
International Journal of Science and Engineering Applications

Volume 9 - Issue 06, 68 - 78, 2020, ISSN:- 2319 - 7560

www.ijsea.com 68

An Improved Data Masking Security Solution Using

Modulus Based Technique (MOBAT) for Data Warehouse

System

 Kefas Suwa Larson

M.Sc. Student, Comp. Science

Dept. of Mathematical Science

Abubakar Tafawa Balewa University (ATBU),

Bauchi, Nigeria

Souley Boukari

Professor, Computer Science

Dept. of Mathematical Science

Abubakar Tafawa Balewa University (ATBU),

Bauchi, Nigeria

Abstract: Protecting Data Warehouse (DW) is very important, since it consists of sensitive data used in many business models for

decision support processes. Data masking and encryption techniques have been recommended in academic literatures for DW,

however, most of the previous works considered only the numeric data types. This research proposes an improved Modulus Based

Technique (MOBAT) that supports string data with numeric and non-numeric attributes. Java with NetBeans and MySQL were used in

developing the solution. The experimental results show that our suggested technique achieves low storage space overhead, loading

time overhead and better processing time performance as compared to the existing system. While existing system consumed 102MB

storage space after MOBAT was applied to the data (8% storage space overhead), the proposed methodology maintained the same

storage space (1172mb) when data was without encryption and when MOBAT was applied. This means that no extra space is added.

Also, loading time overhead for existing system was 7%, but the new scheme achieved 6%. Based on the experimental results

obtained, our technique is more efficient, making it a valid alternative for protecting data stored in DWs.

Keywords: Data Warehouse Security; Data Warehousing; Data Security; Data Masking; Data Encryption

1. INTRODUCTION
Although many studies have been conducted on security

issues in Data Warehouse (DW), attacks are increasing every

year in numbers and complexity, and none of the security

solution proposed so far by researchers has proffered a

permanent and all-inclusive answer to the data damage,

breaches, malicious attacks, etc.

Security concerns have been an important subject in the

corridor of DW system and it remains totally unresolved up to

date [1]. The data stored in warehouse is extracted from

various operational databases. So, security has always been

the critical issue in DW for protection of essential and useful

data [2]. Due to the widespread use of confidential data in

Data Warehousing systems, security is a major concern [3].

According to [4], the main concept of DW Security is about

Confidentiality, Integrity and Availability (CIA).

Confidentially means only authorized users should access the

data from the DW. Integrity means originality of the data.

Availability means information is available all the time.

Authors in [5], indicated that to comply with the CIA

attributes, many techniques have been submitted. These can

be classified into two broad categories: preventive and

reactive techniques. Preventive data security techniques

protect the data in advance from security breaches or attacks.

They used data masking, encryption, and data access policies

to tackle the preventive category. Reactive data security

techniques effectively respond after a security attack or

security problem has occurred.

Granting that a variety of standard encryption algorithms are

available to secure DW, but as a consequence, they do reduce

the performance of the DW system due to their required large

computational overheads [6]. Most of the DW Security

approaches used encryption and masking methods that tried to

provide strong data privacy. However, these types of

encryption method make them inefficient for DW use owing

to their high computational overheads. Therefore, a data

masking technique is needed that can provide strong data

privacy with less computational effort and also maintains high

performance [7].

Furthermore, researchers in the past have used masking and

encryption techniques to protect data in DW, however, most

of the previous researches applied the masking and encryption

techniques to sensitive numeric attributes only. In this study,

an improved Modulus Based Technique (MOBAT) that

supports string data with textual, alphanumeric, numeric and

special character attributes specifically designed for DW

system is proposed.

The rest of this paper is organized as follows: Section 2

describes review of related works. Section 3 presents the new

MOBAT methodology. Section 4 presents the results of the

implementation of new MOBAT and the simulation

conducted, and finally, Section 5 concludes the study and

highlights future research directions.

2. REVIEW OF RELATED WORKS
This section provides a review of related works done by

different researchers on DW Security, pointing out the

strengths and weaknesses of each proffered solution.

The authors in [8], proposed a solution based on user profile,

which considers the definition of access permissions

according to the user role using the access rights defined in

data sources, generate the level of sensitivity of each object in

the DW according to these permissions, then trace the access

and detect violation attempts of access rights on a sensitive

data. They claim that this technique helps the owner of the

DW to well manage the access control of the users. But this

type of solution can only be suitable for applications with a

http://www.ijsea.com/

International Journal of Science and Engineering Applications

Volume 9 - Issue 06, 68 - 78, 2020, ISSN:- 2319 - 7560

www.ijsea.com 69

limited number of users and roles and where the user’s roles

seldom change, not for volume-centric data environment such

as DW.

[1] presented a framework for securing a student DW by

creating a hybrid technique using email and password, Token

and CAPTCHA authentication to ensure that only registered

students have access to the DW. However, their solution only

restricts logging access to the DW, while data at rest is not

masked, hence making it extremely vulnerable to a breach.

In their work, [9] evaluated a new schema that balances

security and performance when outsourcing DW in the cloud.

The schema is based on a simple privacy homomorphism

using the MOD operator with 2 prime numbers p and q. The

scenario is to encrypt data stocked in DW with the encryption

function ɸ(x)= [x mod p, x mod q] and m = pq (the product of

these large secret primes). Unfortunately, the schema is not

secure enough because the cloud provider can infer the two

chunks of data and get the two secret parameters p and q.

Malicious intruders can also break the security parameters of

the cloud provider, get the encrypted data and the modulo m

from the cloud provider and decrypt the data using the known

clear text.

