite structure 

are obtained for a time interval of 0.005 s. The composite 

residential building is modeled by equal lengths of 1840 

stochastic finite elements. MCS method was simulated for 
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10000 simulations. Mean of maximum displacements and 

internal forces are determined according to PSFEM and MCS 

method for composite system. The stochastic finite element  

results obtained from Case A, Case B are compared with each 

other.  
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Figure 3. Acceleration time history of Kocaeli earthquake 

(YPT330), 1999 [15].                         

 

Case A. Elastic module of material properties is chosen as 

random variable for composite structure. The other variables 

are considered as deterministic for steel-concrete composite 

system. The elastic module of composite elements is chosen 

as reference material’s (steel) elastic module. This random 

variable is assumed to follow a normal distribution with the 

coefficient of variation 0.15. The respective expectation and 

correlation function and coefficient of variation [1] for the 

elastic modulus E
 are assumed as follows: 

 

E [Eρ]= 2.1x108 kPa  λ=10                                                  (3) 
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15.0                                                                              (5) 

where xρ, l and λ are ordinates of the element midpoints (n 

random variable, 
n,...,2,1, 

 ), structural member 

length and decay factor.  

 

Case B. The variation in connection rigidity, k, was modeled 

as random variables for steel-concrete composite structure. 

Different approaches in literature are used to model the 

connection. This study includes representing the connection 

by a rotational spring attached to each end of the connecting 

member. A non-dimensional fixity factor is used to 

characterize the connection behavior. Two types of semi-rigid 

beam-to-column connections were considered. The first of 

these connections is relatively stiff (k1) and the second is 

rather weak (k2). For comparison, the same structure with 

rigid joints (k0) was analyzed. 

 The respective expectation and correlation function and 

coefficient of variation for the connection rigidity kρ are 

assumed as follows: 

E1 [k1] =1013796 kNm /rad                  λ =10                       (6) 

E2 [k2] = 337932   kNm /rad                 λ =10                       (7) 

 

15.0                                                                               (9) 

3.1. Responses of Composite structure with 

PR Connections 

The composite structure is assumed to be subjected to the 

ground motion shown in Fig. 2. The stochastic finite element 

analysis of the composite structure with various connection 

types according to random connection stiffness, material and 

geometrical properties has been carried out. Characteristic 

results of the lateral displacements along story height of 

composite structure as well as bending moments, shear forces 

and axial forces at the base of the columns for the various 

types of connections are presented. 

3.1.1. Horizontal Displacements 

Firstly, the accuracy of PSFEM is tested with MCS method. 

For this aim, these two methods are compared with each other 

for the horizontal displacement values (Fig. 4) and other 

internal forces (shear forces, bending moment and axial 

forces) are given for only PSFEM. 

The mean of maximum horizontal displacements along the 

right border of composite system according to PSFEM and 

MCS methods are presented in Fig. 4 for Cases A-B. The 

overall horizontal displacements values according to PSFEM 

of composite structure subjected to ground motion are greater 

than those of the MCS method for all random variables. 

However, the displacement values obtained from the 

perturbation method are generally close to those calculated 

using MCS method, as shown in Fig. 4. At the top of 

composite system where maximum horizontal displacement 

takes place, it can be observed that the maximum differences 

between PSFEM and MCS method are 5.5% and 4.4%, 

respectively for Cases A-B.  

It can be seen from Fig. 4 that the structure with PR 

connections has a greater lateral displacement than the other 

one with fully rigid connection. These differences increase 

with decrease in the connection stiffness.  

3.1.2. Internal Forces 

The maximum shear forces at the top joint of columns in 

every floor for the residential composite structure are plotted 

in Fig. 5 for Cases A-B. It is seen from Fig. 5 that the 

composite structure with PR connections has a smaller shear 

forces (k1) when compared with the fully rigid connection 

(k0). These differences increase with decrease in the 

connection stiffness. The maximum differences between k0 

and k2 according to k1 connections in the shear forces at the 

base of the composite structure with rigid joints and PR type 

of joints are 19.3% and 8.6% for Cases A-B, respectively. 

Changes in the bending moments are similar to shear forces 

for full rigidity and PR connections of Cases A-B (Fig. 6). 

The last comparison for internal forces is about axial forces 

obtained from this structural system. Fig. 7 presents maximum 

axial forces of the columns in every floor for the structure. It 

can be seen from Fig. 7 that the composite structure with type 

PR connections has smaller axial forces when compared with 

the fully rigid connection.  