[2] discussed an enhanced security architecture for DW by

combining One-Time Pad (OTP) encryption technique with

Advanced Encryption Standard (AES) to encrypt the data

before loading it into the DW. The OTP encrypts the input

data with random key (k) using modular addition, mod26

which has tremendous properties that plays an essential part in

cryptography for security. The OTP is unbreakable

theoretically but practically it is weak.

In their paper, [10] considered a solution that uses a universal

scheme for hiding data of various type fields of a row (tuple)

of a database table based on the use of MOBAT public and

private keys (K1, K2 and K3). Their method is based on

random permutation of elements (bytes, characters) of data of

a specific field of a different type (numeric, character strings,

Binary Large Objects (BLOBs), Character Large Objects

(CLOBs)) of table row, which used data shuffling technique.

However, only 18,000 rows of data were subjected to the

masking and encryption evaluation, thus, may not be

sufficient for a DW that stores huge volume of data.

In [11], the authors discussed a framework to Identify, Map,

Apply, Sign, Keep testing, and Utilize (IMASKU) and

Content-Based Data Masking Technique to securely save

sensitive data into an integrated DW to prevent the database

from the risks of external and internal attacks. Their technique

is claimed to protect data at rest within the enterprise data

warehouse. However, further algorithm optimization method

is needed to determine the acceptable execution time when a

big size of data is to be used on the framework.

[12] presented a new and efficient Format Preserving

Encryption (FPE) scheme for encrypting integer data of 16

digits by using AES, exclusive OR operation and a translation

method to overcome the shortcomings of existing schemes.

However, the technique only covers 16-digit numeric data and

may not be feasible for DW system that contains various data

types.

[13] considered a Multivalued-Homomorphic (MV-HO)

encryption strategy that was compared with encryption

strategies based on symmetric encryption, order preserving

symmetric encryption and homomorphic encryption. They

claim that their technique is the best solution as it is pareto-

optimal with respect to other strategies investigated. But the

technique was only tested with a small size of data, which is

not characteristic of a DW that holds huge volume of data.

To deal with numeric and non-numeric data types, [14]

proposed a technique to protect the confidentiality of numeric

and non-numeric data by obfuscation and encryption before

storing into the Cloud storage. They claim that their technique

has reduced the service cost, minimized the data size and

processing time while uploading into the cloud storage.

However, there was no experimental evaluation carried out to

ascertain this assumption.

[15] evaluated a new framework for implementing security

issues in DWs named DW Signature (DWS). The DWS

framework focuses on the triage of security issues, which are

Confidentiality, Integrity and Availability (CIA). Their

approach achieves high performance by using parallel

computing through a middleware named View Manager Layer

(VML). However, the method lacks performance evaluation

of (i) finding the query memory buffer for the VML

middleware, and (ii) evaluating the high performance when

the number of executors increases in the VML middleware.

In [16], the authors advanced an integrated data security

framework that enables the use of data masking, encryption

and intrusion detection in a single workflow for DW

environment. The framework discusses the feasibility issues

involving solutions that promote data confidentiality and deal

with intrusions against DWs at the database level, focusing on

data masking, encryption and database intrusion detection

systems (DIDS). However, both the data masking and

encryption techniques presented were specifically designed to

mask and encrypt numeric values only. This is because of the

believe that in most DWs the main portion of sensitive data is

numerical. Thus, the solution does not cover all the sensitive

data that may be stored in DW.

[17] presented “An Effective DW Security Framework”

which highlights the usage of modulus operator in data

security for DW system. They replaced the original set of data

with another set of data that is not real but realistic. The

numeric data is masked using a mathematical formula that

makes use of the modulus operator. They also injected false

rows onto the database which uses up extra space but helps in

increasing the randomness in the database that can mislead the

hackers. Their technique was compared with standard

encryption algorithms such as AES128 and 3DES168. The

results gotten were highly favorable with balanced system

performance in storage space overheads, loading time

overheads and response time overheads. However, there is

need to design a masking technique for respective data

domain (since DW is made of data from different sources) so

that it can apply to all data types instead of the numeric data

only.

[18] proposed a Specific Encryption Solution for DW (SES-

DW) using only standard SQL operators such as eXclusive

OR (XOR) and modulo (MOD, which returns the remainder

of a division expression), together with additions and

subtractions. Their technique shows a better database

performance than standard and state-of-the-art encryption

solutions with security based on DW perspective. However,

its major shortfall is that it can only secure sensitive data with

numeric data types. It does not cover other data types such as

textual or alphanumeric characters.

The authors in [19], presented a lightweight encryption

technique based on a cipher using alternating sets of

eXclusive OR (XOR) and bit switching operations sequence

http://www.ijsea.com/

International Journal of Science and Engineering Applications

Volume 9 - Issue 06, 68 - 78, 2020, ISSN:- 2319 - 7560

www.ijsea.com 70

which focuses on leveraging security-performance tradeoffs

that can make it feasible for DW environments. But, the

viability and feasibility of the technique could not be

guaranteed since the method was not tested in a real-world

DW environment.

[20] implemented a model for securing data in DW based on

log implementation. They noted that, data stored in DW need

to be transformed to other form which should be unreadable to

attackers. Thus, to increase data security the authors have

suggested a technique called data masking, which is a process

to convert original data to some other form. For this, a MOD

function/operator is used in SQL such that whenever a user

sends request stored in a log, it is verified in the log and

resent. But their data masking method introduced large

overheads, making it unfeasible for DW environment.

[21] introduced a Big Data Security mechanism using the

MOBAT technique, wherein they first selected only certain

attributes that have higher values than the rest and secure

them, which in turn provided security to the whole of the Big

Data. To mask the numeric data in the Big Data they made

use of the mathematical formula with MOD (modulus)

operator (which returns the remainder) and a set of other basic

arithmetic operators. However, the technique covers only

numeric data. There is need to extend the focus to securing the

character data as well.

[22] reviewed the security measure to prevent sensitive data

from malicious attacks. He provided a log-based security

system architecture to prevent the data from attackers. But the

critical problem is on how to automatically coordinate the

access rights of the DW with those of the data from the

different sources.

[23] presented a paper on how to balance Security and

Performance for Enhancing Data Privacy in DWs using

MOdulus-BAsed method. Their proposal uses the MOD

operator and simple arithmetic operations to mask data and

provide a significant level of apparent randomness for the

masked values. The solution also uses one of the masking

keys for injecting false data into the DW in order to mislead

attackers and increase the overall security level, making them

unable to distinguish true from false data. But their masking

technique is also only tailored to numeric kind of data.

In 24], the authors presented the best database encryption

solutions to protect sensitive data. They proposed a data

masking solution for numerical values in DWs based on the

mathematical modulus operator, which can be used with an

extra software application layer. However, this technique

needs to be expanded to cover masking of alphanumeric

values, so that it can provide a complete data protection

solution.

3. PROPOSED METHODOLOGY
This section presents the expected methodology used in

securing the data in a DW system.

 In our proposed solution, we have designed a model to

implement one of the future works of [16], in which the data

protection was only for numeric data type. The extension of

the existing techniques to cover all the data types is

imperative because DW stores huge amount of sensitive data

types that must be guarded against from both inside and

outside attackers.

The main contribution of our research work is the expansion

of the existing MOBAT technique to ensure all sensitive data

with different data types in DW can be encrypted, and to

prevent unauthorized access. This was designed and extended

using the 95-Printable ASCII codes for alphanumeric

characters and symbols, while maintaining the existing

MOBAT formula for the numeric data type. Figure 1 depicts

the framework of the improved security solution.

Figure 1. Proposed MOBAT and MOD95 system with

extended components

3.1 Working Principle of the Proposed

System
This research proposes an improved MOBAT for securing

data in Data Warehouses based on [16]. Our technique is a

hybrid of MOBAT and MOD 95 which uses the 95 printable

ASCII codes table that contains all the input on a normal

computer keyboard. This provides for easy conversion of

almost all English characters you can find on most computer

systems, and enables encrypting all data types. The considered

structure is mainly divided into two modules, numeric and

non-numeric data masking.

3.1.1 Numeric data masking
To better understand the working of the numeric data masking

technique, let us consider a table ‘T’ with a set of ‘m’ rows

and ‘n’ columns, where rows are given by (R1, R2,……,Rm)

and columns are given by (C1, C2,……,Cn). Let the value

that has to be masked be represented as a pair of (Ri, Cj)

where ‘Ri’ is the row and ‘Cj’ is the column which contains

the data that has to be masked. In order to mask the data, we

must have three masking keys:

 K1, a 128-bit randomly generated number which

remains constant for the table T.

 K2, a 128-bit randomly generated number which

remains constant for a particular column Cj.

This is represented as K2, j.

 K3, a random number between 1 and 2128 that

remains constant for a row. The value depends

on the data of that particular row. It is

represented as K3, i.

K1 and K2 are stored in the Black Box, while K3 will be

stored in the masked table along with the other data. Thus,

every row of a table will compulsorily have a public key K3.

Now, let’s suppose a value to be masked as (Ri, Cj). Then the

new masked value (Ri, Cj)` is given by the formula:
(Ri, Cj)’ = (Ri, Cj) – ((K3, i Mod K1) Mod K2, j) + K2, j (1)

To retrieve the original value, we used the following formula:

http://www.ijsea.com/

International Journal of Science and Engineering Applications

Volume 9 - Issue 06, 68 - 78, 2020, ISSN:- 2319 - 7560

www.ijsea.com 71

(Ri, Cj) = (Ri, Cj)’ + ((K3, i Mod K1) Mod K2, j) - K2, j (2)

3.1.2 Non-numeric data masking
For the non-numeric data types, we use a simple linear

algebraic function with the private key (K2) to encrypt them

by employing the formula stated in [25]:

E(x) = ((x - 32 + K2 + 95) mod 95) + 32 (3)
where x is the equivalent value of each character to

mask/encrypt as contain in ASCII table, while the randomly

generated key K2, is column dependent. We are subtracting

32 from every element of x because the printable characters

have ASCII codes in the range of 32 to 126, while mod 95

represents the ASCII values in the range 0 to 94.

To reverse any of the encrypted characters, we have to reverse

the steps used in encrypting it to recover the original values.

D(E(x)) = ((x - 32 - K2 + 95) mod 95) + 32 (4)

Thus, to reverse any of the encrypted characters, we have to

reverse the steps used in encrypting it to recover the original

values.

3.1.3 Proposed program design
The main algorithm of the submitted solution is as shown in

Figure 2, while details of the split algorithms are numbered 1

to 6 subsequently.

Begin algorithm

1. For each table n in the target DW database TDW(1….N)

2. Fetch K1 private key common for the entire table(n)

3. For each attribute j in the table

4. Fetch K2,j private key common for entire

attribute(j)

5. For each sensitive data item (Ri, Cj) selected from

the table(n)

6. Fetch K3,i public key common for a tuple (i)

7. If Data item selected is NOT numeric

8. Convert each character to its ASCII

equivalent and store in E(x)

9. Encrypt/ Decrypt E(x) with MOD95

masking formula

10. Translate E(x) to its character

equivalent (ciphertext)

11. Append E(x) to (Ri, Cj)

12. end for

13. else

14. for each pair of digits selected in (Ri, Cj)

15. encrypt/ decrypt digit value with MOBAT

masking formula and store in numb

16. append numb to (Ri, Cj) //every loop

appends with previous values

17. end for

18. end for

19. end for

20. end algorithm.