These differences increase with decrease in the connection 

stiffness. Consequently, the difference in maximum axial 
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force at the column of the composite system with rigid joints 

(k0) and PR type of joints (k1) are 48.5 % and 11.9% for Case 

A,  and 49.9% and 10.5% for Case B according to k2, 

respectively  

It is obvious that there is a significant difference between the 

results obtained for the composite structures with rigid joints 

(k0) and the structures with PR (k1 and k2) connections 

especially in the case of the weak connections types (k2). 
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Figure 4.  Mean of maximum horizontal displacement along the story 

height of the composite structure for Case A (a), Case B (b). 
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Figure 5.  Mean of maximum shear forces at the top joint of the 

columns along the story height of the composite structure for Case A 

(a), Case B (b). 

3.1.3. Limitation in the PSFEM 

 

The horizontal displacements determined by PSFEM and by 

MCS method were compared for 0.05. The maximum 

horizontal displacements at top of the composite structure are 

given in Figs. 8(a) and (b). These figures show that the 

differences between maximum displacements obtained from 

PSFEM and MCS remains acceptable level if α is less than 

0.20.  

If it is mentioned the results obtained from this example; for 

the analysis of this composite structure (Fig. 1-2) presented its 

numerical properties, it needs about twenty seconds for 

perturbation based stochastic analysis, however, it needs 

about fourteen hours for MCS analysis with the PC which 

have Intel Pentium (R) 2.40 GHz CPU and 768 MB RAM.  

The accuracy of the obtained results compared with those 

acquired from MCS method solution is remarkable. However, 

as the number of degrees of freedom of the structure and the 

number of uncertain parameters increase, the structural 

analyses based on MCS becomes very heavy from a 

computational point of view, and, in some cases, the 

computational effort makes them inapplicable. 

It can be seen from these figures that the maximum values of 

dynamic responses from the three random variables are very 

similar to the result from the MCS method. For accurate 

dynamic responses, it is necessary that the analysis technique 

incorporate the effect of structural parameter randomness. 

This is of special importance for accurate stochastic dynamic 

analysis of composite systems, which exhibit wide dispersion 

in structural parameters. 
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Figure 6.  Mean of maximum bending moment at the top joint 

of the columns along the story height of the composite 

structure for Case A (a), , Case B (b). 

4. CONCLUSIONS 
 

In this paper, the effect of variability in elastic module and 

initial connection stiffness on the stochastic responses of the 

composite structure with type PR connections subjected to 

ground motion is investigated using PSFEM and MCS 

method. The complex dynamic stiffness matrix for a prismatic 

composite beam with rotational springs at its ends was 

obtained in an explicit form. The stiffness matrix was based 

on the analytical solutions for stochastic finite element  

analysis of steel-concrete composite 3-D frame with type PR 

connections and some conclusions are drawn for the systems 

as follows:  
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Figure 7.  Mean of maximum axial force at the top joint of the 

columns along the story height of the composite structure for 

Case A (a), Case B (b). 

On the bases of the above theoretical considerations and the 

results of the applied numerical analysis, it is evident that the 

PR connections greatly influence the dynamic behavior of 

steel-concrete composite structure. The connection flexibility 

may significantly alter the response of structure.  

From the results of numerical example, it can be concluded 

that the stochastic structural responses of the composite 

structure with PR connections and the composite structure 

with conventional type of connections (rigid) are considerably 

different. It shows that the stochastic effect of PR connections 

on structural response is significant. Therefore, the stochastic 

variation of PR connections should be used in design and 

response analysis of real composite structures. 

 These numerical conclusions show that displacements and 

internal forces are close to all random variables (elastic 

module and connection stiffness) for PSFEM and MCS 

method. The stochastic finite element  response values 

obtained for the random variable connection stiffness are 

generally higher than those of the other random variables for 

chosen composite structure.  

The connections are vital structural components that are very 

often responsible for the behavior and safety of structures 

subjected to strong dynamic (seismic) loads. Overestimating 

the connection restraint can result in larger lateral 

displacements than what was predicted. Therefore, connection 

design and modeling have a great practical importance. 
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Figure 8.  Comparison of the PSFEM with MCS method for 

composite structure with PR connection (a) k1= 1013796 kNm/rad (b) 
k2=337932 kNm/rad. 
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