Figure 2. Algorithm for DW Security using MOBAT and

MOD95

1. Algorithm for Encryption with MOBAT and MOD95

Step 1: Identify sensitive Data to mask

Step 2: If data is Numeric Then

Step 3: Encrypt data using MOBAT algorithm

Step 4. Go to Step 9

Step 5: If Data is Non-numeric THEN

Step 6: Convert character to ASCII code

Step 7: Encrypt data using MOD95

Step 8: Convert the MOD95 into character to produce

 ciphertext

Step 9: Store Data in DW database

2. Algorithm for Decryption with MOBAT and MOD95

Step 1: Identify encrypted Data to unmask

Step 2: If data is Numeric Then

Step 3: Decrypt data using reverse formula of MOBAT

algorithm

Step 4: Go to Step 9

Step 5: If Data is Non-numeric THEN

Step 6: Convert ciphertext to ascii code

Step 7: Decrypt data using the reverse formula of MOD95

Step 8: Convert the MOD95 into character to produce

plaintext

 Step 9: Store Data in DW database

Step 10: Display result (original data) to user

3. MOBAT Encryption Algorithm for Numeric Data

types

Step 1. Select Numeric data fields to encrypt, in our case

(l_quantity, l_extendedprice, l_discount and l_tax)

Step 2: Fetch masking keys (k1, k2)

Step 3: Generate k3 for each row

Step 4: Apply MOBAT formula to data

Step 5: Store record in DW masked database

Step 6: Repeat steps 2 to 5 for each row until end

Step 7: Calculate execution time (in second).

Step 8: Display result to user

4. MOBAT Decryption Algorithm for Numeric Data

types

Step 1. Select Numeric data fields to decrypt, in our case

(l_quantity, l_extendedprice, l_discount and l_tax)

Step 2: Fetch masking keys (k1, k2)

Step 3: Generate k3 for each row

Step 4: Apply reverse MOBAT formula to data

Step 5: Repeat steps 2 to 4 for each row until end

Step 6: Calculate execution time (second)

Step 7: Display results to user

5. MOD95 Encryption Algorithm for Non-Numeric

Data types

Step 1: Select non-numeric data to encrypt, in our case

(l_shipmode)

Step 2: Fetch k2 for each column

Step 3: Convert data to ascii code equivalent

Step 4: Apply MOD95 formula to data

Step 5: Convert MOD95 into character to produce Ciphertext

Step 6: Store record in DW masked database

Step 7: Repeat steps 2 to 6 for each row until end

Step 8: Calculate execution time (in second)

Step 9: Display results to user

6. MOD95 Decryption Algorithm for Non-Numeric

Data types

Step 1: Select non-numeric data field to decrypt, in our case

 (l_shipmode)

Step 2: Fetch k2 for each column

Step 3: Convert data to ascii code equivalent

Step 4: Apply MOD95 reverse formula to retrieve original

 data

Step 5: Convert MOD95 into character to produce Plaintext

Step 6: Repeat steps 2 to 5 for each row until end

Step 7: Calculate execution time (in second)

Step 8: Display results to user.

3.1.4 Functional flowchart of the proposed work
The working of the improved MOBAT is further depicted by

the Flowchart in Figure 3.

http://www.ijsea.com/

International Journal of Science and Engineering Applications

Volume 9 - Issue 06, 68 - 78, 2020, ISSN:- 2319 - 7560

www.ijsea.com 72

Figure 3. Flowchart of the Proposed System

3.1.5 Evaluation metrics
The evaluation of the masking /unmasking process is

conducted using a dataset downloaded from the TPC-H

database. Two data masking metrics are considered:

Storage Growth – The change in the size of new masked

LineItem data table in comparison with the original one

measured in megabytes (MB).

This is measured as follows:

Storage Size Overhead (%) = Storage size in MOBAT (MB) –

Storage size in MySQL (MB)

__ x 100

 Storage size in MySQL (MB)

Performance – Loading time overhead (%) and the

processing speed of the encryption/decryption algorithms in

seconds. A time measurement is performed to evaluate the

execution cost of data loading operation in standard

application compared to loading time in the proposed

approach (MOBAT).

This is measured as follows:

Loading Time Overhead (%) = Loading execution time with

MOBAT (Sec) – Loading Time in MySQL database (sec)

__ x 100

 Loading Time in standard database (sec).

3.1.6 Masking key management
A DW encryption solution is only as secure as the protection

of its encryption keys. Therefore, the way in which encryption

keys are accessed, restricted and stored is critically important.

As stated in [16], the public key K3, is stored in the fact table,

so only keys K1 and K2 need to be cracked in MOBAT. K1 is

a 16-byte integer, that is, a set of 128 bits. K2 depends on

maximum storage size defined for each column, but variable

between 1 and 128 bits. This means our technique is a

minimum of 2129 key combinations for K1 and K2 together (at

least 16 bytes+1 bit), and roughly needs an average number of

2128 tests (half of the total possible brute force tests – 50%

chance) for discovering the keys using brute force, for each

masked column in the table, since K2 is column dependent.

For example, the minimum number of combinations needed to

discover all key values for an ith number of columns is i * 2129,

resulting in an average of i * 2128 ≈ i * 3.4 x 1038 brute force

tests to discover the keys. As stated in [11], the maximum

time needed to crack these masking keys versus the 128-bit

key combination is 1.02 x 1018 years (1 billion years). This is

a very difficult and time-consuming effort given the high

number of possible brute key values to crack. Also, the

MOBAT algorithms use dual moduli for the encryption and

decryption process, thereby providing strong security against

Brute-force attacks [26].

4. RESULTS AND DISCUSSION
In this section, we analyzed and discussed the contemplated

data masking solution which is specifically designed to

improve data confidentiality in DWs.

4.1 Simulation Environment
The work is implemented using Java programming language

with Java development kit (JDK) 1.8 and NetBeans IDE 8.2

connected to XAMPP-MySQL DBMS on an intel Pentium

N3540 Processor, 2.16GHz CPU with a 500GB hard disk and

4GB RAM. Various data sample testing was conducted to

determine the execution time of the algorithms, and to know

the storage space consumed when different size of data is

loaded into the DW database.

4.2 Experimental Data
To assess performance of the new masking technique, we

used dataset of a DW Fact table called LineItem that was

extracted from the Transaction Processing Council ad-hoc

(TPC-H) decision support benchmark to test the

encryption/decryption algorithms. A brief description of the

LineItem Fact table can be found in Appendix A.

4.3 Dataset
The dataset used in this research work was downloaded from

the TPC-H decision support benchmark [TPC-H]. The data

schema of TPC-H is created as sales DW with one fact table

(LineItem), joint by seven-dimension tables on a standalone

laptop.

From the sample dataset, we selected four sensitive numeric

attributes and one non-numeric attribute and applied MOBAT

and MOD95 algorithms respectively (L-Quantity,

L_ExtendedPrice, L_Discount and L_Tax) and L_Shipmode).

Also, for the experimental encryption, we tested one scenario,

namely: the results for MOBAT where the public key K3, i

columns are added to the fact table (LineItem) before

encrypting any of the sensitive column, named as MOBAT

AddCol. Finally, the results of the application of MOBAT and

MOD95 masking formulae (1 & 3) on normal data and

encrypted data are compared based on the scenario stated in

Table 1.
Table 1. Experimental encryption /masking scenario

Reference/

Label
Description

MOBAT

AddCol

Data masked with MOBAT formulae (1

& 3) in which a column for masking key

k3,i has been added to the fact table

http://www.ijsea.com/

International Journal of Science and Engineering Applications

Volume 9 - Issue 06, 68 - 78, 2020, ISSN:- 2319 - 7560

www.ijsea.com 73

4.4 Presentation and Analysis of Results
This section discusses the operation performed and the time it

takes to encrypt and decrypt data using the proposed MOBAT

and MOD95 algorithms. After conducting four (4) test cases

of simulation, the summary of results obtained are shown in

Table 2. The complete set of test results and respective

statistical measures can be seen in Appendix B.

Table 2. Comparison of experimental results

Test Case

No. of

Records

Data Size

(MB) Operation

MOBAT

Algorithm

(Sec)

MOD95

Algorithm

(Sec)

Load Time (sec)

500,000 Encryption Time (sec) 43 37

Decryption (sec) 34 30

Load Time (sec)

1,000,000 Encryption Time (sec) 87 76

Decryption (sec) 80 79

Load Time (sec)

1,500,000 Encryption Time (sec) 152 134

Decryption (sec) 147 133

Load Time (sec)

3,000,000 Encryption Time (sec) 321 295

Decryption (sec) 282 261

44

90

139

273

Case 1

Case 2 144

Case 3 223

78

Case 4 440

4.4.1 Analysis of experimental results

4.4.1.1 Test case 1 using 78mb data
Figure 4 shows the graphical representation of the storage

space used, loading time of the extracted data and the

processing time while encrypting 78MB of data.

Figure 4. Processing time executed in Test case 1

4.4.1.2 Test case 2 using 144mb data
Figure 5 shows the graphical representation of the storage

space used, loading time of the extracted data and the

processing time while encrypting 144MB of data.

Figure 5. Processing time executed in Test case 2

.

4.4.1.3 Test case 3 using 223mb data
Figure 6 shows the graphical representation of the storage

space used, loading time of the extracted data and the

processing time while encrypting 223MB of data.

Figure 6. Processing time executed in Test case 3

4.4.1.4 Test case 4 using 440mb data
Figure 7 shows the graphical representation of the storage

space used, loading time of the extracted data and the

processing time while encrypting 440MB of data.

Figure 7. Processing time executed in Test case 4

4.4.2 Analysis of storage space
This section describes the total data storage space used (in

MB) and the percentage storage overhead after loading the

TPC-H 1GB LineItem Fact table into the DW. We analyzed

both the standard storage space used by the LineItem fact

table when it is without any sort of encryption and when the

columns of the fact table have been masked, as can be seen in

Table 3. This is to find out whether the application of

MOBAT and MOD95 processes will write additional data that

may take up extra storage space in the DW database.

Table 3. Storage size and overhead for the TPC-H 1gb

tables.

http://www.ijsea.com/

International Journal of Science and Engineering Applications

Volume 9 - Issue 06, 68 - 78, 2020, ISSN:- 2319 - 7560

www.ijsea.com 74

Additionally, from Table 3, the existing system takes up

1237mb of storage space when it is without any encryption.

But when MOBAT was applied to the data it consumed

1339mb of storage space. This means there is an increase of

102MB storage space after the MOBAT was applied to the

data, leading to 8% storage space overhead.

However, in our considered MOBAT the storage space

consumed when data was loaded without any encryption and

when MOBAT/MOD95 was applied is the same, 1172mb.

This means that no extra space is added when the proposed

MOBAT was applied to the data.

Another key observation worth noting is the significant

difference between the total data storage space sizes of SQL

Server (1237MB) and MySQL (1172MB) as can be seen in

Figure 8. The huge difference in the standard data storage

space sizes between these DBMS is because they have distinct

ways of storing data [16]. Research has shown that MySQL

with MariaDB can improve compression performance for

flash devices, improves storage efficiency, and improve

power efficiency and CPU utilization [27].

Figure 8. LineItem fact table storage size (MB)

Figure 9, shows that the improved MOBAT has incurred 0%

overhead in storage space when compared to the 8% recorded

in the existing MOBAT. This means a huge cost savings in

memory usage when using the novel solution. Figure 9, shows

that the enhanced MOBAT has incurred 0% overhead in

storage space when compared to the 8% recorded in the

existing MOBAT. This means a huge cost savings in memory

usage when using the new MOBAT. The storage overhead is

evaded by preserving each of the encrypted column’s data

type [18]. This is achieved by retaining the original column-

type and length of each encrypted column. This ensures the

encrypted data is realistic but not real, and enables generating

accurate but not factual results.

Figure 9. LineItem storage space overhead (%).

4.4.3 Analysis of load time
In this section, we analyze the loading time taken when

populating the fact table to know how long the execution of

the data size by the MOBAT solution takes. Table 4 shows the

Loading time of both the existing system and the improved

MOBAT.

Table 4. Lineitem fact table loading time (sec) and loading

time overhead (%).

Test Case

Standard

SQL Server

(Sec)

MOBAT

Addcol (Sec)

Standard

Mysql (Sec)

Proposed

MOBAT (Sec)

Test Case 1 212 227 34 44

Test Case 2 212 227 84 90

Test Case 3 212 227 134 139

Test Case 4 212 227 262 273

Total Loading Time 212 227 514 546

7% 6%

Existing MOBAT Proposed MOBAT

Loading Time Overhead (%)

Figures 10 and 11 respectively show the results of the total

loading time (in seconds) and the percentage of time overhead

(%) for updating the TPC-H 1GB LineItem fact table. It can

be observed that the total standard loading time for the

LineItem fact table without using any sort of encryption

solution is 212 seconds, and after MOBAT has been applied

the loading takes 227 seconds as can be found in [16]. For the

proposed system, total standard loading time takes 514

seconds, while the loading time when new MOBAT/MOD95

is applied takes 546 seconds.

Figure 10. LineItem fact table loading time (sec).

 Figure 11. LineItem fact table loading time overhead (%).

http://www.ijsea.com/

International Journal of Science and Engineering Applications

Volume 9 - Issue 06, 68 - 78, 2020, ISSN:- 2319 - 7560

www.ijsea.com 75

A key observation that we can make from Figure 11 is the

loading time overheads. While the existing system has loading

time overheads as 7%, in the improved MOBAT it is 6%. This

clearly shows that our MOBAT performs better than [16].

4.4.4 Analysis of processing time
This section looks at the encryption and decryption speed for

the four test cases to determine how long it takes MOBAT

and MOD95 algorithms each to complete its masking task.

Thus, the processing time of the encryption and decryption

processes while updating the sensitive data is analyzed as

shown in Figures 12 and 13.

Figure 12. Encryption time (sec) for the TPC-H 1gb fact

table per algorithm.

Figure 13. Decryption time (sec) for the TPC-H 1GB fact

table per algorithm.

4.5 Discussion on the Experimental Results

4.5.1 Storage space overheads
The 1172MB storage space consumed in the new system

when data was loaded without any encryption and when

MOBAT and MOD95 algorithms were applied shows that

there is no extra space added to the system. This none increase

in the storage size for the proposed system is explained by the

fact that the improved MOBAT algorithm preserves the

encrypted columns’ data type format [28]. Thus, it avoids

introducing storage space overhead and type conversions

while running the encryption process.

Similarly, while the novel solution involves 0% as storage

space overhead, the existing system had 8% storage space

overhead. This is because in the new entity the total storage

space size did not change in both MySQL and when the data

was masked with the new MOBAT. This signifies an efficient

performance of the developed MOBAT.

4.5.2 Loading time overheads
The loading time overheads of 6% achieved by suggested

system is a significant improvement compared to the 7%

recorded in [16].

4.5.3 Processing time performance

4.5.3.1 Encryption time when masking data
As can be seen in Table 3 and Figure 12, each of the

processing speed of MOBAT and MOD95 is directly

proportional to the data size. That is, as the size of data

increases so does the execution time of the algorithms. In the

first, second, third and fourth test cases conducted, MOBAT

algorithm took 42, 87, 152 and 321 seconds to encrypt data

size of 78MB, 144MB, 223MB and 440MB, while MOD95

progressively took 37, 76, 134 and 295 seconds to encrypt the

same size of data.

4.5.3.2 Decryption time when unmasking data
For the decryption process (Figure 13), the first, second, third

and fourth test samples for MOBAT took 34, 80, 147 and 282

seconds, while MOD95 took 30, 79, 133 and 261 seconds to

decrypt the same size of data.

A further observation from Figures 12 and 13, is that the

processing time of MOD95 is lower than MOBAT. The

MOBAT algorithm takes longer time to encrypt/decrypt data

than MOD95 because in the experiment we chose four

columns (l_quantity, l_extendedprice, (l_discount, and l_tax)

to encrypt/decrypt with MOBAT while only one column

(l_shipmode) was used to test the MOD95 algorithm.

4.6 General Observation
An improved data masking solution specifically designed for

ensuring data confidentiality in DW was developed. The

advanced data masking formulae are composed by a set of

two consecutive moduli (division remainder) operations and

some simple arithmetic operations.

Considering the results attained from the experimental tests, it

is clear that the enhanced MOBAT is much more efficient.

The recommended technique introduces low storage space

overheads, low loading time overheads and better processing

time performance in the system. Precisely, the proposed

MOBAT is much faster than the existing solution, introducing

6% vs 7% of loading time and zero percent storage space

overheads in the tested scenarios. The experimental results

have demonstrated that the solution can effectively be used as

a valid option for protecting sensitive data in Data

Warehouses.

5. CONCLUSION AND FUTRE WORK
An improvement over existing MOBAT has been achieved,

by allowing all string data types (textual, alphanumeric,

special characters and numbers) to be masked, thus

guaranteeing data privacy and confidentiality of data stored in

data warehouses.

In this improved version of MOBAT, ASCII codes are used to

encode all the 95 printable characters, thereby adding

advantage of easy processing and implementation. That is, we

have increased the scope of both data masking and encryption

techniques to cover the protection of textual and alphanumeric

attributes, apart from numerical attributes. The keys used in

the encryption are randomly generated and so help to encrypt

http://www.ijsea.com/

International Journal of Science and Engineering Applications

Volume 9 - Issue 06, 68 - 78, 2020, ISSN:- 2319 - 7560

www.ijsea.com 76

the data that is required continuously by producing different

values for different columns and rows of data.

The experimental results show that the improved MOBAT

and MOD95 algorithms successfully encrypted all string data

types in the sample data. This performance also comes

without compromising the database size. The storage space

overheads, loading time overheads and processing time

performance introduced by our refined technique is lower than

that in [16]. This allows us to state that our improved

MOBAT solution is a viable data security alternative that can

be used to secure all string data in DW.

In the future, this approach can be expanded to cover all data

types that may be stored in a DW such as metadata (XML),

image, pdf, audio/video, etc. We also plan to

• implement and analyze the query performance of the

encryption algorithms using some of the 22 TPC-H

benchmark queries.

• simulate the practicability, efficiency and effectiveness of

the new solution in a real-world Data Warehousing

environment.

6. REFERENCES
[1] Kalio, Q. P., & Nwiabu, N. D. (2019). A framework for

securing data warehouse using hybrid approach.

International Journal of Computer Science and

Mathematical Theory, 5(1), 44-55.

[2] Gupta, S., Jain, S., & Agarwal, M. (2019). DWSA: A

secure data warehouse architecture for encrypting data

using AES and OTP encryption technique. in soft

computing: Theories and Applications (Vol. 742, pp.

505-514): Springer.

[3] Homayouni, H., Ghosh, S., & Ray, I. (2019). Data

warehouse testing. in advances in Computers (Vol. 112,

pp. 223-273): Elsevier.

[4] Kumar, S., Singh, B., & Kaur, G. (2016). Data

warehouse security issue. International Journal of

Advanced Research in Computer Science, 7(6).

[5] Divya, K., & Kurmi, J. (2017). A reassessment on

security tactics of Data Warehouse and comparison of

compression algorithms. Advances in Computational

Sciences and Technology, 10(5), 847-854.

[6] Chandra, P., & Gupta, M. K. (2018). Comprehensive

survey on data warehousing research. International

Journal of Information Technology, 10(2).

[7] Phoghat, P., & Maitrey, S. (2015). Analysis of security

techniques and issues in Data Warehouse. Paper

presented at the 2015 1st International Conference on

Next Generation Computing Technologies (NGCT).

[8] Elouazzani, A., Harbi, N., & Badir, H. (2018). User

profile management to protect sensitive Data in

Warehouses. 9(1), 1-32.

[9] Karkouda, K., Nabli, A., & Gargouri, F. (2019).

TrustedDW: A new framework to securely hosting data

warehouse in the Cloud. Proceedings of 34th

International Confer, 58, 397-406.

[10] Yesin, V. I., & Vilihura, V. V. (2019). Some approach to

data masking as means to counteract the inference threat.

Radio Engineering, 3(198), 113 -130.

[11] Ali, O. (2018). Secured data masking framework and

technique for preserving privacy in a business

intelligence analytics platform. Electronic Thesis and

Dissertation Repository. 5995.

[12] Gupta, S., Jain, S., & Agarwal, M. (2018). Ensuring data

security in databases using format preserving encryption.

Paper presented at the 2018 8th International Conference

on Cloud Computing, Data Science & Engineering

(Confluence).

[13] Lopes, C. C., Cesário-Times, V., Matwin, S., de Aguiar

Ciferri, C. D., & Ciferri, R. R. (2018). An encryption

methodology for enabling the use of data warehouses on

the Cloud. International Journal of Data Warehousing

and Mining (IJDWM), 14(4), 38-66.

[14] Yadav, S., & Tiwari, V. (2018). Encryption and

Obfuscation: Confidentiality technique for enhancing

data security in public cloud storage. Journal of

Computer and Information Technology, 09, 33-39.

[15] Almeghari, M. J. (2017). Data Warehouse Signature:

High performance evaluation for implementing security

issues in Data Warehouses through a new framework.

Journal of Computer Sciences and Applications, 5(1),

17-24.

[16] dos Santos, R. J. R. (2014). Enhancing data security in

Data Warehousing. (Doctoral dissertation in Information

Science and Technology). University of Coimbra.

Retrieved from http://hdl.handle.net/10316/25230

[17] Vishnu, B., Manjunath, T., & Hamsa, C. (2014). An

effective data warehouse security framework.

International Journal of Computer Applications, 975,

8887.

[18] Santos, R. J., Rasteiro, D., Bernardino, J., & Vieira, M.

(2013). A specific encryption solution for Data

Warehouses. Paper presented at the International

Conference on Database Systems for Advanced

Applications.

[19] Santos, R. J., Vieira, M., & Bernardino, J. (2016). XSX:

Lightweight encryption for Data Warehousing

environments. Paper presented at the International

Conference on Big Data Analytics and Knowledge

Discovery.

[20] Singh, A. (2015). Implementation model for access

control using log-based security: Practical approach.

Paper presented at the 2015 International Conference on

Advances in Computer Engineering and Applications.

[21] Achana, R., Hegadi, R. S., & Manjunath, T. (2015). A

novel data security framework using E-MOD for big

data. Paper presented at the 2015 IEEE International

WIE Conference on Electrical and Computer

Engineering (WIECON-ECE), BUET, Dhaka,

Bangladesh.

[22] Rani, R. (2014). Data Warehouse security using log-

based analysis: A review. In International Journal of

Advanced Research in Computer Science and Software

Engineering (Vol. 4, pp. 447-449).

[23] Santos, R. J., Bernardino, J., & Vieira, M. (2011a).

Balancing security and performance for enhancing data

privacy in Data Warehouses. Paper presented at the

2011IEEE 10th International Conference on Trust,

http://www.ijsea.com/
http://hdl.handle.net/10316/25230

International Journal of Science and Engineering Applications

Volume 9 - Issue 06, 68 - 78, 2020, ISSN:- 2319 - 7560

www.ijsea.com 77

Security and Privacy in Computing and

Communications.

[24] Santos, R. J., Bernardino, J., & Vieira, M. (2011b). A

data masking technique for data warehouses. Paper

presented at the Proceedings of the 15th Symposium on

International Database Engineering & Applications.

[25] Brabson, B. (2004). How to Learn Visual Basic

Programming. A step-by-step guide to tweaking your PC

experience (There’s no secret to writing good code).

Maximum PC May 2004, 60-66.

[26] Manu, & Goel, A. (2017). Encryption algorithm using

dual modulus. Paper presented at the 2017 3rd

International Conference on Computational Intelligence

& Communication Technology (CICT).

[27] Tongkaw, S., & Tongkaw, A. (2016). A comparison of

database performance of MariaDB and MySQL with

OLTP workload. Paper presented at the 2016 IEEE

Conference on Open Systems (ICOS), Langkawi,

Malaysia.

[28] Chandrashekar, P., Dara, S., & Muralidhara, V. (2015).

Efficient format preserving encrypted databases. Paper

presented at the 2015 IEEE International Conference on

Electronics, Computing and Communication

Technologies (CONECCT).

[29] Sanchez, J. C. (2016). Investigating the star schema

benchmark as a replacement for the TPC-H decision

support system. Master's Thesis, East Carolina

University.

7. APPENDIX A: TPC-H SCHEMA FOR

LINEITEM.
The TPC-H consists of eight tables, namely, Supplier, Part,

Partsupp, LineItem, Customer, Orders, Nation, and Region as

can be seen in Figure 13. The schema represents a simple data

warehouse dealing with sales, customers and suppliers.

Customers order products, which can be bought from more

than one supplier. Every customer and supplier are located in

a nation, which in turn is in a geographic region. An order

consists of a list of products sold to a customer. The list is

stored in LineItem where every row holds information about

one order line. There are several date fields both in LineItem

and in Orders, which store information regarding the

processing of an order (order date, ship date, commit date and

receipt date). The central fact table in TPC-H is LineItem

although Partsupp can also be considered another fact table.

The Scale Factor (SF) determines the ratio at which the data is

loaded into a DW database. It is used to increase the size of

the database throughout the benchmarking process. The value

in front of SF is the number of rows of data for each table.

Figure 14. TPC-H Schema. Source: [29]

8. APPENDIX B: DATA MASKING AND

ENCRYPTION EXPERIMENTAL

RESULTS
In this appendix, we present the averages for the data masking

and encryption experimental results. Each result is gotten

from the execution of four rounds of experiments and shown

in Table 5.

Table 5: Sample Tests run per Test Case

Test 1 Test 2

Test case Second MB Test case Second MB

Case 1 44.5160 77.6 Case 1 90.3282 148.7

Case 2 40.8673 77.6 Case 2 91.5370 142.7

Case 3 44.5714 77.6 Case 3 89.8518 142.7

Case 4 45.5383 77.6 Case 4 90.1704 143.7

Average 44 78 Average 90 144

Rows 1,000,000Rows 500,000

Test 3 Test 4

Test case Second MB Test case Second MB

Case 1 134.8201 223.8 Case 1 281.3464 439

Case 2 134.6162 225.8 Case 2 270.8838 459

Case 3 131.4730 224.8 Case 3 277.3704 428

Case 4 153.7349 218.8 Case 4 260.8134 432

Average 139 223 Average 273 440

Rows 1,500,000 Rows 3,000,000

http://www.ijsea.com/

International Journal of Science and Engineering Applications

Volume 9 - Issue 06, 68 - 78, 2020, ISSN:- 2319 - 7560

www.ijsea.com 78

Test Case

No. of

Rows

Data Size

(MB)

MOBAT

(sec)

MOD95

(sec)

Difference

between the

Algorithms

Case 1 500,000 78 42 37 5

Case 2 1,000,000 144 87 76 11

Case 3 1,500,000 223 152 134 18

Case 4 3,000,000 440 321 295 26

Tot/Average 6,000,000 885 151 136 15

Encryption Time for the TPC-H 1GB Fact Table per Solution

Test Case

No. of

Rows

Data Size

(MB)

MOBAT

(sec)

MOD95

(sec)

Difference

between the

Algorithms

Case 1 500,000 78 34 30 4

Case 2 1,000,000 144 80 79 1

Case 3 1,500,000 223 147 133 14

Case 4 3,000,000 440 282 261 21

Tot/Average 6,000,000 885 136 126 10

Decryption Time for the TPC-H 1GB Fact Table per Solution

http://www.ijsea.com/

